diseÑo bombeo mecÁnico parte 1

Upload: felix-gallo-cruz

Post on 14-Apr-2018

240 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    1/72

    Sucker Rod Pump

    Beam PumpDesign

    30/10/2013 1BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    2/72

    Beam Pump Surface Components

    Prime Mover

    Gear reducer

    Pumping unit Polished rod

    Transformer

    Control BoxElectricMotor

    Polished RodStuffing Box

    Tubing

    Sucker Rods

    Pump

    30/10/2013 2BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    3/72

    Surface Components

    Prime Mover Electric or internal combustion engine

    Provides driving force as a rotary movement of themotor shaft

    Gear reducer Reduces the high rotational speed of the motor to

    the required pump speed Increases the torque (the ability of a force to

    cause a body to rotate about a particular axis.)

    30/10/2013 3BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    4/72

    Surface Components

    Pumping unit Transforms the rotational movement of the

    gearbox shaft into a reciprocatingmovement at the tip of the walking beam.

    Polished Rod

    connects the walking beam with the suckerrod string and provides sealing surface atthe wellhead

    30/10/2013 4BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    5/72

    Downhole Components

    Rod String Responsible for transmitting the reciprocating

    movement of the polished rod to the downholepump.

    Pump contains the traveling valve and the standing valve

    admit fluids from the annulus to the pump barrel transfer momentum to the fluids to be produced

    through the tubing

    30/10/2013 5BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    6/72

    Schematic of PumpSucker Rods

    Plunger

    Traveling Valve

    Standing Valve

    Upstroke Downstroke

    Working Barrel

    30/10/2013 6BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    7/72

    Upstroke

    Traveling valve closes due to thepressure of the fluids inside the tubing

    The rising rod string pushes the plungerand fluids above it upwards.

    Standing valve opens and casing fluids

    enter.

    30/10/2013 7BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    8/72

    Downstroke

    Increased pressure forces standingvalve shut.

    Traveling valve opens allowing fluidabove the plunger.

    30/10/2013 8BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    9/72

    Design Methods

    Simplified Method Developed for Shallow wells

    Simple (reliable) equations for operationalparameters

    API RP 11L Valid at increased depth where simplified

    method fails Successfully used in the oil industry for

    more than 20 years

    30/10/2013 9BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    10/72

    Beam Pump System Performance

    30/10/2013 10BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    11/72

    Reference

    Gabor Takacs: Modern Sucker-Rod

    Pumping- PenWell Books

    30/10/2013 11BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    12/72

    Schematic of a Beam Pump Unit

    30/10/2013 12BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    13/72

    Beam Pump Configurations

    Conventional

    30/10/2013 13BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    14/72

    Beam Pump Configurations

    Mark II

    30/10/2013 14BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    15/72

    Beam Pump Configurations

    Air Balanced

    30/10/2013 15BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    16/72

    Beam Pump Configurations

    Torque Master

    30/10/2013 16BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    17/72

    Pumping Unit Designations

    30/10/2013 17BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    18/72

    Design Methods

    Mathematical solution for the movementof the sucker rod string

    Most accurate method Requires the use of a numerical simulator

    We will confine ourselves to API RP 11L www.api.org

    30/10/2013 18BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    19/72

    Design and Analysis

    Prediction of the operating conditions isof vital importance for the design of new

    installations and the analysis of existingones Polished rod loads

    Downhole stroke length Torques

    30/10/2013 19BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    20/72

    Polished Rod Load

    The weight of the rod string, Wr

    The buoyant force

    Mechanical and fluid frictionUsually neglected

    Dynamics force on the string

    The load of the fluid being produced

    30/10/2013 20BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    21/72

    Polished Rod Load

    30/10/2013 21BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    22/72

    Design Prequisites

    Polished rod loads

    Downhole stroke length

    Torques

    30/10/2013 22BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    23/72

    Peak Polished Rod Load

    (PPRL) Maximum

    (downward) force on

    beam Occurs when the

    rod is moving upand lifting liquid

    F

    rW

    TD

    DD

    DLF ,

    ULF ,

    30/10/2013 23BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    24/72

    Loads neglecting acceleration

    Simplified Model Weight of sucker rod string in air

    Pressure force of fluid above plunger

    Ap plunger area, ft2

    Arod

    area of thedeepest sucker rod, ft2

    rW

    c

    rodpTL

    D,Lg

    AAgDF

    30/10/2013 24BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    25/72

    Upward force on plunger due topressure from casing fluid:

    DD depth to dynamic fluid level, ft Measured using an Echometer

    c

    DTpL

    U,Lg

    DDgAF

    Loads neglecting acceleration

    Simplified Model

    30/10/2013 25BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    26/72

    Dynamic Load SimplifiedMethod

    Mass of the rod times its acceleration

    Concentrated point load

    Acceleration factor of Mills (dimensionless)

    S Polished rod stroke length, inches N pumping speed in SPM (strokes per minute)

    70500

    2NS

    30/10/2013 26BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    27/72

    Peak Polished Rod LoadSimplified Method For Conventional Units

    In most texts, the last term is neglectedto compensate for unknown friction

    losses Fluid Load:

    c

    TrodL

    c

    DpL

    rg

    DgA

    g

    DgAWPPRL

    1

    c

    DpL

    og

    DgAF

    30/10/2013 27BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    28/72

    Minimum Polished Rod LoadMPRL

    F

    BrW ,

    TD

    DD

    Occurs when rod ison the downstroke

    Fluid flowing throughtraveling valve

    Rod buoyed up bysurrounding fluid

    30/10/2013 28BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    29/72

    Force Balance - Downstroke

    MPRL = Buoyant rod weight DynamicForces

    Buoyant rod weight :

    Dynamic Forces (Simplified method) :

    rod

    LrodrW

    r

    W

    30/10/2013 29BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    30/72

    Minimum Polished Rod Load

    Simplified Method

    SGW

    WMPRL

    r

    rod

    Lr

    128.01

    1

    SGfluid specific gravity

    30/10/2013 30BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    31/72

    Example

    Find the minimum and maximumpolished rod loads for a 5000 ft rod

    string composed of 42.3% of , 40.4%of 5/8 and 17.3% of rods.Plunger

    size is 1.5 and the fluid level is at 4800

    ft. Pump speed is 10 spm, stroke lengthis 120 and the specific gravity of thefluid is 0.95.

    30/10/2013 31BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    32/72

    Solution

    Determine the total rod weight,Wr From table,

    Acceleration Factor

    lbf6375

    726.0173.0135.1404.0634.1423.05000

    rW

    17.0

    70500

    101202

    30/10/2013 32BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    33/72

    Table for rod properties

    30/10/2013 33BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    34/72

    Solution

    Fluid load on Plunger

    Peak Polished rod load

    lbf3487

    480024

    5.1

    4.6295.0

    2

    c

    DpL

    og

    DgA

    F

    lbf10964

    1

    or FWPPRL

    30/10/2013 34BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    35/72

    Solution

    Minimum Polished Rod Load

    lbf4513

    17.095.0128.016375128.01

    SGWMPRL r

    30/10/2013 35BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    36/72

    Peak Torque Sizing Motor Crankshaft torque

    Rod string requirements

    Counterweight requirements

    Assumptions Pumping unit balanced

    MPRL and PPRL occur when the torque

    factor maximum

    in-lbf4

    )(S

    MPRLPPRLPT

    30/10/2013 36BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    37/72

    Plunger Stroke Length

    Surface and downhole stroke lengthsdiffer considerably

    Sucker rod string is elastic Tubing string is also elastic

    Definition: Plunger stroke is the travel of

    the pump plunger relative to thestanding valve. (Units: inches)

    30/10/2013 37BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    38/72

    Plunger Stroke Length Fluid load alternately

    acts on the travelingvalve and on the

    standing valve Upstroke traveling

    valve

    Downstroke standing

    valve Additional stretch due

    to acceleration

    30/10/2013 38BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    39/72

    Plunger Stroke Length

    Low pumping speeds (negligibledynamic loads)

    Unanchored tubing

    Anchored tubing (no tubing stretch)

    erand etare rod and tubing stretch in inches

    trp eeSS

    rp eSS

    30/10/2013 39BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    40/72

    Rod Stretch

    Erelastic constant,(see Table)

    L

    length of the rodsection, ft

    Fo- fluid load onplunger, lbf

    orr LFEe

    30/10/2013 40BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    41/72

    Fiberglass Rods

    30/10/2013 41BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    42/72

    Tubing Stretch

    Etelastic constant, (see Table) Ltlength of the tubing section, ft Fo- fluid load on plunger, lbf

    ottt FLEe

    30/10/2013 42BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    43/72

    Dynamic Stretch (inch)

    Due to inertial forces Maximal at the endpoints of the stroke

    Cause an attritional elongation in therod string

    Plunger Overtravel

    Simplified model concentrated load

    261036.1 Leo

    30/10/2013 43BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    44/72

    Total Stretch

    Unanchored tubing

    Anchored tubing

    otrp eeeSS

    orp eeSS

    30/10/2013 44BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    45/72

    Tapered rod/tubing

    If the rod and/or tubing strings aretapered, we must sum the stretches on

    each section

    i

    i

    ioLEFe

    30/10/2013 45BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    46/72

    Example

    Calculate the plunger stroke length for a5000 ft rod string composed of 42.3% of

    , 40.4% of 5/8 and 17.3% of rods.Use the results from the previousexample for loads.

    30/10/2013 46BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    47/72

    Solution

    Elongation of the rod Sum elongations over each section

    inch4.21

    173.01099.1404.01026.1423.010833.0

    50003487

    666

    i

    ririor LeFe

    30/10/2013 47BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    48/72

    Solution

    Elongation of the tubing

    Plunger overtravel

    inch9.3

    3487500010211.0 6

    te

    inch8.5

    17.050001036.1 26

    oe

    30/10/2013 48BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    49/72

    Solution

    Plunger stroke

    inch5.100

    8.59.34.21120

    pS

    30/10/2013 49BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    50/72

    Pump Displacement

    From downhole stroke length, the dailyvolumetric pump displacement is given

    by

    PD pump displacement in RB/d

    d plunger diameter (inch)

    21166.0 dNSPD p

    30/10/2013 50BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    51/72

    Example

    Calculate the pump displacement forthe previous example.

    Solution

    RB/d264

    5.1105.1001166.0

    1166.0

    2

    2

    dNSPD p

    30/10/2013 51BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    52/72

    Question:Does a Sucker rod pump

    produce fluid only on theupstroke?

    30/10/2013 52BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    53/72

    Rod string design

    Should we use a single-diameter rod? Rods near the plunger carry the smallest

    loads (the fluid weight) Rods near the surface carry the fluid

    weight as well as the weight of all rodsbelow

    Use a tapered string Rod diameter decreases with depth

    30/10/2013 53BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    54/72

    Ideal Tapered String

    Tapered to have nostress hot spots Stress = load/area Want uniform stress

    Rod strings come indiscrete diameters Uniform stress

    unattainable

    Equalize stressesin rod strings.

    Ideal Tapered String

    30/10/2013 54BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    55/72

    Rod Size

    At a given position, the minimumapplicable rod diameter must support

    the maximum tensile stress at thatposition. Tensile stresses are cyclic.

    Maximum on upstroke Minimum on downstroke

    Must account for metal fatigue

    30/10/2013 55BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    56/72

    Tensile Strength For small loads, a metal rod will stretch an

    amount proportional to an applied load, andreturn to its original dimensions when theload is removed. Hookes Law Applies until the elastic limit

    Beyond the elastic limit, additional load willpull the rod apart.

    Tensile Strength - The quantity of stressneeded to overcome a materials resistanceto structural failure.

    30/10/2013 56BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    57/72

    Metal Fatigue

    Weakened condition induced inmetal parts of machines, vehicles,

    or structures by repeated stressesor loadings, ultimately resulting infracture under a stress muchweaker

    than that necessary tocause fracture in a singleapplication.

    30/10/2013 57BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    58/72

    Fatigue Endurance Limit

    The maximum stress level at which theequipment will operate under cyclic

    loading conditions for 10 millioncomplete cycles.

    Affected by operating conditions Salt water

    Hydrogen Sulfide

    30/10/2013 58BOMBEO MECNICO

    Goodman Diagram

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    59/72

    Goodman Diagram

    30/10/2013 59BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    60/72

    Rod Stresses

    Maximum Stress, psi

    Minimum Stress, psi

    2max

    4rd

    PPRLS

    2min4

    rd

    MPRL

    S

    30/10/2013 60BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    61/72

    Maximum Allowable Stress

    To prevent rod breakage from metalfatigue, we need maximum allowable

    stress

    SF service factor T tensile strength of the rod

    SFST

    Sa

    min5625.04

    30/10/2013 61BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    62/72

    Service Factors

    Maximum tensile strength (T) for API grades C and D

    are 90000 and 115000 psi respectively.

    30/10/2013 62BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    63/72

    Tapered String Design

    Attempt to equalize stress distributionsin the rods

    Several approaches available Simplified Method

    Wests method

    Neelys method/API Method

    30/10/2013 63BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    64/72

    Simplified Method

    Goal Keep maximum rod stresses at avalue based on a percentage of the

    tensile strength of the rod material. Set the maximum stress at the top of

    each taper section equal.

    30/10/2013 64BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    65/72

    Example 7/8 6/8 - 5/8

    30/10/2013 65BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    66/72

    Simplified Method

    30/10/2013 66BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    67/72

    Simplified Method

    Gives reasonable rod life for shallowwells.

    Using this method, practically all rodbreaks are due to fatigue Still applied to high-strength E-rods

    Maximum allowed stress is constantregardless of stress range (50,000 psi)

    30/10/2013 67BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    68/72

    Example

    Design an API 65taper rod string usingE rods for a pump setting depth of 5000

    ft and a pump size of 2.5 inch. Assumewe are pumping water.

    Note: a API 65 refers to two strings, the

    top with size 6/8 inch and the bottomwith 5/8 inch.API 64 will consist of 6/8, 5/8, 4/8 rods.

    30/10/2013 68BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    69/72

    Solution

    From formulas

    Length of 5/8 section: 1621 ft

    Length of section: 3379 ft

    %42.32

    5.208.767.762

    1

    R

    30/10/2013 69BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    70/72

    Solution

    Checking whether the rod design willmeet maximum allowable stress

    requirements Weight of rod string:

    lbf5521634.13379

    lbf1840135.11621

    86

    85

    W

    W

    30/10/2013 70BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    71/72

    Solution

    Fluid Load

    Maximum stresses (neglectingacceleration)

    lbf10625500024

    5.2

    4.62

    2

    oF

    psi40690442.0/5521184010625

    psi40600307.0/184010625

    8/6max,

    8/5max,

    S

    S

    30/10/2013 71BOMBEO MECNICO

  • 7/27/2019 DISEO BOMBEO MECNICO PARTE 1

    72/72

    Solution

    Minimum stresses

    Since E Rods are rated at a maximum

    allowable stress of 50000 psi regardlessof stress range, the design is safe.

    psi16650442.0/55211840

    psi5990307.0/1840

    8/6min,

    8/5min,

    S

    S