diseÑo de un sistema electrÓnico de ......diseño de un sistema electrónico de calentamiento a...

19
DISEÑO DE UN SISTEMA ELECTRÓNICO DE CALENTAMIENTO A BAJA FRECUENCIA (LOW FREQUENCY HEATING) COMO COADYUVANTE EN PROCESOS DE SECADO DE TRANFORMADORES ELÉCTRICOS JUAN CAMILO VALDERRAMA QUIÑONES Anteproyecto Ing. Jorge Eliécer Quintero Calvache. MSc Ing. Diego Fernando García Gómez. Ph.D UNIVERSIDAD DEL VALLE FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA INGENIERÍA ELÉCTRICA SANTIAGO DE CALI 2015

Upload: others

Post on 03-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

DISEÑO DE UN SISTEMA ELECTRÓNICO DE CALENTAMIENTO A BAJA

FRECUENCIA (LOW FREQUENCY HEATING) COMO COADYUVANTE EN PROCESOS

DE SECADO DE TRANFORMADORES ELÉCTRICOS

JUAN CAMILO VALDERRAMA QUIÑONES

Anteproyecto

Ing. Jorge Eliécer Quintero Calvache. MSc

Ing. Diego Fernando García Gómez. Ph.D

UNIVERSIDAD DEL VALLE

FACULTAD DE INGENIERÍA

ESCUELA DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

INGENIERÍA ELÉCTRICA

SANTIAGO DE CALI

2015

Page 2: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

PROGRAMA ACADÉMICO DE INGENIERÍA ELÉCTRICA

Ficha resumen del proyecto

Título: Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de transformadores eléctricos.

Área temática o línea de

investigación del Trabajo de grado:

Electrónica de potencia, Control y Transformadores.

Modalidad de trabajo de grado:

Profesional X Revisión crítica Investigación e innovación

X

En la industria/empresa

Creación de empresa

Práctico social

Duración del trabajo de grado :

10 Meses

Entidades participantes:

Universidad del Valle

Costo presupuestado del proyecto:

Aportes en especie ($): 15´070,000

Aportes en efectivo ($): 0

Costo global ($): 15´070,000

Áreas Académicas EIEE:

□ Arquitecturas Digitales

□ Bionanoelectrónica

□ Conversión de Energía

□ Informática Industrial

√ Sistema de Control y Accionamientos

√ Sistema de Potencia

□ Telecomunicaciones

Grupos de investigación:

√ Alta Tensión (GRALTA)

□ Arquitecturas Digitales y Microelectrónica (GADYM)

□ Bionanoelectrónica

√ Control Industrial (GICI)

□ Conversión de Energía (CONVERGIA)

□ Percepción y Sistemas Inteligentes (PSI)

□ Sistemas de Telecomunicaciones (SISTEL-UV)

□ Sistemas Hidroenergéticos de Gestión (SHEG)

□ Otro:

Proyectista

Nombre: Juan Camilo Valderrama Quiñones Código: 201133809

Correo electrónico: [email protected] Tel.: 8963580 -3152736471

Director

Nombre: Jorge Quintero Calvache

Institución: Universidad del Valle

Correo electrónico: [email protected] Tel.: 3391780 -3212119

Director

Nombre: Diego Fernando García Gómez

Institución: Universidad del Valle

Correo electrónico: [email protected] Tel.: 3212168 -3212154

Page 3: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

CONTENIDO

Pág.

1 FORMULACIÓN DEL PROBLEMA ..................................................................................................5

2 JUSTIFICACIÓN .............................................................................................................................6

3 OBJETIVOS ....................................................................................................................................7

3.1 OBJETIVO GENERAL ..............................................................................................................7

3.2 OBJETIVOS ESPECÍFICOS: .....................................................................................................7

4 MARCO DE REFERENCIA ...............................................................................................................8

4.1 SECADO DE TRANFORMADORES ELÉCTRICOS .....................................................................8

4.1.1 Aislamiento sólido de trasformadores eléctricos ........................................................8

4.1.2 Secado de trasformadores eléctricos ..........................................................................8

4.1.3 Proceso de secado por Calentamiento a Baja Frecuencia (LFH) ............................... 10

4.2 CONVERTIDORES ELECTRÓNICOS DE POTENCIA .............................................................. 12

4.2.1 Concepto de convertidor .......................................................................................... 12

4.3 CONTROL DIGITAL EN ELECTRÓNICA DE POTENCIA ......................................................... 13

5 METODOLOGÍA PROPUESTA ..................................................................................................... 14

6 RESULTADOS ESPERADOS ......................................................................................................... 17

7 CRONOGRAMA DE ACTIVIDADES .............................................................................................. 18

8 PRESUPUESTO ........................................................................................................................... 19

9 BIBLIOGRAFÍA ............................................................................................................................ 20

Page 4: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

5

1 FORMULACIÓN DEL PROBLEMA

A pesar de la realización de diferentes estudios y experimentos sobre LFH (calentamiento

a baja frecuencia) y conocer las ventajas que este produce en el proceso de fabricación y

mantenimiento de transformadores de potencia, no existe un sistema LFH que haya sido

inicialmente diseñado para ese fin.

Generalmente en el proceso LFH se utiliza un variador de velocidad adaptado, este

dispositivo carece de una estructura de control adecuada, debido a lo anterior el proceso

es ineficiente y expone el transformador a condiciones adversas.

En los variadores de velocidad comerciales, las frecuencias nominales de operación

pueden variar desde 10 Hz hasta 100 Hz, sin embargo dichos dispositivos pueden trabajar

a frecuencias menores durante el arranque de su regulación de velocidad.

Dado lo anterior, se han realizado pruebas con reguladores de velocidad adaptados,

operando en bajas frecuencias y, se ha observado que la señal generada es distorsionada

y no es posible realizar medidas eléctricas confiables, que a su vez imposibilitan la

determinación de las condiciones internas del transformador al cual se está aplicando

LFH.

Además el variador de velocidad en esta región de operación no suministra su tensión

nominal, por consiguiente no es posible utilizar la potencia total del dispositivo teniendo

que sobredimensionar el equipo.

Page 5: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

6

2 JUSTIFICACIÓN

El diseño de un sistema electrónico LFH, con las estructuras de control y ajustado a las

necesidades, permitirá la construcción de un equipo eficiente respecto a los usados

comúnmente en el proceso de secado.

En el diseño del sistema se considerará un control de temperatura que será realizado a

través de una estimación indirecta, porque los comúnmente usados no poseen esta

estructura de control y, debido a lo anterior, se puede deteriorar los aislamientos del

transformador por altas temperaturas, o el proceso de secado ser ineficiente por estar

debajo de la temperatura óptima.

Page 6: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

7

3 OBJETIVOS

3.1 OBJETIVO GENERAL

Diseñar un prototipo de sistema electrónico LFH como coadyuvante en procesos de

secado de transformadores eléctricos.

3.2 OBJETIVOS ESPECÍFICOS:

• Diseñar un sistema LFH de 1000 W de potencia, que trabaje en un rango de 0.1

Hz hasta 2 Hz para usarse en transformadores monofásicos de hasta 37.5 kVA y

13.2 kV.

• Diseñar una estrategia de control de temperatura del transformador bajo ensayo, a

partir de la medición de las variables de salida del sistema LFH.

• Validar el sistema diseñado mediante simulación por software.

Page 7: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

8

4 MARCO DE REFERENCIA

4.1 SECADO DE TRANFORMADORES ELÉCTRICOS

4.1.1 Aislamiento sólido de trasformadores eléctricos

Al observar los diferentes materiales del transformador: cobre, hierro, aislamiento sólido y aislamiento líquido, entre otros, de estos los que presentan mayor envejecimiento son los aislamientos. Debido a que el aislamiento líquido es reemplazable fácilmente, y a que cambiar el aislamiento sólido implicaría reconstruir el transformador por completo, se puede decir que el aislamiento sólido es el que determina la vida útil del transformador.(Margalló Gasco, 2012)

El envejecimiento del aislamiento sólido del transformador es debido, entre otros factores

a la presencia de humedad en su interior, por eso la calidad del secado es crítica si

tenemos en cuenta los requerimientos físicos y dieléctricos a los que está sometido, es

decir un efectivo proceso de secado del transformador durante su fabricación y

mantenimientos garantiza un correcto funcionamiento del equipo.(Bosiger, 2001)

Al tener en cuenta los subproductos de la degradación del papel aislante como ácidos,

gases y agua, se puede concluir que el no eliminar la mayor cantidad de humedad del

transformador acelera más el proceso.(Bosiger, 2001)

Para comprender lo anterior se debe conocer que el aislamiento en los transformadores de potencia es a base de celulosa (papel Kraft y pressboard), y una característica de este material es que es hidrófilo (del griego Hydros que significa agua y Fhilia que significa amistad), entonces, el aislamiento por su misma característica atrae el agua, lo cual genera su propia descomposición. La composición de la celulosa hace que los aislamientos sólidos del transformador sean altamente hidrófilos por los radicales OH o sitios activos que sobresalen en las paredes laterales de las moléculas de celulosa. (Figura 1). (Garcia, Vasquez, & Quintero, 2014)

4.1.2 Secado de trasformadores eléctricos

Diferentes técnicas son usadas en el secado de transformadores, una de las más usadas

es el secado por circulación aceite caliente (Hot Oil Drying, HO).

Este método consiste en forzar la circulación de aceite caliente a través del transformador,

como la humedad relativa este fluido es baja, parte de la humedad del papel aislante se

transfiere, además pasa también por un filtro que extrae el agua presente en él (figura 2).

El proceso llega a trabajar a temperaturas de hasta 80°C, debido a que una mayor

Page 8: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

9

temperatura desgasta los aislamientos del equipo. El proceso de recirculación se repite

varias veces, sin embargo el papel no se seca por completo.(Garcia, Garcia, Burgos, &

Villarroel, 2012)

Figura. 1. Estructura molecular de la celulosa.

Sistema electrónico para calentamiento a baja frecuencia (Garcia et al., 2014).

El secado por circulación de aceite caliente se ha realizado por muchos años y existe

mucha información sobre este, sin embargo la eficiencia de este método es limitada

debido a que el aceite es hidrófobo (hydrós, agua y fobos, horror), es decir el método es

ineficiente.(Garcia et al., 2012)

Figura. 2. Diagrama de una planta de secado.

Sistema electrónico para calentamiento a baja frecuencia (Garcia et al., 2012).

Page 9: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

10

4.1.3 Proceso de secado por Calentamiento a Baja Frecuencia (LFH)

Para dar solución a este problema, se plantea calentar las partes activas del

transformador mientras se realiza el proceso de circulación de aceite caliente, esto se

realizará mediante una técnica llamada calentamiento a baja frecuencia (Low Frequency

Heating, LFH). Este método calienta la parte activa del transformador a través de los

devanados, mientras se aplica una corriente con una frecuencia entre 1 mHz a 5Hz en los

devanados de alta tensión, al mismo tiempo que los de baja tensión se encuentran

cortocircuitados (figura 3) (Garcia et al., 2012).

Figura. 3. Esquema de la configuración utilizada por ABB en el uso de LFH,

Sistema electrónico para calentamiento a baja frecuencia (Garcia et al., 2012).

A continuación se presentará un caso de secado a baja frecuencia en un auto-

transformador de 750 MVA- 500KV (figura 4) realizado por Hydro One en Canadá. (Elisa

Figueroa, R. Tomasz Kalick, 2009)

Después de 30 años de servicio activo, se detectaron fallas en el Auto-transformador

por altos contenidos de humedad presentes en él. Debido a esto, se decidió llevar a cabo

un proceso de secado aplicando una corriente en baja frecuencia en los devanados,

aumentando la temperatura progresivamente hasta llegar a los 110°C.

Dada la experiencia de esa empresa en secado de transformadores, compararon el

rendimiento de ambos métodos, tabla 1.

Tabla 1. Comparación entre métodos de secado

Método Efectividad del

secado Duración

Esfuerzo del

tanque Costo

HO A lo mejor el 1,1% 4 a 8 semanas Moderado a severo 100%

LFH Facilmente <1% < 2 semanas Ninguno o menor 75%

Low frecuency heating field dry-out of a 750MVA 500KV Auto transformer (Elisa Figueroa, R. Tomasz Kalick, 2009).

Page 10: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

11

Figura. 4. Autotransformador de 750MVA 500KV el cual se secó mediante LFH

Low frecuency heating field dry-out of a 750MVA 500KV Auto transformer (Elisa Figueroa, R. Tomasz Kalick, 2009).

Para poder entender un poco más sobre las ventajas del método de calentamiento a baja frecuencia, se puede observar en la figura 5 un resultado experimental en un laboratorio, donde se comparó 4 procesos de secado.(Garcia et al., 2012)

Figura. 5. Comparación de resultados de HO a 60°C vs HO a 60°C con LFH a 75°C, 85°C y 100°C

Sistema electrónico para calentamiento a baja frecuencia (Garcia et al., 2012).

Page 11: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

12

4.2 CONVERTIDORES ELECTRÓNICOS DE POTENCIA

No hay duda de que la energía eléctrica constituye la fuente básica de energía de los sistemas electrónicos. Sin embargo no se produce ni consume de manera unificada, es decir está disponible en diferentes condiciones: Corriente continua, corriente alterna, monofásico, trifásico, pulsada, nivel de tensión y frecuencia, etc. Por tanto es necesario disponer de sistemas que permitan adaptar la fuente primaria al sistema utilizado. (Contreras, 2005) El desarrollo de la electrónica de potencia ha beneficiado la aparición de conmutadores de estado sólido que permiten reducir el volumen y las prestaciones de los equipos de conversión de energía, imprescindibles en la mayoría de aplicaciones domésticas e industriales actuales. (Contreras, 2005)

4.2.1 Concepto de convertidor

Un convertidor de energía es un sistema electrónico que tiene por objetivo la conversión de energía eléctrica entre dos diferentes parámetros, por ejemplo CC-CA o CC-CC a diferente nivel de tensión.(Contreras, 2005) El concepto general puede extenderse con otros parámetros como: eficiencia, reversibilidad, grado de idealidad, fiabilidad, potencia y tecnología de conversión por citar las más importantes. (Figura 6).(Contreras, 2005) Figura. 6. Estructura básica de un convertidor electrónico de potencia

Apuntes de la Asignatura Instrumentación Industrial. (Contreras, 2005)

Existen distintos esquemas y formas de conversión electrónica, sin embargo para este

trabajo de grado se debe enfocar en la conversión desde la alimentación de la red, 220V,

60Hz hasta lo necesario por sistema LFH.

Page 12: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

13

4.3 CONTROL DIGITAL EN ELECTRÓNICA DE POTENCIA

En la electrónica de potencia, el procesamiento eficiente y control de energía eléctrica

ocupan un amplio campo de estudio, debido a que las aplicaciones deben gestionar

desde algunos miliwatts hasta el manejo de varios megawatts en los convertidores de

potencia. (Krein, 2007)

En estas aplicaciones, el control y las tareas de monitoreo tienen una complejidad alta,

mientras que los dispositivos semiconductores operan a relativas bajas frecuencias de

conmutación, alrededor de 10 KHz.(Krein, 2007)

Además, todas las aplicaciones tienen requisitos de regulación estática y dinámica de las

entradas y salidas bajo sus rangos de operación y teniendo mínimas pérdidas de energía,

es decir una máxima eficiencia en la conversión.

En las ultimas 2 décadas los métodos de control digital, los controladores digitales de

propósito general, los microprocesadores dedicados, los procesadores digital de señales

(DSP´s) o los dispositivos lógicos programables, han comenzado a usarse en diferentes

aplicaciones.(Krein, 2007)

Figura. 7. Estructura de convertidor electrónico de potencia con su controlador digital (Verde) y la etapa de conversión de potencia (Azul).

Digital control generations - Digital controls for power electronics through the third generation.

Para este trabajo de grado se debe seleccionar adecuadamente el sistema de

procesamiento que mejor se adapte a la etapa de conversión de potencia.

Page 13: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

14

5 METODOLOGÍA PROPUESTA

El trabajo de grado se realizará basado en la revisión bibliográfica de sistemas que posean alguna similitud al sistema LFH, como resultado de esto se identificará las partes necesarias para el diseño (como el convertidor y el control), se plantea realizar reuniones quincenales para hacer los respectivos ajustes.

El diseño del sistema se estructurará de forma modular, es decir dividiendo el equipo en dos bloques principales: El actuador de potencia y las estructuras de control. Se estudiará y adecuará cada uno de estos bloques buscando que el sistema tenga el mejor rendimiento. Además esto permitirá tener un diseño de un sistema reconfigurable lo cual facilitaría el realizar ajustes en la futura construcción del prototipo.

Dado lo anterior, para realizar el diseño del sistema electrónico para LFH, los bloques y las etapas de actividades se enfocarán así:

Actuador de potencia: Es el convertidor electrónico encargado de la conversión AC/AC adecuada para la operación del LFH, esta debe ser construida con dispositivos de uso comercial.

Se debe seleccionar y adecuar los esquemas de protección asociados al sistema de LFH y especificar las señales que se requiere para el control.

Estructuras para el control del convertidor y las variables asociadas al sistema incluyendo el transformador bajo prueba: esta etapa del sistema realizará todas las operaciones aritméticas y de control necesarias para el funcionamiento del sistema, involucra señales de entrada y salida, decisiones, monitoreo, control y protección, entre otras.

También incluye la selección del sistema de cómputo electrónico para el procesamiento digital, los elementos de acondicionamiento de señales necesarias, la instrumentación y el diseño de los esquemas de control que permita desarrollar las funciones operativas del equipo.

Cada etapa de diseño debe estar validada mediante simulación. Etapa 1: “Definición de las topologías apropiadas para la conversión AC-AC con

regulación del valor eficaz de la corriente inyectada al transformador y su respectivo control”

Investigar las diferentes topologías de conversión.

Determinar la estructura más robusta y eficiente de conversión.

Establecer las especificaciones de los semiconductores.

Calcular la potencia de transformador que conectará el sistema a la red.

Simular las operaciones de funcionamiento en régimen nominal, sobrecarga y fallas.

Informe parcial No. 1.

Page 14: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

15

Etapa 2: “La selección de los semiconductores apropiados así como sus circuitos

de protección”.

Selección de los semiconductores del circuito de potencia

(semiconductores, transformador y protecciones) de acuerdo a las

características ofrecidas por los fabricantes.

Realizar simulación.

Informe parcial No. 2.

Etapa 3: “La escogencia del sistema de procesamiento que permita establecer la arquitectura de programación adecuada para el desarrollo de las funciones de mando, control, regulación y protección adecuadamente”.

Determinar las características requeridas del sistema de procesamiento.

Investigar los distintos sistemas de procesamiento.

Seleccionar el sistema de procesamiento adecuado para aplicaciones de control y electrónica de potencia, que cumpla con las exigencias para operar todas las funciones.

Investigar la documentación del sistema de procesamiento escogido.

Informe parcial No. 3. Etapa 4: “Diseño de la instrumentación para obtener las señales apropiadas desde y hacia el sistema en niveles adecuados para su operación”

Establecer los rangos de operación en voltaje, corriente y potencia del sistema de control.

Diseñar la instrumentación adecuada que permita realizar maniobras de control.

Diseñar la etapa de acondicionamiento de señales.

Realizar simulación.

Informe parcial No. 4. Etapa 5: “Diseño de las estrategias de control para ajustar la magnitud eficaz de la

corriente inyectada al transformador”.

Determinar las estrategias de control adecuadas considerando las funciones asociadas: verificación de condiciones iniciales de la red, corriente inyectada al transformador, medición indirecta de temperatura mediante las variables eléctricas, tiempo del proceso, etc).

Estructurar la programación con base en las funciones modulares y rangos variables del convertidor

Realizar simulación.

Informe parcial No. 5.

Page 15: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

16

Etapa 6: “Diseño de las funciones de protección de sobrevoltaje, sobrecorriente y

limitación de potencia en los bornes de salida del sistema.”

Identificar situaciones críticas en el funcionamiento de sistema.

Diseñar el esquema de protección adecuado.

Realizar simulación.

Informe parcial No. 6. Etapa 7: “Realización de informe final”

Recopilar información de todos los informes parciales y realizar informe final

(Trabajo de grado).

Page 16: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

17

6 RESULTADOS ESPERADOS

Diseño de un prototipo de sistema de calentamiento a baja frecuencia validado mediante

simulación incluyendo plano de ingeniería de detalle y presupuesto.

Page 17: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

18

7 CRONOGRAMA DE ACTIVIDADES

Tabla 2. Cronograma de actividades del trabajo de grado

CRONOGRAMA DE ACTIVIDADESETAPA ACTIVIDAD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Investigar las diferentes topologías de conversión. X X

Determinar la estructura más robusta y eficiente de

conversión.X X

Establecer las especificaciones de los semiconductores. X X

Calcular la potencia de transformador que conectará el

sistema a la red.X X

Simular las operaciones de funcionamiento en régimen

nominal, sobrecarga y fallas.X X

Informe parcial No. 1. X

Selección de componentes semiconductores, del

transformador de potencia y protecciones.X X X

Realizar simulación X X X

Informe parcial No. 2. X

Determinar las características requeridas del sistema de

procesamiento.X X X X

Investigar los distintos sistemas de procesamiento. X X

Seleccionar el sistema de procesamiento adecuado para

aplicaciones de control y electrónica de potencia.X X

Investigar la documentación del sistema de procesamiento

escogido.X X

Informe parcial No. 3. X

Establecer los rangos de operación en voltaje, corriente y

potencia del sistema de control. X X X X X X

Diseñar la instrumentación adecuada que permita realizar

maniobras de control. X X

Diseñar la etapa de acondicionamiento de señales. X X

Realizar simulación. X X X X

Informe parcial No. 4. X

Determinación de las estrategias de control X X X

Estructurar la programación, con base en las funciones

modulares y rangos de variables del convertidorX X X X X X X

Realizar simulación X X X

Informe parcial No. 5. X

Identificar situaciones críticas en el funcionamiento de

sistema.X X X

Diseñar el esquema de protección adecuado. X X X X

Realizar simulación. X X X

Informe parcial No. 6. X

Informe FINAL. X X X

MES 9 MES 10

3

4

MES 1 MES 2 MES 3 MES 4 MES 5 MES 6 MES 7 MES 8

5

6

1

2

Page 18: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

19

8 PRESUPUESTO

Tabla 3. Presupuesto global (en miles de pesos)

Tabla 4. Descripción de los gastos de personal (en miles de pesos)

Tabla 5. Descripción de los gastos de personal (en miles de pesos)

Equipo Justificación Fuente

Estudiante

Computador Diseño del sistema

LFH 2500

TOTAL 2500

Tabla 6. Descripción de software que se plantea usar (en miles de pesos).

Software Justificación Fuente

Univalle

Matlab, Orcad, varios Diseño del sistema

LFH 500

TOTAL 500

Univalle Estudiante

Diego F. García G. PosgradoDirector de trabajo

de grado1 H/semana, 8 meses 3001

Jorge Quintero C. PosgradoDirector de trabajo

de grado1 H/semana, 8 meses 2000

Juan C. Valderrama Estudiante pregradoEstudiante de trabajo

de grado20 H/semana, 8 meses 6669

11670

Fuente

TOTAL

Nombre de participante formación académicaFunción dentro del

proyecto

Dedicación (en H/semana y

meses)

Estudiante (especie) Univalle (especie)

PERSONAL 6669 5001 11670

EQUIPOS 2500 2500

SOFTWARE 500 500

BIBLIOGRAFÍA 500

PAPELERÍA 400

TOTAL 9569 5501 15070

RubrosFuentes

Total

Page 19: DISEÑO DE UN SISTEMA ELECTRÓNICO DE ......Diseño de un sistema electrónico de calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de

20

9 BIBLIOGRAFÍA

Bosiger, J. (2001). The use of low frequency heating techniques in the insulation drying process for liquid filled small power transformers. In 2001 IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives (Cat. No.01CH37294) (Vol. 2, pp. 688–692). IEEE. Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=971322

Contreras, C. (2005). Apuntes de la Asignatura Instrumentacion Industrial.

Elisa Figueroa, R. Tomasz Kalick, E. G. teNyenhuis. (2009). Low frecuency heating field dry-out of a 750MVA 500KV Auto transformer. Electricity, Transmision and Distribution, 8–10. Retrieved from http://www.electricity-today.com/downloads/issue1_2009.pdf

Garcia, D. F., Garcia, B., Burgos, J. C., & Villarroel, R. (2012). Transformer field drying improvement by applying low-frequency-heating. In 2012 Workshop on Engineering Applications (pp. 1–6). IEEE. Retrieved from http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6220075

Garcia, D. F., Vasquez, H., & Quintero, J. E. (2014). Sistema eletrónico para calentamiento a baja frecuencia (Low Frequency Heating) como coadyuvante en procesos de secado de transformadores eléctricos.

Krein, P. T. (2007). Digital control generations - Digital controls for power electronics through the third generation. Proceedings of the International Conference on Power Electronics and Drive Systems, 1–5. http://doi.org/10.1109/PEDS.2007.4487667

Margalló Gasco, I. (2012). Diagnóstico del consumo de vida de un transformador a través del análisis de compuestos furánicos, 1–70.