electricidad y magnetismo - cartagena99.com€¦ · electricidad y magnetismo ... 6 energía...

49
1 ELECTRICIDAD Y MAGNETISMO Capítulo 24 Energía electrostática y capacidad Copyright © 2004 by W. H. Freeman & Company Prof. Maurizio Mattesini

Upload: dangkiet

Post on 12-Oct-2018

418 views

Category:

Documents


27 download

TRANSCRIPT

Page 1: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

1

ELECTRICIDAD Y MAGNETISMO

Capítulo 24Energía electrostática y capacidad

Copyright © 2004 by W. H. Freeman & Company

Prof. Maurizio Mattesini

Page 2: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

2

Los condensadores se usan en un gran número de dispositivos electrónicos comunes, como en los circuitos de sintonización de radios, televisores y teléfonos móviles. Algunos condensadores pueden usarse para concentrar energía, aunque la mayoría se usan como filtros de frecuencias eléctricas que no se desea aplicar a los correspondientes circuitos.

Page 3: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

3

La energía para el destello luminoso de una cámara fotográfica se obtiene de un condensador existente en el propio dispositivo de flash.

Page 4: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

4

El desfibrilador externo aplica un alto voltaje entre ambos lados del pecho.

Page 5: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

5

24-1���Energía potencial electrostática

Page 6: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

6

Energía potencial electrostáticaLa energía potencial electrostática de un sistema de cargas puntuales es el trabajo necesario para trasportar las cargas desde una distancia infinita hasta sus posiciones finales.

ENERGÍA POTENCIAL ELECTROSTATICA DE UN SISTEMA

2,1

12 rkqV =El potencial en el punto 2 viene dado por: q1

punto 1 punto 2

d=r1,2

3,2

2

3,1

13 r

kqrkqV +=El potencial en el punto 3 viene dado por:

q1

punto 1 punto 2

d=r1,2

punto 3

d=r1,3 d=r2,3

q2

El trabajo para traer una secunda carga puntual q2 desde una distancia infinita es:

2,1

12222 r

qkqVqW ==

q2d=∞

El trabajo para traer una tercera carga q3 desde el infinito es:

3,2

23

3,1

13333 r

qkqrqkqVqW +==

q3

d=∞

El trabajo total para reunir las tres cargas es la energía potencial electrostática U:

3,2

23

3,1

13

2,1

12

rqkq

rqkq

rqkqU ++=

Caras puntuales:

Page 7: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

7

En donde V1 es le potencial debido a las cargas q2 y q3. De igual modo V2 es el potencial debido a las cargas q3 y q1, y V3 el potencial debido a q1 y q2.

( )

[ ]332211

3,2

2

3,1

13

2,1

1

3,2

32

3,1

3

2,1

21

3,2

23

3,1

13

2,1

12

3,2

23

3,1

13

2,1

12

3,2

23

3,1

13

2,1

12

21

21

21

21

VqVqVq

rkq

rkqq

rkq

rkqq

rkq

rkqq

rqkq

rqkq

rqkq

rqkq

rqkq

rqkq

UUrqkq

rqkq

rqkqU

++=

⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟

⎟⎠

⎞⎜⎜⎝

⎛++⎟

⎟⎠

⎞⎜⎜⎝

⎛+=

⎟⎟⎠

⎞⎜⎜⎝

⎛+++++=

+=++=

∑=

=n

iiiVqU

121

ENERGÍA POTENCIAL ELECTROSTATICA DE UN SISTEMA DE CARGAS PUNTUALES

Energía potencial electrostática de una distribución continua de carga (consideremos un conductor esférico de radio R): El trabajo necesario para transportar una cantidad de carga dq desde el infinito al conductor es V dq: en donde V=kQ/L es el potencial generado en la superficie de la esfera cargada. Aunque esta ecuación se ha deducido para un conductor esférico, es válida para cualquier conductor. Si tenemos una serie de n conductores con el conductor i al potencial Vi con la carga Qi, la energía electrostática es:

En donde Vi es el potencial en la posición de la carga i producido por las demás cargas.

RkqV =

QVQRkQQ

Rkq

Rkqdq

RkU

dqRkqVdqdU

QQ

21

222

2

0

2

0==⎟⎟

⎞⎜⎜⎝

⎛===

==

∑=

=n

iiiVQU

121

ENERGÍA POTENCIAL ELECTROSTATICA DE UN SISTEMA DE CONDUCTORES

Page 8: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

8

Trabajo requerido para mover cargas puntuales

EJEMPLO 24.1 Los puntos A, B, C y D son los vértices de un cuadrado de lado a. Cuatro cargas puntuales positivas de valor q se encuentran inicialmente en reposo y separadas a una distancia infinita. (a) Calcular el trabajo total necesario para situar cada una de las cargas puntuales en un vértice del cuadrado, determinando por separado el trabajo correspondiente al transporte de cada carga a su posición final. (b) Demostrar que la ecuación expresa el trabajo total.

∑=

=n

iiiVqU

121

Page 9: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

9

Planteamiento del problema: Para situar la primera carga en el punto A no se necesita trabajo, ya que el potencial es cero cuando las otras tres cargas están en el infinito. A medida que cada carga adicional ocupa su puesto, debe realizarse el trabajo correspondiente a la presencia de las cargas previas.

( )

( )akqq

akqq

akq

akqqW

VVqUWb

akqWWWWW

akq

akq

akq

akqqqVW

DW

akq

akq

akqqqVW

aBqaA

qCVqVWakq

akqqqVW

aABVqVW

Wa

ii

iiTotal

D

n

iiiTotal

DCBATotal

DD

D

CC

CCC

BB

BBB

A

24

1

4

1

1

2

2

2

2

2442

1221

212

21

212

21

:(a) apartado del 4 paso del usar y 21ecuación la departir a trabajoelCalcular 1. )(

24

: total trabajoel obtiene se esindividual onescontribuci las Sumando 5. 2

122

: punto al carga cuarta la ar transportpara necesario calcular permiten semejantes ionesConsiderac 4.

211

2

: distancia la a en y 2 distancia la a en

de presencia la a debido en potencial el es dondeen , 3.

: distancia la a en situada carga primera la a debido en potencial el es dondeen , es

requerido trabajoEl B. punto elen carga segunda lar Transporta 2. 0

:Aen carga primera laSituar 1. )(

+=⎟⎠

⎞⎜⎝

⎛+=⎟

⎞⎜⎝

⎛+=⎥

⎤⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛+=

==

+=+++=

⎟⎠

⎞⎜⎝

⎛+=⎟

⎞⎜⎝

⎛++==

⎟⎠

⎞⎜⎝

⎛+=⎟

⎞⎜⎝

⎛+==

=

=⎟⎠

⎞⎜⎝

⎛==

=

=

∑∑

==

=

Observación: WTotal es la energía total electrostática de la distribución de carga.

Page 10: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

10

24-2���Capacidad

Page 11: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

11

Capacidad de un conductor esférico

La capacidad depende sólo del tamaño y forma del conductor: Capacidad de un conductor esférico:

La unidad del SI de capacidad es el culombio por voltio y se denomina faradio (F): La unidad del SI de permitividad del vació εo se expresa en faradio por metros:

El potencial de un conductor aislado, que contiene una carga Q, es proporcional a esta carga y depende del tamaño y forma del conductor. En general, cuanto mayor es la superficie del conductor, mayor es la cantidad de carga que puede almacenar para un determinado potencial. Por ejemplo, el potencial de un conductor esférico de radio R y carga Q es: El cociente entre la carga Q y el potencial V es su capacidad C:

RkQV =

VQC =

RkR

RkQQ

VQC oπε4

/====

DEFINICIÓN-CAPACIDAD

Esta magnitud mide la “capacidad” de almacenar carga para una determinada diferencia de potencial.

VCF 1 1 =

mpFmFo / 85.8/ 1085.8 12 =×= −ε

Page 12: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

12

CondensadoresUn condensador es un sistema de dos conductores portadores de cargas iguales y opuestas (+Q y –Q). Para calcular la capacidad de un condensador, situamos cargas iguales y opuestas en los conductores y después determinamos la diferencia de potencial V (ΔV) a partire del campo eléctrico E que se genera entre ellos.

En general, la capacidad depende del tamaño, forma, geometría (A), posición relativa de los conductores (d) y también de tipo del medio aislante que los separa (εo).

La diferencia de potencial ΔV que se genera entre los conductores es igual a la que existe entre los terminales de la batería. La carga transferida es Q=CV.

AQddEdVoo εε

σ===

dA

VQC oε==

CAPACIDAD DE UN CONDENSADOR DE PLACAS PLANO-PARALELAS

AQE

o

== σεσ ;

Campo debido a dos planos infinitos.

Como el campo que existe entre las placas es uniforme, V=Ed:

Condensador de placas plano-paralelas: en la práctica las placas son láminas metálicas muy finas, separadas y aisladas por una lámina delgada de plástico.

Page 13: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

13

Interruptor de capacidades del teclado de un ordenador

Al oprimir la tecla disminuye la separación entre la placa superior y la inferior y crece la capacidad, lo cual pone en marcha el circuito electrónico del ordenador que actúa en consecuencia.

dA

VQC oε==

Page 14: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

14

Capacidad de un condensador de placas plano-paralelas

EJEMPLO 24.4 Un condensador de placas plano-paralelas está formado por dos conductores cuadrados de lado 10 cm separados por 1 mm de distancia. (a) Calcular su capacidad. (b) Si este condensador está cargado con 12 V, ¿cuánta carga se transfiere de una placa a la otra?

( )( )

( )( ) nCCpFCVQ

pF m.

m. pF/m.dAεC

dAεC

o

o

06.1 1006.1V 12 5.88:capacidad de definición la departir a determina se da transfericarga La .2

5.880010

10858

:ecuación la departir a capacidad la Determinar .1

9

2

=×===

===

=

Page 15: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

15

Un cable coaxial utilizado en la TV por cable es un largo condensador cilíndrico con un alambre grueso como conductor interno y una malla de hilo metálico como conductor externo.

( )12 /ln2

RRLC oπε

=

CAPACIDAD DE UN CONDENSADOR CILÍNDRICO

La capacidad por unidad de longitud de un cable coaxial es importante en la determinación de las características de transmisión del cable.

Capacidad de un condensador cilíndrico

La capacidad de un condensador cilíndrico es proporcional a la longitud (L) de los conductores.

http://en.wikipedia.org/wiki/Coaxial_cable

Page 16: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

16

Expresión de la capacidad de un condensador cilíndrico

EJEMPLO 24.3 Determinar la expresión de la capacidad de un condensador cilíndrico formado por dos conductores de longitud L. Un cilindro tiene radio R1 y el otro es una corteza cilíndrica coaxial de radio interno R2, siendo R1<R2<<L como indica la figura.

Planteamiento del problema: Disponemos la carga +Q en el conductor interno y la carga –Q en el conductor externo y calculamos la diferencia de potencial V=Va-Vb a partir del campo eléctrico que se genera entre los conductores, el cual puede calcularse por medio de la ley de Gauss. Como el campo eléctrico no es uniforme (depende de R) debemos integrar para determinar la diferencia de potencial.

Page 17: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

17( )12

1

2

1

2

interior

interior

interior

interior

Sinterior

ln2

: deduce seanterior resulatdo Del .8

ln2

tantolopor

ln22

: determinar para Integramos .7

2

12

:obtener podemos doSostituyen .6

: gaussiana, superficie lapor encerrada carga la sencontramo interior, placa laen nteuniformeme adistribuid está longitud de unidadpor carga la que Asumiendo .5

12

1

:resultado siguiente el aproporcion Gauss deley la ementeconsecuenty ,2 es cilíndro del lateral supeficie la de área El cero. es cilíndro

de bases lasen de flujo el tantoloPor radial. es campo el placas, las de extremos los de Lejos .4s.conductore los de extremos los de lejos encuentra se gaussiana superficie La s.conductore los entre situada longitudy radio de gaussiana cilíndrica superficie una tomamos determinar Para .3

:eléctrico campo elcon orelacionad está .2

:relación lapor define se capacidad La .1

12

2

1

2

1

2

1

12

12

RRL

VQC

CRR

LQVVV

RR

LQ

RdR

LQ

dREdVVV

VVV

RLQE

QLlRlE

EQ

QLll

LQlQ

Q

QRlE

QdAE

Rl

LREdldV

VVQC

o

oRR

o

R

Ro

V

V

R

RRRR

RR

oR

oR

R

oR

onneto

R

R

R

πε

επ

επεπ

επ

επ

λ

επ

εφ

π

==

=−=

−=−=

−==−

−=

=

=

=⎟⎠

⎞⎜⎝

⎛==

==

==

⋅−=

=

∫ ∫

EE

E

Observaciones: La capacidad de un condensador cilíndrico es proporcional a la longitud (L) de los conductores.

( )12ln2

RRLC oπε

=

Page 18: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

18

Corte transversal de un condensador de 200 µF utilizado en una lámpara de descarga electrónica

Page 19: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

19

Sección transversal de un condensador de lámina enrollada

Page 20: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

20

Condensador variable con espaciado de aire, muy utilizado en los circuitos de sintonía de los antiguos aparatos de radio. La placas semicirculares giran entre las placas fijas, cambiando la cantidad de área superficial enfrentada, por lo tanto, la capacidad.

Page 21: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

21

Condensadores cerámicos con aplicaciones en los circuitos electrónicos.

Page 22: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

22

24-3���Almacenamiento de la energía

eléctrica

Page 23: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

23

Energía almacenada en un condensador

Cuando en condensador se carga, se transfieren electrones (o cargas positivas) del conductor positivo (negativo) al negativo (positivo). La energía potencial electrostática almacenada procederá del trabajo necesario para colocar las diferentes cargas en cada una de las placas.

Sea q la carga transferida al cabo de cierto tiempo durante el proceso de carga. Si se transfiere ahora una pequeña cantidad dq desde el conductor negativo a potencial cero hasta el conductor positivo a potencial V, la energía potencial del condensador aumenta en:

21

2

0 CQdq

CqdUU

dqCqdqVdU

Q

∫ ∫ ===

==

22

21

21

21 CVQVCQU ===

ENERGÍA ALMACENADA EN UN CONDENSADOR

El trabajo necesario para cargar un condensador resulta ser la integral de Vdq desde la carga q=0 hasta la carga final q=Q. Este trabajo es igual al área del triangular 1/2Q(Q/C) encerrada debajo de la curva.

La mitad de la energía total aportada por la batería se disipa en energía térmica y energía electromagnética en forma de ondas.

Page 24: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

26

Energía del campo electrostáticoEn el proceso de carga de un condensador se crea un campo eléctrico entre las placas. El trabajo necesario para cargar el condensador puede considerarse como el requerido para crear el campo eléctrico, por ello se llama energía del campo electrostático. Consideremos un condensador de placas paralelas: La energía por unidad de volumen es la densidad de energía ue cuyo valor es:

( ) ( )AdEEddACVU

dAC

EdV

oo

o

222

21

21

21

εε

ε

=⎟⎠

⎞⎜⎝

⎛==

=

=

Volumen

2

21 E

volumenenergiau oe ε==

Aunque esta ecuación se ha obtenido considerando el campo eléctrico entre las placas paralelas, el resultado es valido para cualquier campo eléctrico.

DENSIDAD DE ENERGÍA DE UN CAMPO ELECTROSTÁTICO

Page 25: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

27

PROBLEMA 19 ¿Cuál es la energía potencial electrostática de un conductor esférico aislado de radio 10 cm cargado a 2 kV?

( )( )( ) J

CmNkVm

krVU

krV

krVU

QkrVQ

rkQV

U

µ 2.22/ 1099.82

2 1.02

2V

21QV

21

:obtiene se potencial energía la deexpresión laen doSustituyen

:ecuación la mediante expresa se esféricoconductor un de potencial El

QV21

:es esféricoconductor un de ticaelectrostá potencial energía La

229

22

2

=⋅×

==

=⎟⎠

⎞⎜⎝

⎛==

=→=

=

Page 26: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

29

24-4���Baterías, Condensadores y

circuitos

Page 27: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

30

Baterías¿Qué ocurre cuando se conecta un condensador descargado a los bornes de una batería? La placa del condensador que está en contacto con el terminal negativo recibe una determinada cantidad de carga negativa, de tal forma que momentáneamente la carga del terminal negativo de la batería queda reducida. Si se conecta la otra placa del condensador al borne positivo de la batería, ocurre el mismo proceso de transferencia de carga (positiva) del borne a la placa. Estas reducciones de carga en los terminales de la batería activan un proceso químico dentro de la batería que permite de mantener el potencial inicial durante un cierto tiempo.

Símbolo de batería en los circuitos: La línea más larga y delgada representa el terminal positivo, y la más corta y de mayor grosor el negativo.

+ -

Símbolo de un condensador:

Page 28: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

31

Condensadores en paraleloLos condensadores que se conectan en paralelo comparten la misma diferencia de potencial (V=Va-Vb) entre sus respectivos extremos.

( )

212

2

1

121

212121

22

11

CCVQ

VQ

VQQ

VQC

VCCVCVCQQQ

VCQVCQ

toteq

tot

+=+=+

==

+=+=+=

=

=

Una combinación de condensadores en paralelo puede remplazarse por un solo condensador que almacene la misma cantidad de carga para una determinada diferencia de potencial. Decimos que el condensador sustituido posee una capacidad equivalente.

Las cargas Q1 y Q2 almacenada en las placas viene dada por La carga total almacenada es

...321 +++= CCCCeqCAPACIDAD EQUIVALENTE DE

CONDENSADORES EN PARALELO

-Q1

Page 29: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

32

Condensadores en serieCuando la diferencia de potencial a través de ambos condensadores es igual a la suma de las diferencias de potencial a través de cada uno de ellos, esta conexión se denomina en serie.

22

11 ;

C

CQVQV ==

La diferencia de potencial a través del primer y secundo condensador es La diferencia de potencial entre los dos condensadores en serie es la suma de estas diferencias de potencial: La capacidad equivalente de dos condensadores es Ceq=Q/V, así que sustituyendo Q/Ceq por V se obtiene:

...1111

321

+++=CCCCeq

CAPACIDAD EQUIVALENTE DE CONDENSADORES IGUALMENTE CARGADOS EN SERIE

⎟⎟⎠

⎞⎜⎜⎝

⎛+=+=+==

212121

11CC

QCQ

CQV V-VVV ba

11

21⎟⎟⎠

⎞⎜⎜⎝

⎛+=CC

QCQ

eq

Page 30: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

33

Combinaciones de condensadores: resumen

Cuando añadimos un condensador en paralelo, incrementamos la capacidad del sistema, ya que esencialmente el área del conductor (A) crece, permitiendo que una carga mayor se almacene con la misma diferencia de potencial.

...321 +++= CCCCeqCAPACIDAD EQUIVALENTE DE

CONDENSADORES EN PARALELO

...1111

321

+++=CCCCeq

CAPACIDAD EQUIVALENTE DE CONDENSADORES IGUALMENTE CARGADOS EN SERIE

Cuando añadimos un condensador conectado en serie, esto implica que 1/Ceq crece y por consiguiente Ceq decrece. ⇒ disminuimos la capacidad del sistema. La separación entre las placas (d) aumenta, necesitando mayor diferencia de potencial para almacenar la misma carga.

dA

VQC o

eqε

==

dA

VQC o

eqε

==

Page 31: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

34

EJEMPLO 24.5 Un circuito está formado por un condensador de 6 µF, otro de 12 µF, una batería de 12 V y un interruptor, conectados como se muestra en la figura. Inicialmente, el interruptor está abierto y los condensadores descargados. Se cierra el interruptor y los condensadores se cargan. Cuando los condensadores quedan completamente cargados, abrimos el circuito y el voltaje en el circuito abierto de la batería queda restablecido (a) ¿Cuál es el potencial de cada conductor? (Tomar como origen de potenciales el terminal negativo de la batería.) (b) ¿Cuál es la carga de cada una de las placas de los condensadores? (c) ¿Cuál es la carga total que pasa a través de la batería?

Condensadores en paralelo

Page 32: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

35

( )( )( )( )

( )( )

FVC

VQC

CQQQc

CVFVCQCVFVCQ

CVQb

VVVVa

toteq

tot

b

a

µµ

µ

µµ

µµ

18 12 216

216 :carga bombea les batería la porquecargan se placas Las )(

144 12 12 72 12 6

:placas las de carga la de valor el determinar para Utilizar )(

0 a azulen puntos los Todos 12 potencial al encuentran se rojocon coloreados puntos los Todos )(

21

22

11

===

=+=

===

===

=

=

=

Las cargas no pueden pasar de una placa a otra de un condensador a través de él.

Page 33: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

36

Condensadores en serieEJEMPLO 24.6 Un circuito esta constituido por un condensador de 6 µF, otro de 12 µF, una batería de 12 V y un interruptor, conectados como se muestra en la figura. Inicialmente, el interruptor está abierto y los condensadores descargados. Cuando se cierra el interruptor los condensadores se cargan. Una vez totalmente cargados y el voltaje en el circuito abierto de la batería restablecido, (a) ¿cuál es el potencial de cada conductor en este circuito? (Tómese el origen de potenciales el del borne negativo de la batería.) (b) ¿Cuál es la carga en cada una de las placas de los condensadores? (c) ¿Cuál es la carga total que atraviesa la batería?

Page 34: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

37

( )( )

( )

0 :cero es en verde

sconductore los de neta carga la que lopor en verde, sconductore los hacia ésta de ncia transfereexiste no carga, de proceso elEn 4.

CCC

C

:que obtiene se Despejando 3. CVC

CVC :rcondensado cadaen

potencialy carga relacionar para expresión la Utilizar 2.

:rcondensado cada de placas las entre potencial de diferencia laExpresar 1. )(

odesconocid potencial a víaestán toda en verde puntos Los 0 aestán azulen puntos Los

12 potencial aestán rojoen puntos Los )(

1221

2

2

1

1

2

2

1

1

2222

1111

2

1

QQQQ

QQVVQVV

QVV

VVVQVVQ

CVQVVVVVV

b

VVV

VVa

ba

bm

ma

m

bm

ma

bm

ma

m

b

a

=⇒=+−

+=−⇒

⎪⎪⎭

⎪⎪⎬

=−

=−

−==

−==

=

−=

−=

=

=

Page 35: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

38

F 4 12

48

:es ejemplo este para eequivalent capacidad La

48 es batería la de carga La )(

48

C 48

211

61

01211

: carga laobtener para )(expresión esta Utilícese5.

1

21

21

21

21

µµ

µ

µ

µ

µµ

===

==

===

=+

−=

+

−=

+=−

==

VC

VQC

C QQc

C QQ QFFCC

VVQ

CQ

CQVV

QQQQ

eq

ba

ba

Page 36: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

39

Banco de condensadores para almacenar energía en el láser de impulsos Nova utilizado en los Lawrence Livermore Laboratories para el estudio de la fusión.

Page 37: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

40

EJEMPLO 24.7 Conectamos en serie dos condensadores de 6µF y de 12 µF, inicialmente descargados, a una batería de 12 V. Utilizando la fórmula de equivalencia para condensadores conectados en serie, determinar la carga de cada condensador y la diferencia de potencial entre las placas de cada uno de ellos.

Uso de la fórmula de equivalencia

Page 38: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

41

( )( )

VFCV

FQ

VFCV

FQ

CVFVCQ

QFC

FFFCCC

VCQ

eq

eq

eq

eq

4 21 48

CQ

: 21 der condensado del placas las entre potencial de diferencia lacalcular para de resultado el nuevo de 5.Utilizar

8 6 48

CQ

: 6 der condensado del placas las entre potencial de diferencia lacalcular para de resultado el 4.Utilizar

48 12 4:rcondensado cada de carga la Es batería. la

suministra que carga la es Esta . carga la determinar para valor este 3.Utilizar

4

213

211

61111

:expresión la mediante determina se serieen rescondensado los de eequivalent capacidad La .2

:eequivalentr condensado del carga la a igual esr condensado cada de carga La .1

22

11

21

===

===

===

=

=+=+=

=

µµ

µ

µµ

µ

µµ

µ

µµµ

Comprobar el resultado: Obsérvese que la suma de estas diferencias de potencial es lógicamente 12 V.

Page 39: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

42

EJEMPLO 24.9 (a) Determinar la capacidad equivalente del circuito formado por los tres condensadores de la figura. (b) Inicialmente los condensadores están descargados. Determinar la carga de cada condensador y la caída de voltaje a su través cuando el sistema se conecta a una batería de 6 V.

Condensadores en serie y en paralelo

Page 40: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

43

( )( )

( )( )( )( ) CVFVCQ

CVFVCQVVVCQ

VFC

CQV

CQV

VFC

CQ

CQV

CQFCVFVCQ

FQb

FCFFFCCC

FF

FFFCCC

a

ii

eq

eq

eq

eq

eqeq

eq

µµ

µµ

µµ

µµ

µ

µµ

µ

µ

µµµ

µ

µ

µµµ

8 2 4 4 2 2

: 2 dondeen , de reduce se paraleloen rescondensado los de uno cadaen carga La 4.

2 6 12

:/ es , paralelo,en r condensado del travésa potencial de caída La 3.

4 3 12

:/ es 3 der condensado del travésa potencial de caída La 2.

12 6 2 : 3 der condensado elen depositada

carga la también es Ésta batería. lapor dasuministra carga la Determinar 1. )(

2

21

31

61111

:serieen conectado 3 de otrocon 6 der condensadoun de eequivalent capacidad la Determinar 2.

6 4 2 :esindividual scapacidade

sus de suma la es paraleloen rescondensado los de eequivalent capacidad La 1. )(

4,244

4,222

4,24,2

1,2,4

1,4,2

33

33

3

31,

211,

===

===

==

===

====

===

=

=+=+=

=+=+=

Comprobar el resultado: La caída de voltaje a través de la combinación en paralelo (2 V) más la correspondiente al condensador de 3 µF (4 V) es igual al voltaje de la batería. Además, la suma de las cargas de los condensadores en paralelo (4 µC+ 8µC) es igual a la carga total (12 µC) del condensador de 3 µF.

Page 41: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

44

24-5���Dieléctricos

Page 42: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

45

Sección de un condensador de múltiples capas con un dieléctrico cerámico. La líneas blancas son los bordes de las placas conductoras.

Se denomina dieléctrico un material no conductor como el vidrio, el papel, o la madera. Michael Faraday descubrió que cuando el espacio entre los conductores de un condensador se ve ocupado por un dieléctrico, la capacidad aumenta de un factor κ que es característico del dieléctrico. La razón de este incremento es que E entre las placas de un condensador se debilita por causa del dieléctrico. Así, para una carga determinada sobre las placas, el ΔV se reduce (V=E·d) y la relación C=Q/V se incrementa.

κoEE =

CAMPO ELÉCTRICO EN EL INTERIOR DE UN DIELÉCTRICO

Campo sin dieléctrico

Constante dieléctrica (κ, kappa)

oo

oo

VQ

VQ

VQC

VdEEdV

κκ

κκ

===

===

/

oCC κ= EFECTO DE UN DIELÉCTRICO SOBRE LA CAPACIDAD

Los dieléctricos no sólo incrementan la capacidad de un condensador, sino que además proporcionan un medio para separar las placas conductoras paralelas y elevan la diferencia de potencial a la cual tiene lugar la ruptura dieléctrica.

oo

dA

dAC κεε

εεκ ==⎟

⎞⎜⎝

⎛= ;

Permitividad del dieléctrico

Page 43: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

46

Para campos eléctricos del orden de 3 kV/mm, el aire se ioniza y se convierte en conductor.

Con una simple hoja de papel se pueden alcanzar mayores diferencias de potenciales ante que ocurra la ruptura dieléctrica.

Material Constante dieléctrica, κ Resistencia del dieléctrico, kV/mm

Page 44: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

47

24-6���Estructura molecular de un

dieléctrico

Page 45: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

48

Un dieléctrico debilita el campo eléctrico entre las placas de un condensador porque sus moléculas producen un campo eléctrico adicional de sentido opuesto al del campo producido por las placas. Este campo eléctrico se debe a los momentos dipolares eléctricos de las moléculas del dieléctrico.

En ausencia de campo eléctrico externo, el centro de la carga (+) coincide con el centro de la carga (-).

En presencia de campo eléctrico externo, los centros se desplazan produciendo un momento dipolar inducido en la dirección del campo externo.

ATOMO O MOLECULA NO POLAR: ATOMO O MOLECULA CON MOMENTO DIPOLAR PERMANENTE (HCl y H2O):

Dieléctrico polar orientado al azar en ausencia de campo externo.

En presencia de un campo externo los dipolos se alinea paralelamente al campo.

Page 46: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

49

Cuando se sitúa un dieléctrico entre las placas de un condensador, el campo eléctrico polariza sus moléculas. El resultado es una carga ligada a la superficie del dieléctrico que produce su propio campo, el cual se opone al campo externo. El campo eléctrico entre las placas es así debilitado. Dos casos: 1) Si la moléculas son polares, sus momentos dipolares, orientados originalmente al azar, tienden a alinearse debido al momento de fuerza ejercido por el campo externo. 2) Si la moléculas no son polares, el campo induce momentos dipolares que son paralelos al campo. En cualquier caso, la moléculas del dieléctrico se polarizan en la dirección del campo externo.

Page 47: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

50

La carga superficial en el dieléctrico debilita el campo eléctrico entre las placas.

Condensador sin dieléctrico Condensador con dieléctrico

Page 48: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

51

PROBLEMA 35 Tres condensadores se conectan en forma de una red triangular como indica la figura. Determinar la capacidad equivalente entre los terminales a y c.

Page 49: ELECTRICIDAD Y MAGNETISMO - cartagena99.com€¦ · ELECTRICIDAD Y MAGNETISMO ... 6 Energía potencial electrostática ... iguales y opuestas en los conductores y después determinamos

53

PROBLEMA 39 Calcular para el dispositivo que se muestra en la figura: (a) la capacidad total efectiva entre los terminales, (b) la carga almacenada en cada uno de los condensadores y (c) la energía total almacenada.