didactica y matlab

27
SUPERFICIES EN MATLAB COMO RECURSO DIDÁCTICO DE COMPRENSIÓN DE CONCEPTOS DEL CÁLCULO DE VARIAS VARIABLES Juan Carlos Molina García 1 RESUMEN ____________________________________________________________________________ ___________ La didáctica como el vehículo que permite consolidar los procesos de enseñanza y aprendizaje, es amplia al momento de considerar los recursos que facilitan la apropiación del conocimiento como evidencia de un aprendizaje significativo. Las ayudas visuales a la hora de favorecer las habilidades cognitivas en la comprensión de las relaciones matemáticas en el espacio, son de gran utilidad, ya que permiten de una manera práctica la activación de esquemas a partir de conocimientos previos y de la experiencia de interactuar en un mundo tridimensional. En esta perspectiva, el presente artículo muestra algunos procedimientos que permiten a los lectores hacer una aproximación comprensiva a distintos conceptos del cálculo de varias variables utilizando para esto algunas de las instrucciones básicas del Matlab. PALABRAS CLAVE: Recurso didáctico, entorno computacional, superficies, funciones de varias variables, curvas de nivel, gradiente. ABSTRACT ____________________________________________________________________________ ___________ 1 Docente TC Facultad de Ciencias, INSTITUTO TECNOLÓGICO METROPOLITANO. Matemático, Candidato a Magister en Educación. E-mail: [email protected]

Upload: juan-molina

Post on 06-Jun-2015

11.002 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Didactica y Matlab

SUPERFICIES EN MATLAB COMO RECURSO DIDÁCTICO DE COMPRENSIÓN DE CONCEPTOS DEL CÁLCULO DE VARIAS

VARIABLES

Juan Carlos Molina García1

RESUMEN_______________________________________________________________________________________

La didáctica como el vehículo que permite consolidar los procesos de enseñanza y aprendizaje, es amplia al

momento de considerar los recursos que facilitan la apropiación del conocimiento como evidencia de un

aprendizaje significativo. Las ayudas visuales a la hora de favorecer las habilidades cognitivas en la comprensión

de las relaciones matemáticas en el espacio, son de gran utilidad, ya que permiten de una manera práctica la

activación de esquemas a partir de conocimientos previos y de la experiencia de interactuar en un mundo

tridimensional. En esta perspectiva, el presente artículo muestra algunos procedimientos que permiten a los

lectores hacer una aproximación comprensiva a distintos conceptos del cálculo de varias variables utilizando para

esto algunas de las instrucciones básicas del Matlab.

PALABRAS CLAVE:

Recurso didáctico, entorno computacional, superficies, funciones de varias variables, curvas de nivel, gradiente.

ABSTRACT_______________________________________________________________________________________

The didactic as vehicle that allows to consolidate the processes of education and learning, is wide to the hour to

consider the resources that facilitate the appropriation of the knowledge like evidence of a significant learning.

The visual helps to the hour to favour the cognitive skills in the understanding of the mathematical relations in

the space, are of big utility since they allow of a tangible way the activación of diagrams from the previous

knowledges and of the experience of interactuar in a three-dimensional world. In this perspective, the present

article pretends to show some procedures that allow to the readers do an approximation comprensiva to distinct

concepts of the calculation of several variables using for this some of the basic instructions of the Matlab.  

1 Docente TC Facultad de Ciencias, INSTITUTO TECNOLÓGICO METROPOLITANO. Matemático, Candidato a Magister en Educación. E-mail: [email protected]

Page 2: Didactica y Matlab

1 INTRODUCCIÓN

En el trabajo asociado a la enseñanza del cálculo de varias variables, aparecen conceptos y relaciones que

merecen un abordaje desde su configuración gráfica. En atención a estos requerimientos, surge el MATLAB

como un medio computacional caracterizado por su gran desempeño en el cálculo numérico, manejo de

expresiones y ayudas para la visualización y graficación. El presente artículo relaciona la herramienta informática

Matlab como un recurso didáctico a través del cual se puede contribuir al mejoramiento de la comprensión de

algunos conceptos y procedimientos del cálculo de varias variables en los temas relativos a superficies en el

espacio

En esta perspectiva, se asume que el lector tiene unos conocimientos básicos del entorno computacional de

Matlab, ya que a partir de algunos comandos y funciones predefinidas en el programa se espera realizar algunos

desarrollos sencillos de graficación y verificación de conceptos. En este sentido, se pretende mostrar ciertos

procedimientos que permiten a los lectores hacer una aproximación comprensiva de algunos conceptos del

cálculo de varias variables a través de las visualizaciones gráficas que se obtienen con las instrucciones comandos

básicos prediseñadas para el manejo de funciones o superficies en el espacio. La ruta seleccionada para el logro

del objetivo incluye la ilustración de procedimientos a través de ejemplos que involucran la Interpretación de

conceptos a través del análisis de soluciones en las que se puede utilizar la herramienta informática. Los ejemplos

son claves en este proceso, ya que acercan al lector a la forma de acceder a otros procedimientos o situaciones en

los que la mediación del software se constituye en un recurso didáctico importante para el aprendizaje de diversos

conceptos del cálculo de varias variables.

2 PLANOS EN EL ESPACIO

Un plano en el espacio se determina a partir del conocimiento de un vector perpendicular a dicho plano y de un punto cualquiera por donde pasa

El plano en el espacio que pasa por el punto y que tiene por vector normal el vector

, es tal que, para un punto cualquiera sobre el plano el vector

está contenido en el plano, por tanto, son ortogonales, de tal manera que .

Esto se escribe como

Por tanto la ecuación del plano toma la forma

Page 3: Didactica y Matlab

De manera particular, para determinar el plano que pasa por el punto y es perpendicular al vector

, obtiene de la relación , esto es:

Para efectos de graficar el plano con Matlab, se considera la ecuación del plano bajo la relación

El conjunto de valores para evaluar pertenecen a de tal manera que se puede obtener un valor de para

cualquier pareja de valores . En este sentido se pretende determinar un gráfico en el espacio tridimensional

compuesto de puntos . Para generar una maya de puntos que nos permitan evaluar el valor de ,

Matlab dispone de la función meshgrid la cual, a partir de dos vectores, genera dos matrices X,Y del mismo

orden cuyas componentes correspondientes generan posibles valores para

>>x=[-3 -2 -1 0 1 2 3]>>y=[-2 -1 0 1 2]>>[X,Y]=meshgrid(x,y)

X = -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Y = -2 -2 -2 -2 -2 -2 -2 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2

De esta manera se dispone del siguientes conjunto de puntos sobre

(-3 ,-2) (-2 ,-2) (-1,-2) (0,-2) (1,-2) (2,-2) (3,-2)

(-3,-1) (-2,-1) (-1,-1) (0,-1) ( 1,-1) (2,-1) ( 3,-1)

(-3,0) (-2,0) ( -1,0 ) (0,0) (1,0) (2,0) (3,0)

( -3,1) ( -2,1) ( -1,1) (0,1) (1,1) (2,1) (3,1)

(-3,2) (-2,2) (-1,2) (0,2) (1,2) (2,2) (3,2 )

Page 4: Didactica y Matlab

Tabla: interpretación de la salida meshgrid

La tabla contiene el conjunto de puntos del plano que serán considerados para evaluar la variable .

De esta manera

>>Z=(2+2*X-4*Y)/3

Z = 1.3333 2.0000 2.6667 3.3333 4.0000 4.6667 5.3333 0 0.6667 1.3333 2.0000 2.6667 3.3333 4.0000 -1.3333 -0.6667 0 0.6667 1.3333 2.0000 2.6667 -2.6667 -2.0000 -1.3333 -0.6667 0 0.6667 1.3333 -4.0000 -3.3333 -2.6667 -2.0000 -1.3333 -0.6667 0

La maya de graficado sobre el plano XY corresponde a los intersectos en la siguiente maya como se aprecia en la la figura. La maya de graficado en el plano Ver figura 1(a), y en el espacio, Ver figura 1(b)

-3 -2 -1 0 1 2 3-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Eje X

Eje

Y

Maya de Graficado sobre el plano XY

-3 -2 -1 0 1 2 3

-2-1

01

2-0.5

0

0.5

Maya de Graficado sobre el plano XY

Eje XEje Y

(a) (b)Figura 1.

Con el comando mesh obtenemos una aproximación al plano . Ver figura 2

>>mesh(X,Y,Z)

Page 5: Didactica y Matlab

-3-2

-10

12

3

-2

-1

0

1

2-4

-2

0

2

4

6

Figura 2. Plano en el espacio

3 FUNCIONES DE DOS VARIABLES COMO SUPERFICIES

Una función de dos variables se define a través de una ecuación de la forma , de tal manera que, a

cada posible le corresponda un único valor de . De esta manera, para una función definida por

la ecuación , la gráfica de se define como

De la definición se puede observar que la grafica de corresponde al conjunto de puntos en el espacio

tales que con un valor del dominio de . Esta gráfica se denomina superficie.

Para la grafica de la función . Cálculos sencillos muestran por ejemplo que y

que . Con esto se puede decir que las triplas respectivamente pertenecen a la

gráfica de .

De la relación se puede establecer que el dominio de la función es , esto es, para cada

pareja existe el valor que satisface la ecuación. Con los procedimientos y comandos ya planteados se

puede obtener una aproximación a la gráfica de la función Ver Figura 3(a):

>>x=-3:0.4:3; y=-3:0.4:3;>>[X,Y]=meshgrid(x,y);>>Z=1./(9+X.^2+Y.^2);>>mesh(X,Y,Z)

Una mejor aproximación de la gráfica se logra al refinar la red de puntos sobre el plano XY. Igualmente, al nombrar los ejes y especificar el gráfico obtenido. Ver Figura 3(b)

Page 6: Didactica y Matlab

>>x=-3:0.1:3;>>y=-3:0.1:3;>>[X,Y]=meshgrid(x,y);>>Z=1./(9+X.^2+Y.^2);>>mesh(X,Y,Z)>>xlabel('Eje X')>>ylabel('Eje Y')>>zlabel('Eje Z')>>title('Grafica de la superficie Z=1/(9+X^2+Y^2)').

Matlab nos muestra la gráfica al unir con segmentos en el espacio los puntos evaluados en la función y obtenidos a partir de la función meshgrid De esta manera, la superficie aparece como una maya sobre la región del

plano XY

-4-2

02

4

-4

-2

0

2

40.02

0.04

0.06

0.08

0.1

0.12

-4-2

02

4

-4

-2

0

2

40.02

0.04

0.06

0.08

0.1

0.12

Eje X

Grafica de la superficie Z=1/(9+X2+Y2)

Eje Y

Eje

Z

(a) (b)Figura 3. Superficies en el espacio

El cilindro corresponde igualmente a una superficie en el espacio que se obtiene al recorrer la

parábola con una recta paralela al eje X. Ver la figura 4

>>x=-4:4:4;>>y=-4:0.2:4;>>[X,Y]=meshgrid(x,y);>>Z=9-Y.^2;>>mesh(X,Y,Z)>>xlabel('Eje X')>>ylabel('Eje Y')>>zlabel('Eje Z')>>title('Grafica de la superficie Z = 9-Y^2');

Page 7: Didactica y Matlab

-4-2

02

4

-4

-2

0

2

4-10

-5

0

5

10

Eje X

Grafica del cilindro Z = 9-Y2

Eje Y

Eje

Z

Figura 4. Cilindro parabólico

3.1 CURVAS DE NIVEL DE UNA SUPERFICIE

Dada la superficie , se llama curva o contorno de nivel a los valores para los cuales

corresponde a una constante, esto es, . De esta manera, la curva de nivel se interpreta como la

proyección sobre el plano XY de la curva intersección de la superficie generada por con el plano .

Consideremos la función superficie . Se debe notar que la función está definida para cualquier

valor lo que significa que su dominio es . Igualmente, de la relación

Se puede inferir que la superficie está sobre el plano ya que para cada

al tomar se obtiene la siguiente curva intersección

Representa una circunferencia de centro en el origen y radio uno. De esta manera, se obtiene la curva de nivel

asociada a la intersección de la superfice con el plano . Se debe notar además que, para la curva de

nivel corresponde a un solo punto dado por

De esta manera, los siguientes conjuntos representan algunas curvas de nivel de la función dada para valores

Page 8: Didactica y Matlab

MATLAB simplifica el proceso de construir curvas de nivel a través del comando contour. Para esto tengamos en cuenta las siguientes instrucciones ver figura 5(a).

>>r=-6:0.3:6; >>[X,Y]=meshgrid(r,r);>>Z=sqrt(X.^2+Y.^2)+4;>>cs=contour(X,Y,Z);>>clabel(cs)>>grid on

Si se desea de manera particular conocer algunas curvas de nivel específicas, se definen tales valores de sobre

un vector. Así que para obtener las curvas de nivel de la superficie como intersecciones con los planos con

, se detallan los siguientes comandos. Ver figura 5(b)

>>r=-10:0.3:10; >>[X,Y]=meshgrid(r,r);>>Z=sqrt(X.^2+Y.^2)+4;>>V=[4 5 8 13];>>cs=contour(X,Y,Z,V);>>grid on>>clabel(cs)

5

6

7

8

9

10

11

11

11

11

12

12

12

12

-6 -4 -2 0 2 4 6-6

-4

-2

0

2

4

6

5

8

13

-10 -5 0 5-10

-8

-6

-4

-2

0

2

4

6

8

(a) (b)Figura 5. Curvas de nivel sobre el plano XY.

Igualmente si se desea obtener un número de curvas de nivel , en el procedimiento anterior se escribe en vez

de y se da el comando . contour(X,Y,Z,n).

Al levantar a una altura las curvas sobre plano XY, las distintas curvas de nivel aproximan la grafica de la

superficie a través de curvas intersección con planos paralelos al plano XY. Esto se logra con la función

Page 9: Didactica y Matlab

contour3. Para esto se escribe el siguiente conjunto de instrucciones. Ver la siguiente secuencia de figuras logradas mediante el editor de gráficos de Matlab. Ver figura 6

>>r=-6:0.3:6;>> [X,Y]=meshgrid(r,r);>>Z=sqrt(X.^2+Y.^2)+4;>>contour3(Z);

510

15

2025

3035

40

10

20

30

40

5

10

15

20

25

30

35

40

5

10

15

20

25

30

35

40

68

10

10

20

30

40

10

20

30

40

6

8

10

10

20

30

40

10

20

30

40

4

6

8

10

10

20

30

40

10

20

30

40

5

6

7

8

9

10

10

2030

40

1020

30405

6

7

8

9

10

Figura 6.Curvas de nivel como intersecciones con planos paralelos al plano XY

De esta manera, la superficie lograda con los procedimientos de graficado anteriores para

se obtiene del siguiente conjunto de instrucciones. Ver figura 7(a)

>>r=-6:0.3:6;>>[X,Y]=meshgrid(r,r);>>Z=sqrt(X.^2+Y.^2)+4;>>mesh(X,Y,Z)>>xlabel('Eje X')>>ylabel('Eje Y')>>zlabel('Eje Z')>>title('Grafica de la superficie Z=sqrt(X.^2+Y.^2)+4')

Si anexamos la instrucción whitebg, se puede cambiar el fondo de graficación a color negro, Ver figura 7(b)

Page 10: Didactica y Matlab

-10-5

05

10

-10

-5

0

5

104

6

8

10

12

14

Eje X

Grafica de la superficie Z=sqrt(X.2+Y.2)+4

Eje Y

Eje

Z

-10-5

05

10

-10

-5

0

5

104

6

8

10

12

14

Eje X

Grafica de la superficie Z=sqrt(X.2+Y.2)+4

Eje Y

Eje

Z

(a) (b)Figura 7. Superficie cónica en el espacio

3.2 CURVAS DE NIVEL Y EL GRADIENTE

3.2.1 EL GRADIENTE DE UNA FUNCIÓN DE VARIAS VARIABLES

Sea la función con . El vector gradiente de se denota y se define por

De esta manera, el gradiente corresponde al operador

Donde corresponden a las derivadas parciales de respecto a y a

respectivamente.

Geométricamente se tiene que el vector gradiente corresponde al vector que indica la dirección en la

cual crece con mayor rapidez en relación al punto , de acuerdo a esto, el vector indica la

dirección de mayor decrecimiento de la función en el punto. De esta manera el vector gradiente

corresponde a un vector del plano XY perpendicular a la curva de nivel con .

El gradiente es una función que, a cada punto de le asocia un vector

Consideremos la superficie La idea es trazar el vector gradiente sobre la curva de nivel que

pasa por el punto , esto es, se quiere graficar el vector sobre la curva

Page 11: Didactica y Matlab

La curva de nivel de la función está dada por

El vector gradiente esta dado por

De esta manera

Para obtener la visualización grafica del procedimiento, se aplican los siguientes comandos. Ver figura 8

>>y='sin(x)+1';>>ezplot(y)>>hold on>>quiver(pi/6,subs(y,pi/6),-sqrt(3),2)>>axis equal>>text(-1.7,3.7,'Vector gradiente perpendicular a la curva ')>>grid

-6 -4 -2 0 2 4 6

-3

-2

-1

0

1

2

3

4

5

6

x

sin(x)+1

Vector gradiente perpendicular a la curva

Figura 8. Vector gradiente perpendicular a una curva de nivel

3.2.2 CAMPO VECTORIAL GRADIENTE

De manera general un campo vectorial corresponde a una función .

De esta manera, para se obtienen campos vectoriales asociados al plano y al espacio

respectivamente.

Page 12: Didactica y Matlab

De manera particular, un campo vectorial en el plano corresponde a una función de valores vectoriales que asocia

a cada punto un vector . Para visualizar un campo vectorial se

dibujan en el plano o en el espacio un conjunto de vectores con punto inicial en .

En matemáticas con frecuencia se estudian los denominados campos gradientes que se caracterizan por ser

campos vectoriales tales que

Esto es, campos definidos como

Donde

De esta manera, la función se denomina, función potencial de .

Consideremos por ejemplo la función como una función potencial de un campo vctorial

gradiente . De esta manera se tiene:

Al considerar la forma

Se tiene que

Para obtener la gráfica del campo vectorial digitamos los siguientes comandos. Ver figura 9

>>x=-5:5;>>y=x;>>[X,Y]=meshgrid(x,y);>>U=-2*X;>>V=-2*Y;>>quiver(X,Y,U,V)

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

Figura 9. Campo vectorial gradiente

Page 13: Didactica y Matlab

De acuerdo a lo anotado, se sabe que cada vector gradiente es perpendicular a la curva de nivel correspondiente

asociada a la función potencial . Al considerar los comandos adicionales a la secuencia del ejemplo

anterior obtenemos. Ver figura 10

>>x=-5:5;>>y=x;>>[X,Y]=meshgrid(x,y);>>U=-2*X;>>V=-2*Y;>>quiver(X,Y,U,V)>>hold on>>Z=-X.^2-Y.^2;>>cs=contour(X,Y,Z);>>clabel(cs)

-5 0 5-5

-4

-3

-2

-1

0

1

2

3

4

5-50 -50

-50

-45

-40

-35-30

-30 -30

-25

-25

-25

-25-20

-15

-10

-5

0

Figura 10. Campo vectorial gradiente perpendicular a las curvas de nivel

3.3 PLANO TANGENTE Y DIFERENCIABILIDAD

Dada una superficie en , , el plano tangente a la superficie en se define como el

plano que pasa por y tiene como vector normal el vector , siempre que .

Si es el vector posición del punto fijo del plano y es el vector posición de un punto

cualquiera del plano, la ecuación vectorial del plano viene dada por

Page 14: Didactica y Matlab

Si la superficie corresponde a , se considera la función

Con lo cual, la ecuación del plano tangente está dado por

De esta manera se puede establecer que la función es diferenciable en sólo en el caso en que

la superficie admita un plano tangente no vertical en el punto

En la práctica, una forma de comprobar que una función es diferenciable en un punto basta

con comprobar que las derivadas parciales existen y son continuas sobre un conjunto abierto

que contiene el punto , lo que implica además, que la función debe ser continua en el punto.

Consideremos por ejemplo la función . Se podría afirmar que es diferenciable en el

punto ya que son continuas y existen para cada . Por tanto,

la superficie admite un plano tangente en el punto dado por:

En Matlab podemos visualizar la situación con los siguientes comandos. Ver figura 11

>>[X,Y]=meshgrid(-5:0.6:5);>>Z=5-4*X.^2-Y.^2;>>surf(X,Y,Z,ones(size(Z)))>>mp=[7/10 7/10 7/10;0 0 1]>>colormap(mp)>>hold on>>ZP=-8*X-4*Y+13;>>mesh(X,Y,ZP,2*ones(size(ZP)))>>xlabel('Eje X')>>ylabel('Eje Y')>>zlabel('Eje Z')>>title('Plano tangente a una superficie')

Page 15: Didactica y Matlab

-5

0

5

-5

0

5-150

-100

-50

0

50

100

Eje X

Plano tangente a una superficie

Eje Y

Eje

Z

Figura 11. Plano tangente a una superficie

3.4 EXTREMOS DE FUNCIONES DE VARIAS VARIABLES

3.4.1 CRITERIO DE LA SEGUNDA DERIVADA PARCIAL

Si corresponde a una función continua sobre una región rectangular cerrada R, de lados paralelos a

los ejes coordenados, entonces, tiene un máximo absoluto y un mínimo absoluto sobre dicha región. Esto es,

existe tales que

Consideremos una función continua con primeras derivadas parciales continuas. Se sabe que los

puntos críticos de la función corresponden a los valores para los cuales y

, de tal manera que los puntos críticos corresponden a posibles puntos en los que la función tiene un

extremo.

A partir de los puntos críticos, el criterio de la segunda derivada proporciona elementos para establecer si dicho

punto genera un extremo de la función. Sea un punto crítico de la función y supongamos que las siguientes

derivadas sean continuas y

- CLASIFICACIÓN

Negativo Punto sillaPositivo Positivo Punto de mínimo localPositivo Negativo Punto de máximo localCero El criterio no es concluyente

Page 16: Didactica y Matlab

Consideremos la función . Para esta función

Por tanto los puntos críticos aparecen al resolver el sistema esto es

Para resolver el sistema con MATLAB escribimos

>>[x,y]=solve('3*x^2-6*x-9','3*y^2-6*y','x,y')

x = 3 -1 3 -1, y= 0 0 2 2

Lo que significa que los puntos críticos están dados por

Para aplicar el criterio de la segunda derivada tengamos en cuenta también que:

Con lo cual se deduce la siguiente tabla

- CLASIFICACIÓN

-27 12 Punto silla-31 12 Punto de mínimo local5 -12 Punto de máximo local1 -12 Punto de silla

Con las funciones ya trabajadas podemos establecer la gráfica de la función así. Ver figura 12

>>x=-4:0.4:4;>>y=-4:0.4:4;>>[X,Y]=meshgrid(x,y);>>Z=X.^3+Y.^3-3*X.^2-3*Y.^2-9*X;>>mesh(X,Y,Z)>>xlabel('Eje X')>>ylabel('Eje Y')>>zlabel('Eje Z')>>title('Grafica de la superficie Z=X^3+Y^3-3X^2-3Y^2-9X')

Page 17: Didactica y Matlab

-4-2

02

4

-4

-2

0

2

4-200

-150

-100

-50

0

50

Eje X

Grafica de la superficie Z=X3+Y3-3X2-3Y2-9X

Eje Y

Eje

Z

-4 -3 -2 -1 0 1 2 3 4-50

5-200

-150

-100

-50

0

50

Eje X

Grafica de la superficie Z=X3+Y3-3X2-3Y2-9X

Eje Y

Eje

Z

Figura 12. Superficies en el espacio

Si se examina la imagen se puede apreciar que la función tiene un mínimo local en y un máximo local en

. Igualmente, un conjunto de curvas de nivel pueden arrojar información de la gráfica sobre sus valores

extremos ver figura 13(a)

>>contour(X,Y,Z)

Al considerar mas curvas de nivel se puede determinar con mayor certeza la naturaleza de los extremos de la función. Veamos por ejemplo con 20 curvas de nivel ver figura 13(b)

>>contour(X,Y,Z,20)

Eje X

Eje

Y

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

3

4

Eje X

Eje

Y

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

3

4

(a) (b)Figura 13. Curvas de nivel

Una apreciación más clara de los puntos críticos como puntos de extremos locales los obtenemos de experimentar con algunas curvas de nivel en el rango de los valores máximo y mínimo locales de la función. Veamos por ejemplo el comando ( Ver figura 14(a) )

>>contour(X,Y,Z,-31:5)

Para indicar los valores de las curvas de nivel ( Ver figura 14(b) )

Page 18: Didactica y Matlab

>>cs=contour(X,Y,Z,-35:2:6);>>clabel(cs)

Eje X

Eje

Y

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

-31

-29

-27

-25

-23

-21

-19

-17-13

-11

-9

-7-3

1

3

3

55

Eje X

Eje

Y

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) (b)Figura 14 Aproximación a valores extremos por curvas de nivel

De la grafica se puede observar que, desplazamientos desde el punto hacia el sur, implican un

crecimiento de las curvas de nivel de la superficie lo que indica que se estaría ascendiendo hacia el punto de

máximo. Igualmente, desplazamientos desde el punto hacia el norte, implican un decrecimiento de las

curvas de nivel de la superficie lo que indica que se estaría descendiendo hacia el punto de mínimo

3.4.2 MULTIPLICADORES DE LAGRANGE

EXTREMO DE UNA FUNCIÓN SUJETA A UNA RESTRICCIÓN

Consideremos por ejemplo un valor máximo de una función sujeto a una restricción . De

manera intuitiva se podría afirmar que este valor máximo ocurre en la curva de nivel más alta que

sea también tangente a la grafica de la función .

De esta manera, si es un punto de máximo se tiene que los vectores , y son perpendiculares en el

punto a las curvas y , respectivamente. Por tanto, si se tiene que ,

y son paralelos. De esta forma se cumple la relación

De acuerdo a lo indicado, para evaluar los extremos de sujeta a la restricción se debe

resolver el sistema

Page 19: Didactica y Matlab

Así que, los puntos donde tiene un extremo se encuentran en las soluciones del sistema.

Al valor

Por ejemplo, para determinar los extremos de sujetos a se define, a partir de la

restricción, la función . de esta manera, se trata de hallar un valor máximo sobre la curva

intersección de la superficie con el cilindro

Veamos en MATALAB una secuencia de comandos que nos permiten tener una idea gráfica de la situación. Ver figura 15

>>[X,Y]=meshgrid(-6:6);>>Z=9-X.^2-Y.^2;>>surf(X,Y,Z,ones(size(Z)))>>mp=[7/10 7/10 7/10;0 0 1];>>colormap(mp);>>hold on>>[YY,ZZ]=meshgrid(-8:8);>>XX=2-YY;>>mesh(XX,YY,ZZ)>>xlabel('Eje X')>>ylabel('Eje Y')>>zlabel('Eje Z')>>title('Plano prependicular a una superficie')

-10

-5

0

5

10

-10-5

05

10

-70

-60

-50

-40

-30

-20

-10

0

10

Eje X

Plano prependicular a una superficie

Eje Y

Eje

Z

Figura 15. Intersección de superficie con un plano vertical

Para obtener el valor máximo tengamos en cuenta que

Page 20: Didactica y Matlab

De acá se obtiene que lo que significa, que el máximo con restricción se da en el punto

y corresponde al valor esto es, la curva de nivel que pasa por , correspondiente a

es tal que, es tangente a la relación restricción en el punto

Veamos una visualización gráfica de la situación con los siguientes comandos. Ver figura 16

>>r=-2*pi:pi/80:2*pi;>>[X,Y]=meshgrid(r);>>Z=9-X.^2-Y.^2;>>V=[-3 -1 1 3 5 7 9 11];>>cs=contour(X,Y,Z,V);>>clabel(cs)>>hold on>>YR=sym('-x+2');>>ezplot(YR)>>grid on>>axis equal>>xlabel('EJE X');>>ylabel('EJE Y');>>title('Restricción sobre curvas de Nivel')

-3

-1

1

3

5

7

9

EJE X

Restricción sobre curvas de Nivel

EJE

Y

-8 -6 -4 -2 0 2 4 6 8

-4

-2

0

2

4

6

8

Figura 16.Extremo de superficie sobre una restricción proyectada sobre el plano XY

7 CONCLUSIONES

Las herramientas informáticas son indispensables, no solo a la hora de ejecutar extensas operaciones

matemáticas, sino también en el análisis de las variaciones y aplicaciones de los distintos conceptos y

procedimientos matemáticos. Un software para trabajar en matemáticas como el Matlab, permite disponer de un

recurso didáctico que puede hacer parte del conjunto de actividades que apoyan la elaboración de un concepto en

Page 21: Didactica y Matlab

el proceso de búsqueda de contextos de aplicación y verificación. De esta manera, mediante la activación de

esquemas a partir de la visualización de resultados de procedimientos conceptuales, se confrontan las estructuras

cognitivas activando el conocimiento previo, por lo que los nuevos conceptos y teorías resultan más fáciles de

aprender ya que el entorno computacional permite realizar variaciones en los datos y procedimientos lo que

implica finalmente una gran variedad en los resultados para contrastar.

Page 22: Didactica y Matlab

8 BIBLIOGRAFÍA:

Alvarez R. Yolanda y DIAZ L. Gloria M. Funciones reales con Matlab. Serie Textos Académicos Instituto Tecnológico Metropolitano. 2007.

Beltran, Jesús. Estrategias de aprendizaje. En Revista de Educación. Número 332 (2003)

Arboleda Q. Dairon. ALVAREZ J. Rafael. Matlab Aplicaciones a las matemáticas básicas. Sello Editorial Universidad de Medellín. 2006.

Dennis G Zill. Cálculo con Geometría Analítica. Grupo Editorial Iberoamérica. 2002

James Stewart.Cálculo Conceptos y Contextos. International Thompson editors. 2003

Matlab Desktop tools and development environment, Version 7, The mathworks, Inc, 2004

Matlab. Edición del estudiante, Guía de Usuario. The Math-Works, inc., Prentice Hall

Pratap Rudra. Getting Started With Matlab 7. New York- Oxford University Press. 2006.

Using Matlab Graphics, Version 7, The mathworks, Inc, 2004