demostraciones de las fórmulas de física l (ingeniería)

Upload: harina95

Post on 08-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    1/19

    DEMOSTRACIONES DE LASFÓRMULAS DE FÍSICA I 

    (INGENIERÍA)

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    2/19

    FÍSIC I DEMOSTRACIONES ............................................................................................................................................................. 3 

    Demostración de la Ecuación Complementaria del M.R.U.V. ................................................................................................... 3 Demostración de la ecuación  para la trayectoria ............................................................................................................ 3 Demostración de la ecuación de alcance.................................................................................................................................. 3 Movimiento Circular Uniformemente Acelerado ..................................................................................................................... 4 Movimiento Relativo ................................................................................................................................................................ 4 Dinámica ................................................................................................................................................................................... 5 

    Fuerza de rozamiento ............................................................................................................................................................... 6 Deducción de Potencia ............................................................................................................................................................. 6 Deducción del teorema de trabajo y energía ........................................................................................................................... 6 Trabajo realizado de la fuerza elástica ..................................................................................................................................... 7 Deducción del movimiento del centro de masa de un sistema de partículas .......................................................................... 8 Choques .................................................................................................................................................................................... 8 Deducción de la cantidad de movimiento lineal ....................................................................................................................... 9 Deducción de impulso .............................................................................................................................................................. 9 Deducción de la cantidad de movimiento angular ................................................................................................................... 9 Deducción de la energía cinética de rotación y momento de inercia ................... ...................... ...................... ..................... . 10 Deducción de la relación 0 0 ·   .................................................................................................................................... 10 Deducción del Teorema de Steiner o Ejes Paralelos ............................................................................................................... 11 Deducción de

    0 0 ×   .................................................................................................................................................... 11 

    Leyes de Kepler ....................................................................................................................................................................... 12 Movimiento Oscilatorio Simple .............................................................................................................................................. 12 Deducción de la energía en un Movimiento Armónico Simple .............................................................................................. 13 Deducción Péndulo Simple ..................................................................................................................................................... 14 Deducción Péndulo Físico ....................................................................................................................................................... 14 Deducción de la variación de presión de un fluido en reposo ................................................................................................ 15 Deducción de la ecuación de continuidad .............................................................................................................................. 15 Deducción del Teorema de Bernoulli ..................................................................................................................................... 16 

    FÓRMULAS ....................................................................................................................................................................... 17 

    Péndulo Simple ....................................................................................................................................................................... 18 Péndulo Físico ......................................................................................................................................................................... 18 

    Ondas Mecánicas .................................................................................................................................................................... 18 Gravitación ............................................................................................................................................................................. 19 

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    3/19

     

    Demostraciones

    Demostración de la Ecuación Complementaria del M.R.U.V.

     (  ) 1

    2  (  )  Ecuación horaria de la posición en función del tiempo

    (  )  De la ecuación horaria de la velocidad en función deltiempo se despeja la diferencia de tiempo     12    

      Para un cierto  

      [ 12     ] Sacando factor común

         2  

      [2

    2 ] 

    12  (  )(  )  Por diferencia de cuadrados 12  (  ) 

    2   Queda demostrada la Ecuación Complementaria delM.R.U.V.Demostración de la ecuación  para la trayectoria

    cos   Ecuación horaria de la posición en el eje

     en función

    del tiempo cos   Para un cierto   sin  12     Ecuación horaria de la posición en el eje  en funcióndel tiempo

       sin     cos 12   cos

      Para un cierto   sincos  

    2 cos 

    tan  cos     Queda demostrada la ecuación  Demostración de la ecuación de alcance

    cos    Ecuación horaria de la posición en el eje  en funcióndel tiempo sin  12     Ecuación horaria de la posición en el eje  en funcióndel tiempo

    0 sin  1

    2    () 0 

    0 [ sin  12   ] 0 2 sin 2   Soluciones posibles 0 ó

    + − 0, siendo la primera ecuación sin sentido

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    4/19

    2 sin   cos  2 sin    Reemplazando en la ecuación horaria del eje  con()  

    sin2  9,8  

    sin2  Queda demostrada la ecuación del alcance máximo

    Movimiento Circular Uniformemente Acelerado

        ; −;   − ⟹   ; ; − 

      ; [

    ] ; −

    ;  

     ||   2 · · ·     ·   · 12 · ·     2 

    Lineal Angular

     

     

      [ ] ; ; −   aceleración tangencial  −;  Movimiento Relativo

    Se considera un sistema de referencia “O”   fijo en tierra y otro “O’”   que se encuentra en movimientorespecto al primero

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    5/19

     

    Según el gráfico, ⃗ (desplazamiento según “O” ), es la suma vectorial de ′  con ·  ⃗ ′  

    Derivando con respecto al tiempo

    ⃗ ′  

    ⃗ ′   Donde: ⃗: velocidad absoluta (velocidad instantánea de la partícula medida según “S”  ′ : velocidad relativa (velocidad instantánea de la partícula medida según “S’”   : velocidad de arrastre Dinámica

      Primera Ley de Newton

    Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea

    obligado a cambiar su estado por fuerzas impresas sobre él.

    ⃗  { 0 No cambia de estado≠ 0 Cambia de estado    Segunda Ley de Newton

    El cambio de movimiento es directamente proporcional a la fuerza motriz impresa y ocurre según la

    línea recta a lo largo de la cual aquella fuerza se imprime.

    ⃗ ·⃗    Tercera Ley de Newton

    Con toda acción ocurre siempre una reacción igual y contraria: quiere decir que las acciones mutuas de

    dos cuerpos siempre son iguales y dirigidas en sentido opuesto.

      ′  

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    6/19

    Fuerza de rozamiento

    . . c o s  á ta n  

    á √ á . .   √ ..tan 

    Fuerza Conservativa FC) Fuerza No Conservativa FNC)

    Cinética Normal

    Elástica Rozamiento

    Gravitatoria

    Peso

    Deducción de Potencia

    Sabiendo que:

    ⃗ × ⃗ ó

    · · c o s  

    El trabajo ejercido al transcurrir un determinado tiempo es:

    · · c o s  Sabiendo que:

      · · c o s  Deducción del teorema de trabajo y energía

    ∫  

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    7/19

    ∫ ·   Sabiendo que ·   ∫ ·    Donde   ∫ ·    Donde  

    ∫ ·

      Como  es constante · ∫

     

    · 2  

    2 2    Trabajo realizado de la fuerza elástica

    Tomando intervalos de espacio muy pequeños, se puede hacer una aproximación bastante exacta delárea debajo de la curva, que representa el trabajo total

    ∫ ⃗ 

     

    ∫ ·

       

    · ∫

      Como  es una constante

    ·

    2

     

    · ( )2   · 2  

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    8/19

    Deducción del movimiento del centro de masa de un sistema de partículas

    ∑( · )∑    ∑( · )∑    Derivando con respecto al tiempo

    ∑ · ()∑   ∑( · )∑  

     ∑( · )∑    Derivando con respecto al tiempo

    ∑ ·

    ()

    ∑   ∑( · )∑   ·   Por la segunda Ley de Newton

    ·  De todas las fuerzas, las internas pueden

    despreciarse porque (por la tercera Ley deNewton) las fuerzas internas interactúan de apares con igual módulo y dirección pero con

    sentido opuesto. Por lo tanto se anulan.

    Choques

      Choque elástico: colisión entre dos o más cuerpos en la que éstos no sufren deformacionespermanentes durante el impacto. En una colisión elástica se conservan tanto el momento lineal comola energía cinética del sistema, y no hay intercambio de masa entre los cuerpos, que se separandespués del choque.

      Un choque inelástico es un tipo de choque en el que la energía cinética no se conserva. Comoconsecuencia, los cuerpos que colisionan pueden sufrir deformaciones y aumento de su temperatura.

    El coeficiente de restitución (en realidad, cociente) es una medida del grado de conservación de laenergía cinética en un choque entre partículas clásicas.

    Colisiones →á: 0 ⟹ →á: ≠ 0→ á:  

    ′ ′   0⏟á ≤ ≤ 1⏟Eá 

    ∑( · )∑   ∑( · )∑  

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    9/19

    Deducción de la cantidad de movimiento lineal

    ·   (  ·  ) 

    ∑   y   Porque es un cuerpo rígido

    ·  

    ( · )    ·     Por la segunda y tercera Ley de Newton∑ ·   0   Si ∑ 0  0 

    Deducción de impulso

     

    ∫  

    ∫  

     

    ∫  

     

       

     ⃗ ·   · · ·  Deducción de la cantidad de movimiento angular

    Relación entre el momento resultante de las fuerzas exteriores con la tasa de cambio del momentocinético a través del tiempo

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    10/19

    ×   ×

    =

     

    ∑ × =   Derivando con respecto al tiempo

    × = × =   ×

    = ×

    =

      Como ∥  , entonces × 0 

    Por la tercera Ley de Newton las fuerzasinternas se anulan entre sí

    ×

    =

    =

     

    Deducción de la energía cinética de rotación y momento de inercia

    · 2   Energía cinética de translación de una partícula · · 2   Sabiendo que ·  

    · ∑ · 2   Para un cuerpo rígido formado por variaspartículas

    ·

    2   ·  Deducción de la relación ·  

    ×

    × ( · )

    = × ( · )

    =

     Se descompone ⃗ en  (velocidad tangencial) y  (velocidad radial)

    × ( · )=   Como ∥ ⃗ , ⃗ × 0  × · ( × )

    =

      Como ⃗⃗ ×   · · ‖ ‖

    =

     

    ×  

    · ‖ ‖

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    11/19

    Deducción del Teorema de Steiner o Ejes Paralelos

    ·

    =

      √    · =  

    Si el centro de masaes el origen decoordenadas

    ·

    =  Si el punto ;  

    · 2 2  

    ·

    = 2 ·

    = ∗ 2 ·

    = ∗

    =  * Son cero porque se

    toma como centrode masas al origen

     Deducción de × ⃗ 

    ×

    × =   ×

    =

    ×

    Se descompone ⃗ en  (fuerza tangencial) y  (fuerza radial)

    ×

    =  Como ∥ ⃗ , ⃗ × 0 

    × ·

    =  Como

    ⃗⃗ × ⃗ 

    × · ( × ⃗)=  

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    12/19

    ⃗ · · ‖ ‖

    · ⃗   · ‖ ‖

    Leyes de Kepler

      Primera ley (1609): "Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas.El Sol se encuentra en uno de los focos de la elipse".

      Segunda ley (1609): "El radio vector que une un planeta y el Sol barre áreas iguales en tiemposiguales".

     La ley de las áreas es equivalente a la constancia del momento angular, es decir, cuando el planetaestá más alejado del Sol (afelio) su velocidad es menor que cuando está más cercano al Sol(perihelio). En el afelio y en el perihelio, el momento angular

     es el producto de la masa del planeta,

    su velocidad y su distancia al centro del Sol. · · · ·    Tercera ley (1618): "Para cualquier planeta, el cuadrado de su período orbital es directamente

    proporcional al cubo de la longitud del semieje mayor de su órbita elíptica".

    3 constante Donde,   es el periodo orbital (tiempo que tarda en dar una vuelta alrededor del Sol),   la distanciamedia del planeta con el Sol y   la constante de proporcionalidad.Estas leyes se aplican a otros cuerpos astronómicos que se encuentran en mutua influenciagravitatoria, como el sistema formado por la Tierra y la Luna.

    3 4

    ·  Donde,   es el periodo orbital,   el semieje mayor de la órbita,  es la masa del cuerpo central y  una constante denominada Constante de gravitación universal cuyo valor marca la intensidad de lainteracción gravitatoria y el sistema de unidades a utilizar para las otras variables de esta expresión.

    Movimiento Oscilatorio Simple

    · s i n  ′ · · c o s  ′′ · ·sin ·  

    ·   ·   ·   ·

    ·  

    ·  

     

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    13/19

       2    2  

    2   

      1    12   Deducción de la energía en un Movimiento Armónico Simple

    · 2  

    ·   · sin

    2   · s i n   · ·sin 2   · 2   · · c o s  

    ·   · · cos 2   · · ·cos

    · ·   ·cos 2     

      · · ·cos 2  

      · · c o s 2   ≥ 0   · ·sin 2   · · c o s 2   · · sin cos 2   sin cos 1 

    · 2  

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    14/19

    Deducción Péndulo Simple

    Se descompone el peso en una componente radial causante de la aceleración centrípeta y unacomponente tangencial, clasificada como fuerza restauradora.

    · · s i n   Como son amplitudes muy chicas

    s i n ≈  

    · ·   · ·   ·   · ·   ·  

    · · · ·  

    2    ·   ·   2   

    Deducción Péndulo Físico

    ×  

    × ×  Se descompone

     en

     (tangencial) y

     

    (radial)

    ×   Como ∥  , × 0  · · · s i n   · · ·   Como son amplitudes muy chicas s i n ≈  

    · ′′ · · ·   · ′′  · · · sin   · · · · sin   · s i n  ′′ · ·sin  

    · · ·  

      · ·  

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    15/19

    2   · ·   2  Deducción de la variación de presión de un fluido en reposo

    Suponemos un cuerpo sumergido en un fluido en reposo. El elemento tiene una altura , las superficieinferior y superior tiene un área

     . Sabiendo que el volumen del elemento es

    · · · ·  Como el fluido está en reposo: · · 0  Segunda Ley de Newton

    · · · · · 0  · · 0  Dividiendo por el área

    · ·   · ·  

    Deducción de la ecuación de continuidad

      La masa total es constante · · · · · ·   · ·   · ·   Al ser un fluido incompresible    · ·  

     

    ·   (caudal)

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    16/19

    Deducción del Teorema de Bernoulli

    · ·   El trabajo de la fuerza depresión en 1 · ·   El trabajo de la fuerza depresión en 2

    · ·   El trabajo efectuado por elsistema para elevar el fluido   · · · · · ·  

    · · · ·     ·  

      ·     · · 2 · ·

    2     · · 2 · ·

    2 · · · · ·   ·   ·

    2 ·

    2 · ·  

    · · · 2 · · · 2  

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    17/19

    Fórmulas

    ·sin2     ; −;  

    − >   ; ; −    .  . . c o s  

    Colisiones →á: 0 ⟹ →á: ≠ 0→ á:  

    ′ ′   0⏟á ≤ ≤ 1⏟Eá 

    ∑( · )∑   ∑( · )∑  

    ⃗×⃗ ·  }    

     

      ⃗ ·   · · ·   × · · ·  

    ×  

    · ⃗  · s i n  ′ · · c o s  ′′ · ·sin ·  

      

      1 

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    18/19

    2      12    ·

    Péndulo Simple

    · ·   2   

     Péndulo Físico

    · · ·     · ·   2  · ·

     

    · · · 2 · · · 2  Ondas Mecánicas

    · s i n ·   2  

    ; · s i n · ·  

    ; · s i n · ·  

    2 · · s i n · ·cos ·  

    ó ·    2 ·  

    2

     Número de Onda 

    2 Frecuencia Angular Posición del nodo · 2  

  • 8/19/2019 Demostraciones de las Fórmulas de Física l (Ingeniería)

    19/19

       2 ·     ·  

     +  

    Gravitación

    · · ℎ   · ·  

    √ 2 · ·  

    ·  

    é ó   ·  3 4

    ·