detectores universales y selectivos en cg y su aplicación en el análisis químico

37
DETECTORES UNIVERSALES Y SELECTIVOS EN CG Y SU APLICACIÓN EN EL ANÁLISIS QUÍMICO Equipo: Loremy Cauich Suárez Erick Gómez Castillo Karla May Ché Carolina Solís Conde Noemí Tamayo Cabrera

Upload: eliza

Post on 28-Jan-2016

52 views

Category:

Documents


0 download

DESCRIPTION

Detectores Universales y Selectivos en CG y su Aplicación en el Análisis Químico. Equipo: Loremy Cauich Suárez Erick Gómez Castillo Karla May Ché Carolina Solís Conde Noemí Tamayo Cabrera. Introducción. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

DETECTORES UNIVERSALES Y SELECTIVOS EN CG Y SU APLICACIÓN EN EL ANÁLISIS QUÍMICO Equipo:

Loremy Cauich Suárez

Erick Gómez Castillo

Karla May Ché

Carolina Solís Conde

Noemí Tamayo Cabrera

Page 2: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Introducción

El sistema de detección en cromatografía de gases proporciona una señal de respuesta para los compuestos químicos separados por la columna cromatográfica. Un fluido de infinitas entidades llega al detector por medio de bandas y la señal de respuesta a veces se da en menos de un segundo.

La señal de respuesta es característica de las propiedades físicas o químicas del compuesto químico detectado.

Page 3: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Introducción

El objetivo primario del detector es proveer información química que conducirá a la adecuada identificación de un compuesto.

Es por ello que es importante conocer y comprender el mecanismo de detección y los parámetros experimentales que afectan la respuesta del detector.

Page 4: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

¿Qué características debe tener un detector ideal?

1. Adecuada sensibilidad: 10-8 a 10-15 g de soluto/s.

2. Buena estabilidad y reproducibilidad.3. Respuesta lineal.4. Temperatura: Desde temperatura ambiente

hasta 400°C.5. Tiempo de respuesta breve.6. Alta fiabilidad y manejo sencillo.7. Similitud en la respuesta a todos los solutos.8. Que no destruya la materia.

Page 5: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

ASPECTOS GENERALES

EL RUIDO. Cualquier perturbación en la señal del detector que no este relacionada con el pico de la muestra es ruido del detector, el cual puede ser causado por condiciones experimentales como los cambios de temperatura, contaminación del gas acarreador, sangrado de columna, etcétera.

SENSIBILIDAD. Definido como el cambio en la señal del detector con un cambio en la masa o en la concentración del soluto eluido. Pueden ser divididos en dos grupos: Detectores de flujo de masa, el cual responde a la masa de la muestra que alcanza el detector en una unidad de tiempo (e.g., ng/s) y detectores sensibles a la concentración el cual el cual proporciona una salida directamente proporcional a la concentración de la muestra en la fase móvil (e.g.; ng/mL

Page 6: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

ASPECTOS GENERALES

Limite de detección (LDD): También puede ser el nivel mínimo detectado se refiere a la cantidad o concentración del soluto lo cual genera un la altura de un pico (área de pico). Es el mínimo de masa o concentración de fluido de una sustancia en la fase móvil detectado con una probabilidad de 99%.

Selectividad: Puede estar dividido de acuerdo a su selectividad en tres tipos universal, selectivo y específicos.

Page 7: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Clasificación

• Responde a cualquier analito que eluya en la columna cromatográfica.

Universales

• Responde a compuestos que contienen específicos heteroátomos.

Específicos

• Responde a compuestos con un especifico

Selectivos

Page 8: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Tipos de detectores y funciones

Detectores

Page 9: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

CONDUCTIVIDAD TÉRMICAFunción: consiste en una fuente calentada mediante electricidad cuya temperatura a una energía eléctrica constante depende la conductividad térmica del gas que lo rodea. El elemento calentado puede ser un alambre fino de oro, platino o tungsteno. La resistencia eléctrica de este elemento depende la conductivdad termica del gas.

Selectividad: Universal, analiza cualquier tipo de muestra

Ventajas:•Sencillo•Respuesta a especies orgánicas e inorgánicas•No destructivo, se pueden recuperar las muestras

Desventajas: Sensibilidad relativamente baja.

Page 10: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

CONDUCTIVIDAD TÉRMICA

Page 11: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

IONIZACION DE FLAMACualidades: Es el más usado en cromatografía de gases. El eluente de la columna se dirige hacia una pequeña llama de aire/hidrógeno Función: la detección consiste en monitorear la corriente que se produce al capturar las cargas. La recolección de los iones se consigue aplicando varios centenares de voltios en la punta de un mechero y un electrodo colocados encima de la llama. La corriente resultante se mide con un picoamperímetro.

Sensibilidad: Flujo de masaSelectividad: Hidrocarburos

Ventajas: •Poca respuesta al ruido•Respuesta lineal grande•Resistente y de fácil uso

Desventajas: •Destructivo•Poco sensible a alcoholes, halogenos, aminas y carbonilos.

Page 12: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

IONIZACION DE FLAMA

Page 13: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

CAPTURA DE ELECTRONES

Función: Responde selectivamente a compuestos orgánicos que contienen halógenos.

El eluyente de la muestra de una columna pasa sobre un emisor de radiación beta (níquel 63).

Un electrón del emisor causa la ionización del gas portador (nitrógeno) y la producción de una corriente de electrones.

Page 14: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

CAPTURA DE ELECTRONES

En ausencia de especies orgánicas, el proceso de ionización genera una corriente constante entre un par de electrodos

En presencia de moléculas orgánicas que contenga grupos funcionales electronegativos la corriente disminuye

No es sensible a las aminas, alcoholes e hidrocarburos

Tiene una alta sensibilidad a los halógenos, peróxidos, quinonas y grupos nitro

Page 15: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

CAPTURA DE ELECTRONES

Ventajas: Los detectores de captura electrónica son muy sensibles y no alterar significativamente la muestra

La respuesta lineal del detector esta limitada a unas dos ordenes de magnitud.

Page 16: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

TERMOIÓNICO

SELECTIVIDAD:• Es selectivo a compuetos

que contienen N y P.• El de flama también responde a compuestos

que contengan halógenos. • El tipo sin flama sólo responde a compuestos

que contengan N o P.

DOS TIPOS:• Detector termoiónico de flama (FTD) o detector de

ionización de flama alcalino (AFID). (FLAMA)

• Detector termoiónico específico (TSD) o detector

nitrógeno-fósforo (NPD). (SIN FLAMA)

TIPOS DE MUESTRA:• Compuestos que contengan

fósforo o nitrógeno. • Mucho uso para plaguicidas organofosforádos y compuesos

farmacéuticos.

Page 17: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

FUNCIÓN:• Es una modificación del detector de ionización de

llama. • Una perla de una sal de rubideo esta colocada en la

punta de la flama.

• Iones como NO2-, CN- y PO2

- que se producen cuando entran en contacto son Rb2SO4 crean una corriente que

es medida.VENTAJAS:

• El N2 del aire es inerte y no interfiere.

•Mayor sensibilidad para compuestps con P y N.

DESVENTAJAS:• La perla de rubideo se debe

remplazar periodicamente por que es consumida.

• No se usa con columnas con fases líquidas que contengan halógenos,

fósforo o nitrógeno.

Page 18: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

FOTOIONIZACIÓN

SELECTIVIDAD:• Selectivo para

compuestos orgánicos.• Sólo compuestos que pueden ionizarse con una

lámpara UV dan una señal.

• El rango de compuestos a que es sensible

depende de la longitud de onda utilizada.

FUNCIÓN:• Las moléculas se

fotoionizan con radiación ultravioleta.

•Los iones moleculares se atraen a un cátodo y se

neutralizan, dando la molécula original intacta.• La corriente resultante

de la neutralización es medida y representa la

señal del detector. • La corriente es

proporcional al número de iones neutralizados

por lo tanto a la concentración.

R + fotón -> R+ + e- -> R

Page 19: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

FOTOINIZACIÓN

TIPOS DE MUESTRA:• Moléculas aromáticas,

compuestos insaturados (fácil ionización).

• Pequeña respuesta a hidrocarburos y halocarburos.

VENTAJAS:• Es no destructivo, puede

usarse en serie con otros detectores.

• No requiere gases de soporte como en FID.

DESVENTAJAS:•Lámpras de UV disponibles.

• Algunas muestras reacciónan con la luz UV

formando productos sólidos que contaminan la ventana

de la lámpara. • Tiempo de vida de las

lámparas está limitado por la degradación de las ventanas.

Page 20: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

IONIZACIÓN DE HELIO

El detector de ionización de helio evolucionó desde el detector de ionización de argón.

Las especies metaestables de helio tienen una energía de 19.8 V, por lo que es captable de moléculas que el detector de ionización de argón antes no podía ionizar

las especies metaestables se pueden producir a partir de electrones inducidos por una fuente radiactiva o por una descarga eléctrica que produce electrones que pueden ser acelerados a chocar con helio para producir especies metaestables altamente energéticas.

Page 21: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Los electrones y los protones son producidos por la descarga eléctrica, por lo tanto, es probable que la ionización ocurra a través de un número de procesos.

Desventaja: la pureza del gas portador es un problema común con detector de ionización de helio.

El sangrado fase estacionaria es un problema importante que se puede atenuar con columnas con la fase estacionaria unida o inmovilizada sobre sílice fundida.

Page 22: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

la respuesta de la HID es muy sensible a las impurezas en el gas portador y es dependiente de la tensión de polarización utilizado en el electrodo colector

La HDID ha mostrado una buena sensibilidad para los gases permanentes (O2, Ar, N2, H2,CO, CO2)

Page 23: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

FOTOMETRÍA DE LLAMA

Se basa en el seguimiento de la intensidad de la emisión de luz de las especies que se han excitado en una llama.

Mide la emisión óptica procedente del fósforo y azufre. Cuando el eluato pasa por una llama de H2-aire los átomos excitados emiten una luz característica que es supervisada por un tubo fotomultiplicador (PMT).

Page 24: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Un filtro óptico en la ruta de radiación se utiliza para seleccionar la adecuada longitud de onda de luz que llega al PMT y se utiliza principalmente para el control de azufre orgánico y especies organofosforados

El FPD es selectivo a moleculas de azufre y fosforo

Page 25: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Detectores fotométricos de llama pueden ser quemador simple o de doble quemadorEl efluente de la

columna se mezcla con el oxígeno

utilizando el gas portador de

nitrógeno en una proporción similar a

la del aire

el exceso de hidrógeno es

añadido a la exterior de la punta del

quemador.

la llama de difusión es situada en el

interior de la punta del quemador para blindar el PMT de

una visión directa de la llama.

esto permite la emisión de azufre y

fósforo que se produzca por encima de la llama blindada y en vista directa de

la PMT.

interferencias de hidrocarburos que emiten luz en la parte de la llama

dentro de la punta del quemador no se

detectan

el detector puede incorporar dos filtros ópticos y dos tubos fotomultiplicadores para la detección

simultánea de azufre y fósforo.

Page 26: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

la sensibilidad de la FPD depende de la intensidad de la luz emitida por las especies excitadas, que aumenta con la disminución de temperatura de la llama.

El uso de gases portadores con altas conductividades térmicas, tales como helio o hidrógeno, aumenta la sensibilidad al disminuir la temperatura de la llama.

la sensibilidad también aumenta con el exceso de hidrógeno en la llama difusa.

Aunque el exceso de hidrógeno hace que la llama este inestable y fácilmente extinguible durante la elución de disolvente.

Page 27: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

QUIMIOLUMINISCENCIA

Es la emisión de luz de algunas reacciones químicas. Especies energéticamente excitadas se producen en estas reacciones. Estas especies pueden decaer a un estado mas bajo de energía por la emisión de luz como se muestra a continuación:

La intensidad de la luz emitida es proporcional a la concentración de las especies de las reacciones.

Los analitos eluidos de la columna van directo a una cámara de reacción.

A + B C* + DC* C + hv

Page 28: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

QUIMIOLUMINISCENCIA

Quimioluminiscencia de Sulfuro: También llamado SCD esta basado en la

formación de monóxido de sulfuro de sulfuro con el sulfuro contenido en los compuestos en una llama de hidrogeno/oxigeno.

Quimioluminiscencia de Nitrógeno: Son detectores específicos muy parecidos al

SCD. Presentan la reacción siguiente:R-N + H2 + O2 - NO + CO2 + H2O

NO + O3-- NO2 + hv

Page 29: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

EMISIÓN ATÓMICA

La radiación emitida se colima y se refleja en una red de difracción, descomponiéndose en longitudes de ondas individuales que son detectados en una fila de diodos.

El plasma es suficientemente energético como para atomizar todos los elementos de una muestra, excitarlos, y así obtener sus espectros de emisión característicos.

Page 30: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

ESPECTRÓMETRO DE MASAS

Funciones

1. Producir iones a partir de las moléculas a investigar.

2. Separar estos iones e acuerdo con la relación masa-carga

3. Medir las abundancias relativas de cada ion. Para poder ser detectadas las moléculas deben ser ionizadas GC/McS ideal para estudios relacionados con el aroma o con fracciones de compuestos “volátiles” Ventajas en el análisis cualitativo Peso molecular preciso, masas de partes integrantes de la molécula, muy alta sensibilidad, detección de

impurezas. Ventajas en el análisis cuantitativo Alta sensibilidad.

Page 31: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Espectrómetro de masas

Limitaciones del método No siempre puede diferenciar entre estructuras isómeras. Analisis sobre pueden analizar compuestos volátiles y semivolátiles orgánicos de

muestras

Page 32: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

TRANSFORMADA DE FOURIER

Es un tipo de espectrofotómetro el cual consiste en la emisión de radiación, su funcionamiento se basa en la división de un haz coherente de luz en dos haces para que recorran caminos diferentes y luego converjan a nuevamente en un punto. En esta trayectoria se dispone la muestra y a continuación el detector IR

Muestras: Hidrocarburos

Interferograma La intensidad resultante de la superposición de los dos haces es medida como función del desfase se le conoce como interferograma

Page 33: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Transformada de fourier

Transformada de Fourier (FT) los espectrómetros de masas de transformada de Fourier proporcionan mejores relaciones señal/ruido, velocidades mayores y sensibilidad y resolución más elevadas.

Las ventajas de este método de IR-TF son básicamente dos:

mejorar la resolución de los espectros obtener mayor sensibilidad

Page 34: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Interfases en cromatografía

consiste en la combinación en un mismo equipo de dos analizadores lo que se denomina equipos tandem.

Entre ambos analizadores se situa una celda de colisión, que consiste en un cuadrupolo al que sólo se aplica potencial RF (permitiendo el paso a todos los iones y su focalización al segundo analizador),con un gas inerte en su interior. Al aplicarse el potencial se produce una aceleración de los iones que entran en colisión con las moléculas del gas perimitiendo una fragmentación controlada.

Page 35: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Interfase en cromatografía

Una de las ventajas es que permite seleccionar un ion pseudomolecular en el primer analizador, provocar su fragmentacion en al celda de colisión y seleccionar el fragmento originado en el segundo analizador.

Aumentendo de la sensibilidad, disminución de ruido.

Page 36: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

Conclusión

El Detector es la parte del Cromatógrafo que se encarga de determinar la cantidad de analíto que sale al final de la columna. Cada tipo de detector es de vital importancia de acuerdo al tipo de análisis a realizar.

La disponibilidad de detectores versátiles y específicos, y la posibilidad de acoplar el cromatógrafo de gases a un espectrómetro de masas o a un espectrofotómetro de infrarrojo, amplían aún más la utilidad de la cromatografía de gases.

Page 37: Detectores  Universales  y  Selectivos  en CG y su  Aplicación  en el  Análisis Químico

REFERENCIAS

1. Skoog, D.; West, D. Et al. Fundamentos de Química Analítica, 8a ed.; Cengage Learning Editores, México, 2005; pp. 970.

2. Grob, R. L.; Barry, E. F. Modern Practice of Gas Cromatography, 4th ed.; Wiley-Interscience: USA, 2004; pp 831-833.

3. Crompton, T. R. Determination of organic compounds in natural and treated waters, 1ª ed.; E & FN Spon, Londres, 2000; pp. 74.

4. Poole, C. F. Gas Chromatography, 1ª ed.; Elsevier, EUA, 2012; pp. 331-332.

5. Harris, D. Quantitative Chemical Analysis, 7ª ed.; Freeman and Company, EUA, 2007; pp.542

6. Kleiböhmer, W. Handbook of analytical separations, Vol. 3, 1ª ed.; Elsevier, Holanda, 2001; pp. 8.