disi pa tivo

Upload: miguel-ciprian

Post on 03-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Disi Pa Tivo

    1/6

    disipativo

    estructura disipativa

    Definicin: Se dice que un sistema es disipativo si su energa se degrada en forma de calor,que en parte no es transformable en otras formas de energa menos degradada. Una

    estructura es disipativa en la medida que ayuda a los mecanismos disipativos.

    Segun la clsica segunda ley de la termodinmica, un sistema aislado ha de ir perdiendo

    (disipando) toda la energa libre que posee con lo cual su entropa se maximiza. Un sistema

    en equilibrio trmico ya no disipa ms y se halla en un estado de mxima entropa. Si un

    sistema se halla en las cercanas del equilibrio, sus tendencias espontneas e irreversibles lo

    son hacia el equilibrio. La fuerza impulsora es la de producir entropa.

    Por definicin, en el equilibrio ya no puede producir ms entropa (principio de la mnima

    produccin de entropa).

    Pero no abundan los sistemas aislados, por lo cual puede haber sistemas alejados del

    equilibrio (como el planeta iluminado o el cerebro con nutrimentos) que no pueden llegar a

    l - aunque lo buscan espontneamente - porque mientras tanto siguen recibiendo aportes

    de energa externa (el sol, la glucosa en sangre).

    Con esos aportes las ecuaciones diferenciales descriptivas de la dinmica, ya no son ms

    lineales. No estn en el equilibrio sino en el desequilibrio.

    Como hay sistemas disipativos con estructuras, es lcito llamarlas, con Prigogine,

    "estructuras disipativas", aunque a primera vista su estudio parezca poco interesante. Pero

    hay algo muy real: las condiciones "lejos del equilibrio" o "en el desequilibrio" implicanleyes no-lineales.

  • 7/29/2019 Disi Pa Tivo

    2/6

    Toda la fsica interesante en nuestro universo es no-lineal

    Se deduce que lo que recin pareca poco interesante sera una afirmacin apresurada.

    La nica regla general para las ecuaciones diferenciales no-lineales es que no hay reglas

    generales. El caos es una posibilidad, como tambien la presencia de atractores, repulsores,bifurcaciones, autoorganizaciones.

    Lo que afirma Prigogine es que aunque no hall para esta rama de la fsica incorporada a

    la mecnica estadstica, una nueva constante universal, por lo menos ha encontrado una

    desigualdad matemtica, un "criterio de evolucin universal". As como hay transiciones

    de fase en la fsica lineal, con roturas de simetra, muy cercanas al equilibrio (como el hielo

    que se funde), tambin las hay en la fsica no-lineal donde las estructuras disipativas se

    vuelven inestables y tienden a veces hacia patrones de organizacin coherente que

    minimizan la energa libre y disminuyen los grados de libertad.

    Prigogine propone que dentro de un sistema complejo no-lineal lejos del equilibrio existensubsistemas fluctuantes. De vez en cuando se combinan y amplifican las fluctuaciones y se

    disrrumpe la estructura previa, ocasin en la cual aparece una bifurcacin, un punto de

    bifurcacin. La teora no puede predecir, por adelantado, si el resultado ser una

    estructura de dinmica catica o una estructura autoorganizada con un orden "superior",

    un "orden por fluctuaciones". En este ltimo caso, como la estructura necesita de energa

    externa para seguir organizada, es aceptable llamarla "estructura disipativa", puesto que

    necesita ms energa externa que la estructura no-disipativa (ms simple) previa

    reemplazada. Tiene un lmite para su evolucin y es la falta de capacidad para eliminar

    ms y ms calor. Los seres vivientes funcionan como sistemas disipativos, autoorganizados

    por fluctuaciones ambientales.

    Cabe destacar que no todos los autores aceptan incondicionalmente estas afirmaciones. Por

    ejemplo, un crtico de las ideas de irreversibilidad de Prigogine es Jean Bricmon.

    estructuras ordenadas de Prigogine

    concepto de organizacin, enraizado en el universo fsico

    sistemas vivientes como disipadores de gradientes

    introduccin a la termodinmica de los procesos irreversibles

    concepto de organizacin, enraizado en el universo fsico

    glosario de estructuras disipativas

    "Science of Chaos or Chaos in Science?" de Jean Bricmon

    25.ene.2001

    Web Dictionary of Cybernetics and Systems, traducido por CvdB

    http://var/www/apps/conversion/tmp/scratch_6/prigesor.htmlhttp://var/www/apps/conversion/tmp/scratch_6/prigsten.htmlhttp://var/www/apps/conversion/tmp/scratch_6/prigbolt.htmlhttp://var/www/apps/conversion/tmp/scratch_6/prigittt.htmlhttp://var/www/apps/conversion/tmp/scratch_6/prigsten.htmlhttp://var/www/apps/conversion/tmp/scratch_6/estrdisi.htmlhttp://xxx.lanl.gov/abs/chao-dyn/9603009http://var/www/apps/conversion/tmp/scratch_6/prigesor.htmlhttp://var/www/apps/conversion/tmp/scratch_6/prigsten.htmlhttp://var/www/apps/conversion/tmp/scratch_6/prigbolt.htmlhttp://var/www/apps/conversion/tmp/scratch_6/prigittt.htmlhttp://var/www/apps/conversion/tmp/scratch_6/prigsten.htmlhttp://var/www/apps/conversion/tmp/scratch_6/estrdisi.htmlhttp://xxx.lanl.gov/abs/chao-dyn/9603009
  • 7/29/2019 Disi Pa Tivo

    3/6

    estructuras ordenadas de Prigogine.De acuerdo con la segunda ley, la tendencia de la evolucin de los sistemas biolgicos en los

    niveles qumicos y supramoleculares se puede determinar mediante el estudio del efecto de

    la autoorganizacin termodinmica (autoarmado). El criterio para estimar el desarrolloevolucionario de las estructuras supramoleculares de biosistemas (biotejidos) est dado por

    la variacin de la funcin de Gibbs especfica para su formacin. Durante los procesos de

    ontognesis, filognesis y los de la evolucin biolgica en general, el componente especfico,

    supramolecular, de la funcin de Gibbs de un biosistema, tiende a un mnimo relativo. Se

    entiende esto en un sistema cuasi cerrado tanto termodinmica como cinticamente. El

    valor al que se llega en ese mnimo es una caracterstica conjunta del sistema y del

    ambiente dados.

    Prigogine ha demostrado que una nueva forma para estructuras ordenadas puede existir

    en las recin expresadas condiciones. Les di el nombre de estructuras disipativas. As

    enfatiz que solamente pueden existir en conjuncin con ciertos ambientes.

    La ms caracterstica de esas estructuras disipativas es la inestabilidad de Bnard.

    29.mar.2000

    el concepto de organizacin est bien

    enraizado en el universo fsico

  • 7/29/2019 Disi Pa Tivo

    4/6

    Prigogine Ilya & Stengers Isabelle: ORDER OUT OF CHAOS (Bantham, 1984)

    This is the english edition of "La Nouvelle Alliance" (1979). Prigogine analyzes the history

    of science and scientific thought and derives a new vision of the world.

    Classical science (and quantum mechanics) describes a world as a static and reversible

    system that undergoes no evolution, whose information is constant in time. On the other

    hand the second law of thermodynamics describes the world as evolving from order to

    disorder, while biological evolution is about the complex emerging from the simple

    (structure, i.e. order, arises from disorder).

    Irreversible processes are an essential part of the universe. Conditions far from

    equilibrium foster phenomena such as life that classical physics does not cover.

    Prigogine focuses on the peculiar properties exhibited by systems far from equilibrium.

    Non-equilibrium conditions favor the spontaneous development of self-organizing systems

    (i.e., dissipative structures), which maintain their internal organization, regardless of thegeneral increase in entropy, by expelling matter and energy in the environment. Most of

    Nature is made of dissipative systems, of systems subject to fluxes of energy and/or matter.

    Dissipative systems conserve their identity thanks to the interaction with the external

    world.

    The concept of organization is deeply rooted in the physical universe.

    Prigogine considers living organisms as dissipative structures in states of non-equilibrium.

    A system that is not in equilibrium exhibits a variation of entropy which is the sum of the

    variations of entropy due to the internal source of entropy plus the variation of entropy due

    to the interaction with the external world. The former is positive, but the latter can equally

    be negative. Therefore total entropy can decrease.

    An organism "lives" because it absorbs energy from the external world and processes it to

    generate an internal state of lower entropy. An organism "lives" as long as it can avoid

    falling in the equilibrium state.

    Probability and irreversibility are closely related. Boltzman had already proved that

    entropy grows because probability grows.

    introduccin a la termodinmica de los

    procesos irreversiblesPrigogine afirma que la cantidad de energa en desequilibrio, ptima para lograr

    formacin de patrones ordenadas, nunca debe ser desmesurada, pues resulta

    contraproducente ya que en dichos casos el sistema suele no poder ser suficientemente

    disipativo.

    Prigogine Ilya: INTRODUCTION TO THERMODYNAMICS OF IRREVERSIBLE

    PROCESSES (Interscience Publishers, 1961)

    Prigogine introduced the minimum entropy principle (stable near- equilibrium dissipative

    systems minimize their rate of entropy production) to characterize living organisms.

  • 7/29/2019 Disi Pa Tivo

    5/6

    Simple dissipative systems ...predictably move to simple minimised states. But the

    dynamical systems of animal behaviour...come to ...a detailed balance at many and varied

    points....To search behaviour for explanations armed only with optimality is not an

    optimum strategy for understanding." (p.221)

    The form of expression this self-organization takes is not predictable in advance becausethe very process of self-organization is by catastrophic (in the catastrophe theory sense)

    change; it "flips" into new regimes. As noted earlier, one of the characteristics of

    catastrophic change is that systems may have several possible behavioural pathways

    available at a catastrophe threshold. Which pathway is followed is largely an accident of

    circumstances. A reductionist world view, which cannot deal with the reality of emergence

    and self-organization in non-equilibrium systems, cannot offer sufficient explanation of

    how the world works.

    An important observation about systems that exhibit self-organization is that they exist in a

    situation where they get enough energy, but not too much. If they do not get sufficient

    energy of high enough quality (beyond a minimum threshold level), organized structurescannot be supported and self-organization does not occur. If too much energy is supplied,

    chaos ensues in the system, as the energy overwhelms the dissipative ability of the

    organized structures and they fall apart. So self-organizing systems exist in a middle

    ground of enough, but not too much.

    The global weather, wind and ocean circulation patterns are the result of the difference in

    heating at the equator relative to the poles. The general meteorological circulation of the

    earth, although affected by spatial, coriolis and angular momentum effects, is driven by

    gradients and the global system's attempt to dissipate them and come to local equilibrium.

    Paltridge (1979) has suggested that the earth-atmosphere, climate system configures itself

    into a state of maximum dissipation and that the global distribution of clouds, temperatureand horizontal energy flows are governed by thermodynamic dissipative processes similar

    to those described above. We see that the earth-climate system, as well as other dissipative

    systems, do not reach a static equilibrium state because they are open thermodynamic

    systems constantly receiving a supply of external energy (i.e. from the sun), which drives

    them and maintains them in a nonequilibrium organized state.

    So far we have focused our discussion on simple physical systems and how thermodynamic

    gradients drive self-organization. The literature is replete with similar phenomena in

    dynamic chemical systems. Prigogine and the Brussel's School and others have documented

    the thermodynamics and behavior of these chemical reaction systems. Chemical gradients

    result in dissipative autocatalytic reactions, examples of which are found in simple

    inorganic chemical systems, in protein synthesis reactions, or phosphorylation,

    polymerization and hydrolytic autocatalytic reactions.

    Autocatalytic reactions systems are a form of positive feedback where the activity of the

    system or reaction augments itself in the form of self-reinforcing reactions. Consider a

    reaction where A catalyzes the formation of B and B accelerates the formation of A; the

    overall set of reactions is an autocatalytic or positive feedback cycle. Ulanowicz (1986)

    notes that in autocatalysis, the activity of any element in the cycle engenders greater

    activity in all the other elements, thus stimulating the aggregate activity of the whole cycle.

    Such self-reinforcing catalytic activity is self-organizing and is an important way of

    increasing the dissipative capacity of the system. Cycling and autocatalysis is a

    fundamental process in nonequilibrium systems.

  • 7/29/2019 Disi Pa Tivo

    6/6

    The notion of dissipative systems as gradient dissipators holds for nonequilibrium physical

    and chemical systems and describes the processes of emergence and development of

    complex systems. Not only are the processes of these dissipative systems consistent with the

    restated second law, it should be expected that they will exist wherever there are gradients.