curso basico de simulacion hysys

Upload: yorman-zambrano-silva

Post on 06-Jul-2018

234 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/17/2019 Curso Basico de Simulacion Hysys

    1/22

    CURSO BÁSICO DE SIMULACIÓN DE PROCESOS CON ASPEN HYSYS 2006

    Modelos Termodinámicos, Componentes y Propiedades Paquete Fluido Corrientes y Mezclas Propiedades de Mezclas

    Simulación de Unidades de Proceso Corrientes: División, Mezcla y Fraccionamiento Ciclo de Refrigeración Separación de

    Fases Separador de Tres Fases

    Simulación de Procesos con Corrientes de Recirculación Procesos con Reciclo Compresión en tres etapas Ajuste deVariables

    Simulación de Reactores Reactor de Conversión Relación no lineal entre variables Reactor de Mezcla Completa Reactor

    Flujo Pistón Reactor Catalítico Heterogéneo

    Balances de Materia y Calor Balance de Materia Balances de Calor Balances de Materia y Energía Balance General Planta

    de Producción de Gas de Síntesis Planta de Enfriamiento de un Gas

    Simulación de Columnas de Destilación y Absorción Columna de Destilación Simplificada Columna Despojadora de Agua

     Acida Columna de Destilación Desbutanizadora Separación de una Mezcla Propileno-Propano Planta de Gas Natural Licuado

    Planta de Producción de Etanol

    1. ADMINISTRADOR BÁSICO DE LA SIMULACIÓN

    1.1. Seleccionar los elementos básicos requeridos para desarrollar la simulación de un proceso químico en HYSYS 1.2.Manejar algunas herramientas incluidas en el simulador que posibilitan la determinación de propiedades de componentes

    2. BASES PARA UNA SIMULACION Paquete Fluido

    HYSYS utiliza el concepto de paquete fluido o “Fluid Package” como el contenido de toda la información necesaria para

    desarrollar cálculos de propiedades físicas y evaporaciones espontáneas de corrientes. El paquete fluido permite definir toda

    la información (propiedades, componentes, componentes hipotéticos, parámetros de interacción, reacciones, datos tabulados,

    etc) dentro de un archivo muy sencillo. Son tres las ventajas de esto, a saber:

    1. Toda la información asociada se define en una sola localidad, lo que permite la fácil creación y modificación de la

    información 2. Los paquetes fluidos pueden almacenarse como un archivo completo para usarlos en cualquier simulación 3.

    Pueden usarse varios paquetes fluidos en una misma simulación. Sin embargo, todos los paquetes definidos se encuentran

    dentro del administrador básico de la simulación

     Administrador del Paquete Básico de la Simulación

    El “Administrador Básico de la Simulación” o “Simulation Basis Manager” es una ventana que permite crear y manipular cada

    paquete fluido en la simulación. Para desplegar esta ventana, abra un nuevo caso, haciendo clic en el botón “New Case” de la

    barra estándar de HYSYS. Observe en la Figura 1 que, por defecto, el “Administrador Básico de la Simulación” se despliega

    con la pestaña “Components” activa.

    En el “Administrador Básico de la Simulación”, el grupo “Component Lists” contiene los botones “View”, “Add”, “Delete”,

    “Copy”, “Import”, “Export” y “Refresh” con los cuales se observan, añaden, borran, copian, importan, exportan y refrescan los

    componentes incluidos en el paquete fluido. Acerque el puntero del Mouse a cada uno de estos botones y observe la

    anotación que aparece en la barra de estado.

    Debajo se observan las pestañas “Components”, “Fluid Pkgs”, “Hypotheticals”, “Oil Manager”, “Reactions”, “Component Maps”

    y “UserProperty”. En cada una de las ventanas correspondientes a las anteriores pestañas se agregan los componentes, las

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar ecuaciones y las reacciones químicas que intervienen en el proceso químico a simular con el

    paquete fluido construido.

    Definición del Paquete Básico de la Simulación

    1. Abra un nuevo caso seleccionando el botón “New Case” localizado en el extremo izquierdo de la barra estándar. Se

    desplegará la ventana “Simulation Basis Manager” como se observa en la Figura 1

    Figura 1. Administrador del Paquete Básico de la Simulación

  • 8/17/2019 Curso Basico de Simulacion Hysys

    2/22

    2. Haga clic sobre la pestaña “Fluid Pkgs” para desplegar la ventana que permite la creación o instalación del paquete fluido a

    utilizar en la simulación y que se observa en la Figura 2.

    Figura 2. Ventana para la creación o instalación del paquete fluido 2

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Esta ventana contiene los grupos “Current Fluid Packages” y “Flowsheet-Fluid Pkg Associations”. Se pueden usar varios

    paquetes fluidos dentro de una simulación, asignándolos a diferentes diagramas de flujo y enlazándolos. El botón “Import”

    permite la importación de un paquete fluido predefinido y que haya sido almacenado en el disco duro del computador. Los

    paquetes fluidos tienen la extensión .fpk

    3. Haga clic sobre el botón “Add” para crear un nuevo paquete fluido en la ventana desplegada con el nombre de “Fluid

    Package: Basis-1” y que se observa en la Figura 3. Por defecto, se despliega activa la pestaña “Set Up”

    Figura 3. Ventana para la definición del paquete fluido

    4. Seleccione la ecuación de Peng-Robinson ya sea buscándola directamente en el grupo “Property Package Selection” o

    haciendo previamente un clic sobre el radio botón que permite la selección de solo ecuaciones de estado o “EOSs” que se

    encuentra en el grupo filtro o “Property Package Filter”

    5. En el cuadro localizado en la parte inferior con el título “Name” Cambie el nombre por defecto “Basis-1” e introduzca “Planta

    de Gas”. Observe la Figura 4.

    6. Haga clic sobre el botón “View” para añadir los componentes incluidos en el paque fluido

    7. Seleccione los componentes de la librería N2, H2S, CO2, C1, C2, C3, i-C4, n-C4, i-C5, n-C5, C6 y H2O. La selección se

    puede hacer ya sea digitando los nombres sobre el cuadro “Match”, resaltando el compuesto de la lista o haciendo uso del

    filtro y a continuación la adición al grupo “Selected Components” se hace ya sea presionando la tecla “Enter” o el botón “Add

    Pure” o haciendo doble clic sobre el componente a seleccionar. Observe la selección de los componentes en la ventana

    “Component List View” de la Figura 5.

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Figura 4. Ecuación y nombre del paquete fluido

    Figura 5. Selección de los componentes que aparecen en la librería de HYSYS

  • 8/17/2019 Curso Basico de Simulacion Hysys

    3/22

    8. En el árbol que aparece con el título de “Add Component” seleccione la opción

    “Hypothetical” para añadir un componente hipotético al paquete fluido en la ventana desplegada como se observa en la

    Figura 6. Un componente hipotético puede usarse para modelar componentes que no se encuentran en la librería, mezclas

    definidas, mezclas indefinidas o sólidos. Utilizaremos un componente hipotético para modelar los componentes mas pesados

    que el hexano en la mezcla gaseosa. Para crear este componente hipotético, seleccione el botón “Quick Create A Hypo

    Component” y se desplegará una ventana de título Hypo2000* donde se introducirán l as especificaciones del componente

    hipotético

    Simulación de Procesos con Aspen Hysys 2006Ing. José Luis Aguilar Salazar

    Figura 6. Ventana para la creación de un componente hipotético

    9. Sobre la pestaña ID de la ventana de propiedades del componente hipotético introduzca C7+ como nombre de este en elcuadro “Component Name”. Observe Figura 7. En este caso, no se conoce la estructura del componente hipotético y se

    modela una mezcla de tal manera que no se usará la opción “Structure Builder”

    Figura 7. Nombre de un compuesto hipotético

    10. Haga clic en la pestaña “Critical” de la ventana de propiedades del compuesto hipotético. Solo se conoce el punto de

    ebullición normal del C7+, es decir, “Normal

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Boiling Pt”. Introduzca un valor de 110°C (230°F). Presione el botón “Estimate Unknown Props” para estimar todas las

    propiedades del componente hipotético y definirlo completamente, como se observan en la Figura 8.

    Figura 8. Estimación de Propiedades desconocidas del componente hipotético

    1. Cuando haya sido definido el componente hipotético, cierre la ventana y regrese a la ventana “Component List View”.

    Seleccione el componente hipotético C7+ que aparece en el grupo “Available Hypo Components” y haga clic sobre el botón

    “Add Hypo” para añadirlo a la lista de componentes agrupados en “Selected Components”, como se observa en la Figura 9.

    Figura 9. Inclusión del componente hipotético dentro de la lista de componentes 6

  • 8/17/2019 Curso Basico de Simulacion Hysys

    4/22

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Cada hipocomponente que se cree es parte de un “Hypo Group”. Por defecto, este hipocomponente es colocado en el

    “HypoGroup1”. Se pueden añadir grupos adicionales y mover hipocomponentes entre grupos. Ya se ha completado la

    instalación de un paquete fluido. Se pueden ver los coeficientes binarios de Peng- Robinson para los componentes, haciendo

    clic en la pestaña “Binary Coeffs” de la ventana titulada “Fluid Package: Planta de Gas”, como se observan en la Figura 10.

    Figura 10. Coeficientes binarios entre los componentes del paquete fluido

    Selección de un sistema de unidades

    En HYSYS, es posible cambiar el sistema de unidades utilizado para desplegar en las diferentes variables.

    1. Despliegue el menú “Tools” y seleccione la opción “Preferences” 2. Haga clic sobre la pestaña “Variables”, haga clic en

    “Units” que aparece en el grupo “Variables” y seleccione el sistema SI. Observe la Figura 1

    Figura 1. Selección del sistema de unidades 7

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    3. Cierre esta ventana para regresar a la simulación

    Exportación de paquetes fluidos

    HYSYS permite exportar paquetes fluidos para usarlos en otras simulaciones. Esta funcionalidad permite crear un paquete

    fluido sencillo y común que puede utilizarse en múltiples casos.

    1. Sobre la pestaña “Fluid Pkgs” de la ventana “Simulation Basis Manager” resalte el paquete fluido “Planta de Gas” que

    aparece en el grupo “Current Fluid Packages”. Observe Figura 12

    2. Presione el botón “Export” y se desplegará una ventana que le permitirá guardar el paquete fluido

    3. Introduzca el nombre “Planta de Gas” para el paquete fluido y presione el botón “Guardar”. Observe la extensión .fpk al

    nombre del paquete

    Figura 12. Exportación de un paquete fluido

     Al definir completamente el paquete fluido, se tiene todo listo para comenzar la simulación. Para ingresar a la ventana donde

    construir el diagrama de flujo de proceso o PFD a simular, presione el botón “Enter Simulation Environment” que se encuentra

    en la parte inferior derecha del Administrador Básico de la Simulación o haga clic sobre el icono que se encuentra dentro de

    la barra estándar con el mismo nombre.

    3. PROPIEDADES DE LOS COMPONENTES

     Algunas propiedades de los componentes seleccionados que han sido calculadas por HYSYS de acuerdo a la ecuación

    seleccionada se pueden visualizar en la ventana correspondiente a cada uno de ellos. Para ello:

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

  • 8/17/2019 Curso Basico de Simulacion Hysys

    5/22

    1. Haga clic en la pestaña “Set Up” de la ventana “Fluid Package: Planta de

    Gas” y haga clic en el botón “View” que permite desplegar la lista de componentes seleccionados en el cuadro “Component

    List Selection” con el nombre de “Component List-1”. Observe que la ventana desplegada se titula “Component List View” y

    que, además, se encuentran activos los botones “Add Group”, “Add Hypo”, “Remove”, “Sort List” y “View Component”.

    Mediante la opción “Sort List” se ordenan los componentes según lo desee el usuario. 2. Seleccione el componente C7+ y

    haga clic sobre el botón “View

    Component” para que se despliegue la ventana de propiedades. 3. Haga clic en la pestaña “Critical” y se observará

    nuevamente la Figura 7, que muestra algunas propiedades básicas en el grupo “Base Propierties” y algunas propiedadescríticas en el grupo “Critical Properties”. 4. Haga clic en la pestaña “Point” y observe las propiedades físicas, termodinámicas

    y moleculares del componente seleccionado 5. Haga clic en la pestaña “TDep” y observe las tres ecuaciones propuestas por

    HYSYS para el cálculo, respectivo, de la entalpía del vapor, la presión de vapor y la energía libre de Gibbs del componente

    seleccionado.

    Tabulación de propiedades físicas y termodinámicas de los componentes

    HYSYS facilita en la pestaña “Tabular” de la ventana “Fluid Package: Planta de Gas”, correlaciones matemáticas para

    calcular algunas propiedades físicas y termodinámicas como densidad, viscosidad, conductividad térmica, entalpía, entropía y

    otras

    1. Haga clic en la pestaña “Tabular” Se desplegará una ventana que contiene un grupo con el título de “Tabular Package” y

    que muestra un árbol de opciones. 2. Haga clic sobre el cuadro con un signo más a la izquierda de “Options”. Se desplegarán

    todas las propiedades físicas y termodinámicas disponibles en HYSYS para correlacionarlas con otras variables físicas. 3.

    Haga clic en el botón “Edit Properties” que se encuentra en la esquina inferior derecho y detalle las propiedades físicas y

    termodinámicas para cada uno de los componentes del sistema 4. Cierre la ventana anterior, seleccione la propiedad “Latent

    Heat” que aparece en el cuadro derecho de la ventana “Tabular Package” 5. Haga clic sobre el cuadro con un signo más a la

    izquierda de “Information” y seleccione la opción “Latent Heat”. 6. Seleccione en el cuadro “Equation Shape” la opción

    polimérica o “Poly1”.

    Observe su escritura en el cuadro de abajo. 7. Haga clic en el botón “Cmp Plots”. Se desplegará una ventana con el título

    “LatentHeat” que muestra las curvas de calor latente en función de la temperatura para cada uno de los componentes de la

    lista. 8. Cierre la ventana anterior y haga clic sobre el botón “Cmp. Prop. Detail” para conocer mas detales sobre la propiedad.

    Se desplegará una ventana con

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar el título “PropCurve: LatentHeat_Nitrogen” y con las pestañas “Variables”, “Coeff”, “Table”,

    “Plots” y “Notes”. Haga clic sobre cada una de ellas y detalle la información suministrada en cada una de ellas

    3. CASO DE ESTUDIO

     A continuación, despliegue la ventana “Component List View”, haga clic en la opción “Components” del grupo “Add

    Component”, seleccione los componentes nheptano y n-octano y agréguelos a la lista de componentes seleccionados.

    Compare las propiedades del componente hipotético C7+ con las del n-C7 y n-C8 llenando la Tabla 1.

    Tabla 1. Propiedades del n-Heptano, n-Octano y el compuesto hipotético C7+

    PROPIEDAD C7+ C7 C8

    Normal Boiling Point Ideal Liquid Density Molecular Weight

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    2. CORRIENTES Y MEZCLAS

    1.1. Especificar corrientes de materia y energía para desarrollar una simulación de un proceso químico en HYSYS 1.2.

    Manejar algunas herramientas incluidas en el simulador que posibilitan la determinación de propiedades de mezclas

    2. INTRODUCCION Clases de corrientes en HYSYS

    HYSYS utiliza el concepto de corrientes de materia y corrientes de energía. Las corrientes de materia requieren, para su

    completa definición, de la especificación del flujo y de aquellas variables que permitan la estimación de todas sus propiedades

    físicas y termodinámicas. Las corrientes de energía se utilizan para representar los requerimientos energéticos en unidades

    como intercambiadores de calor, bombas, etc. y se especifican, completamente, con solo la cantidad de energía

    intercambiada o transferida en dichas unidades. En HYSYS, la corriente de materia se observa, por defecto, de color azul,

    mientras que la corriente de energía es de color rojo.

    Corrientes de materia

    El elemento mas simple que un diseñador de proceso debe especificar es una simple corriente homogénea. Las variables que

    definen a una corriente que contiene C componentes son:

  • 8/17/2019 Curso Basico de Simulacion Hysys

    6/22

    VariablesCantidad

    Flujo1

    Concentraciones C Temperatura 1 Presión 1 Total de Variables C + 3

    Expresando las concentraciones en fracciones molares, Xi, se cumple una restricción de suma entre ellas, es decir que:

    iX(2.1)

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Por lo tanto, el número de variables de diseño, eiN, que se requieren para especificar completamente una corriente de

    materia es la diferencia entre el número de variables y el número de restricciones, es decir:

    2+=CNei(2.2)

    De acuerdo a la ecuación (2.2), se define el estado termodinámico de una corriente de materia al conocerse la composición

    de una corriente de materia y otras dos propiedades, (fracción de vapor, temperatura, presión, entalpía o entropía) una de las

    cuales debe ser o la temperatura o la presión.

    Evaporación espontánea de una corriente de materia

    Cuando se especifica una corriente de materia con la información suficiente, HYSYS hace los cálculos apropiados de la

    evaporación espontánea. Es decir, si se especifican, por ejemplo, temperatura y presión calcula si la corriente es de una fase

    (líquida o vapor) o de dos fases líquido y vapor, etc. Dependiendo de las dos propiedades conocidas de la corriente de

    materia, HYSYS desarrolla uno de l os siguientes cálculos de evaporación espontánea:

    1. Isotérmica: T-P 2. Isoentálpica: T-H o P-H 3. Isoentrópica: T-S o P-S 4. Fracción de vaporización conocida: T-VF o P-VF

    En la evaporación espontánea a una fracción de vaporización conocida entre 0.0 y 1.0, HYSYS calcula la presión o la

    temperatura dependiendo de la que sea especificada como variable independiente. Si se despliega un error, en este tipo de

    cálculo, significa que la fracción de vapor especificada no existe a las condiciones de presión o temperatura especificadas. Es

    decir, la presión especificada es mayor que la presión cricondenbárica o la temperatura especificada es de un valor a la

    derecha de la temperatura cricondentérmica sobre la envolvente estándar de presión – temperatura

    Punto de rocío de una corriente de materia

    Si, además de la composición de una corriente de materia, se especifica una fracción de vapor de 1.0 y su temperatura

    HYSYS calculará la presión del punto de rocío. En forma similar, si en vez de especificar la temperatura se especifica la

    presión HYSYS calculará la temperatura del punto de rocío de la mezcla. Los puntos de rocío retrógrados se pueden calcular

    especificando una fracción de vapor de -1.0.

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Punto de burbuja de una corriente de materia / Presión de vapor

    Una especificación de una fracción de vapor de 0.0 para una corriente define un cálculo de punto de burbuja. Si además se

    especifica o la temperatura o la presión, HYSYS calculará la variable desconocida presión o temperatura. Al fijar una

    temperatura de 100 °F la presión correspondiente al punto de burbuja es la presión de vapor a 100 °F

    2. INSTALACION DE UNA CORRIENTE DE MATERIA EN HYSYS

    Para la instalación de corrientes de materia en HYSYS realice las siguientes instrucciones:

    1. Abra un nuevo caso e importe el paquete fluido “Planta de Gas” construido y almacenado en la Práctica 1. 2. Haga clic en

    el botón “Enter Simulation Environment”. HYSYS por defecto despliega la ventana titulada “PFD – Case (Main)” y la

    denominada “Paleta de objetos. En la primera se construye el diagrama de flujo del proceso a simular y en la segunda se

    incluyen las unidades u operaciones a seleccionar para instalarlas en el proceso a simular 3. Haga doble clic sobre el icono

    de la corriente de materia (flecha de color azul). Se despliega, sobre el PFD, una flecha de color azul claro, numerada con “1”

    y, además, la ventana de especificación de propiedades de dicha corriente, con la pestaña “Worksheet” activa, por defecto,

    como lo muestra la Figura 1. La instalación de corrientes puede hacerse de varias formas como presionando la tecla clave

    o seleccionando la opción “Add Stream” del menú “Flowsheet”

    Figura 1. Ventana de propiedades de una corriente de materia

  • 8/17/2019 Curso Basico de Simulacion Hysys

    7/22

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    4. En la celda “Stream Name” de la página “Conditions” asigne como nombre a la corriente la palabra “Gas” 5. Para desplegar

    la ventana donde se introducen las composiciones, haga clic en “Composition” o doble clic en una de las celdas

    correspondientes a especificaciones de flujos de la corriente. En este caso, haga doble clic en la celda “Mass Flow” y se

    desplegará una ventana como la que muestra la Figura 2

    Figura 2. Ventana para especificar la composición de la corriente “Gas”

    6. Haga clic en el radio botón “Mole Fractions” en el grupo “Composition

    Basis” para cambiar la base de la fracción en masa a fracción en moles 7. Introduzca las siguientes composiciones que

    aparecen en la Figura 3.

    Figura 3. Composición de la corriente “Gas”

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    8. Presione el botón OK cuando se hayan introducido todas las fracciones molares Evaporación espontánea isotérmica, T-P,

    de la corriente “Gas”

    9. Asigne una presión de 7500 kPa y una temperatura de 10 °C. ¿Cuánto es la fracción vaporizada? ¿Por qué la corriente

    “Gas” no está completamente especificada? 10. Asigne un flujo molar de 100 kgmol/h y observe el “OK” que aparece en la

    banda verde que significa que la corriente “Gas” se encuentra completamente especificada”

    Evaporación isoentálpica, T-H o P-H, de la corriente “Gas”

    1. Borre la temperatura y mantenga la presión asignada en el punto 9.

    Especifique una entalpía molar de -15000 kJ/kgmole. ¿Cuánto es la temperatura, la fracción de vapor, y la entropía molar de

    la corriente? 12. Borre la presión asignada en el punto 9 y mantenga la entalpía molar.

    Especifique una temperatura de de 980 °C. ¿Cuánto es la presión, la fración de vapor y la entropía molar de la corriente? 13.

    Borre la temperatura anterior y asigne un valor de 2000 °C. ¿Cómo se explica el error que reporta HYSYS?

    Punto de rocío de la corriente “Gas”

    14. Asigne una fracción de vapor de 1.0 y una presión de 7500 kPa. ¿Cuánto es la temperatura de rocío de la corriente “Gas”

    a la presión de 7500 kPa? 15. Borre la presión asignada y mantenga la fracción de vapor. Asigne una temperatura de 100 °C.

    ¿Cuánto es la presión de rocío a la temperatura de 100 °C? 16. Asigne una fracción de vapor de -1.0 y una presión de 5000

    kPa. ¿Cuánto y qué significado tiene la temperatura calculada?

    Punto de burbuja de la corriente “Gas”

    17. Asigne una fracción de vapor de 0.0 y una presión de 7500 kPa. ¿Cuánto es la temperatura de burbuja de la corriente

    “Gas” a la presión de 7500 kPa? 18. Borre la presión asignada y mantenga la fracción de vapor. Asigne una temperatura de -

    30 °C. ¿Cuánto es la presión de vapor de la corriente “Gas” a una temperatura de -30 °C? 19. Cambie la temperatura

    asignada en el punto 18 y asigne el valor de 100 °C. ¿Cómo se explica el error reportado por el simulador?

    GUARDAR LA CORRIENTE “GAS” Se puede utilizar uno de varios métodos diferentes para guardar un caso en HYSYS

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

  • 8/17/2019 Curso Basico de Simulacion Hysys

    8/22

    1. Despliegue el menú “File” y seleccione la opción “Save As” para guardar el caso en una cierta localización y con el nombre

    “Gas” 2. Despliegue el menú “File” y seleccione la opción “Save” para guardar el caso con el mismo nombre y en la misma

    localización 3. Presione el botón “Save” en la barra estándar para guardar el caso con el mismo nombre

    3. INSTALACION DE UNA CORRIENTE DE ENERGIA EN HYSYS

    Una corriente de energía se instala mediante el mismo procedimiento que una corriente de materia y solo necesita de una

    especificación que es el flujo calórico correspondiente

    1. Si la paleta de objetos no está abierta sobre el escritorio, presione la tecla clave

    para abrirla 2. Haga doble clic sobre el botón “Energy Stream” para desplegar la corriente de nombre “Q-100” y su

    ventana de propiedades, como se observa en la Figura 4.

    Figura 4. Ventana de propiedades de una corriente de energía

    3. En el cuadro “Stream Name” cambie el nombre de la corriente a “QHeat” e introduzca el valor de -10000 kJ/h en el cuadro

    “Heat Flow (kJ/h)” . Observe la banda verde que indica que la corriente está completamente especificada

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    3. PROPIEDADES DE CORRIENTES DE MATERIA

    1.1. Construir diagramas de propiedades de estado de una mezcla 1.2. Determinar las propiedades críticas de una mezcla

    1.3. Estimar propiedades físicas, termodinámicas y de transporte de una mezcla

    HYSYS dispone de la opción “Utilities”, que es un conjunto de herramientas que interactúan con una corriente de materia

    suministrando información adicional para su análisis, como los diagramas presión-volumen-temperatura y otros. Después de

    instalada, la información anexada se convierte en parte del diagrama de flujo de tal manera que cuando cambian las

    condiciones de la corriente, automáticamente calcula los otros cambios en las condiciones afectadas.

    Los diagramas líquido-vapor disponibles para una corriente de composición desconocida son: Presión-Temperatura, Presión-Volumen, Presión-Entalpía, Presión- Entropía, Temperatura-Volumen, Temperatura-Entalpía y Temperatura-Entropía.

     Algunas otras facilidades incluidas dentro de la opción “Utilities” son las propiedades críticas, el diámetro o caída de presión

    en tuberías, tablas de propiedades, etc.

    3. DIAGRAMAS DE PROPIEDADES DE UNA CORRIENTE Para anexar un diagrama de propiedades a una corriente:

    1. Instale un nuevo caso importando el paquete fluido “Planta de Gas” definido en la

    Práctica 1 2. Instale una corriente de materia con el nombre de “Gas”, 10 °C, 7500 kPa, 100 kgmol/h y composición

    especificada como lo muestra la Figura 1. 3. Haga clic sobre la pestaña “Attachments” y luego haga clic sobre la página

    “Utilities” 4. Dentro de la ventana desplegada, presione el botón “Create” para acceder a la ventana “Available Utilities” que se

    observa en la Figura 2 5. Seleccione la opción “Envelope” y entonces presione el botón “Add Utility”. Se desplegarará la

    ventana de título “Envelope: Envelope Utility-1” que se observa en la Figura 3. La página “Connections” de la pestaña del

    mismo nombre, muestra los valores máximos (Cricondenbárico y Cricondentérmico) y críticos de presión y temperatura parala envolvente de la corriente “Gas” 6. Haga clic en la pestaña “Performance” y luego clic en la página “Plots” para observar el

    diagrama presión-temperatura que aparece por de fecto, como se observa en la Figura 4. Compare los valores máximos y

    críticos de temperatura y presión de la Figura 3 con los determinados en el gráfico PT

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Figura 1. Composición de la corriente de materia “Gas”

  • 8/17/2019 Curso Basico de Simulacion Hysys

    9/22

    Figura 2. Facilidades disponibles para la corriente “Gas”

    7. Para incluir la curva de calidad 0.4, digite este valor en el cuadro “Quality 1” del grupo “Curves” que se encuentra en l aparte superior derecha 8. Para observar los datos numéricos de presión-temperatura, haga clic sobre la página

    “Table”. Observe en la Figura 5, en el cuadro “Table Type” que los datos que aparecen tabulados corresponden a la sección

    del punto de burbuja de la corriente “Gas. 9. Despliegue el cuadro “Table Type” y seleccione las opciones que le permitan

    observar los datos numéricos de presión y temperatura para el punto de burbuja y la gráfica de calidad constante de la

    corriente “Gas”

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Figura 3. Valores Máximos y Críticos de temperatura y presión de la corriente “Gas”

    Figura 4. Diagrama Presión-Temperatura de la corriente “Gas”

    10. Seleccione nuevamente la opción “Plots” y en el grupo “Envelope Type” seleccione el radio botón P-H para desplegar el

    diagrama presión-entalpía de la corriente. 1. En el cuadro “Isotherm 1” del grupo “Curves” digite el valor -14 °C para incluir

    una línea isoterma de dicha temperatura, como se observa en la Figura 6 12. Para editar el gráfico, presione el botón derecho

    del Mouse y seleccione la opción

    “Graph Control” del menú contextual desplegado. Se desplegará la ventana que le permite hacer cambios que modifiquen la

    presentación del gráfico como los observados en la Figura 6.

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    13. Observe los gráficos presión – volumen, presión – entropía, temperatura – volumen, temperatura – entalpía y temperatura

     – entropía disponibles en el grupo “Envelope Type”

    Figura 5. Datos numéricos de Punto de burbuja de la corriente “Gas”

  • 8/17/2019 Curso Basico de Simulacion Hysys

    10/22

    Figura 6. Diagrama Presión – Entalpía de la corriente “Gas”

    4. PROPIEDADES CRITICAS DE UNA CORRIENTE

    Las propiedades críticas y seudocríticas de una mezcla son estimadas por HYSYS de acuerdo a la ecuación elegida en el

    paquete fluido. La opción “Critical Property” de la herramienta “Utilities” facilita dicha información para la corriente

    seleccionada

    1. Haga doble clic sobre la corriente “Gas” que aparece en el PFD para desplegar su ventana de propiedades

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    2. Repita los pasos 3 y 4 del inciso anterior (3) 3. En la ventana “Available Utilities”, seleccione la opción “Critical Property” y

    presione el botón “Add Utility”. Se desplegará la ventana que aparece en la Figura 7 y que despliega las propiedades críticas

    y seudocríticas de la corriente “Gas”

    Figura 7. Propiedades críticas de la corriente “Gas”

    5. TABLA DE PROPIEDADES DE UNA CORRIENTE

    La herramienta “Property Table” permite examinar las tendencias de una propiedad, dentro de un intervalo de condiciones,tanto en forma tabular como gráfica. Esta facilidad calcula variables dependientes para un intervalo o conjunto de valores de

    variable independiente especificada

    Una Tabla de Propiedades se añadirá a la corriente “Gas” desde el menú “Tools” con el siguiente procedimiento:

    1. Utilice la tecla clave para abrir la ventana Available Utilities 2. Seleccione la opción “Property Table” y presione

    el botón “Add Utility”. Se desplegará una ventana como la que muestra la Figura 8. El botón “Select Stream” permite

    seleccionar la corriente a la que se le va a anexar la tabla de propiedades. En nuestro caso se omite, porque solo se tiene

    una corriente que aparece seleccionada 3. Seleccione la Temperatura como la primera Variable independiente 4. Cambie el

    límite inferior y superior a 0 y 100 ° C respectivamente. En el cuadro “# of increments” digite el numero 4 5. Seleccione la

    Presión como la segunda Variable independiente 6. Cambie al modo “State” 7. En la matriz “State Values” introduzca los

    valores 2500, 5000, 7500 y 9000 kPa

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    8. Haga clic en la página “Dep. Prop” de la pestaña “Design”. Es posible escoger varias propiedades dependientes. Además,

    pueden ser propiedades globales o propiedades de fases diferentes 9. Presione el botón “Add” para desplegar la ventana

    “Variable Navigator”. Observe Figura 9

    Figura 8. Ventana para la construcción de una Tabla de Propiedades

  • 8/17/2019 Curso Basico de Simulacion Hysys

    11/22

    Figura 9. Navegador de variables

    10. Seleccione la opción “Mass Density” a partir de la lista del grupo “Variable” y presione el botón “OK” 1. Seleccione laopción “Thermal Conductivity” y presione el botón “OK” 12. Presione el botón “Calculate” para calcular las propiedades

    densidad másica y conductividad térmica a presiones de 2500, 5000, 7500 y 9000 kPa manateniendo temperaturas

    constantes de 0, 25, 50, 75 y 100 °C

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    13. Haga clic en la pestaña “Performance” para desplegar la ventana, Figura 10, donde se pueden seleccionar los datos

    calculados para visualizarlos tabulados numéricamente o gráficamente.

    Figura 10. Tabla de propiedades

    14. Haga clic sobre la página “Table” para desplegar los datos calculados en forma numérica y tabular. Observe Figura 1

    Figura 1. Densidad y Conductividad térmica de la corriente “Gas” 23

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    15. Haga clic en la página “Plots”, seleccione la propiedad “Mass Density” y presione el botón “View Plot” que se encuentra a

    la derecha. Las gráficas de los cálculos realizados se observan en la Figura 12.

    Figura 12. Gráficas de densidad versus Presión para la corriente “Gas”

    16. Cierre la gráfica anterior, seleccione la propiedad “Thermal Conductivity” y presione el botón “View Plot”. Las gráficas de

    los cálculos realizados se observan en la Figura 13.

    6. DIMENSIONAMIENTO DE TUBERIA DE CORRIENTE

  • 8/17/2019 Curso Basico de Simulacion Hysys

    12/22

    Dentro de la herramienta “Utilities” se encuentra una opción denominada “Pipe Sizing” que estima el Régimen de Flujo de una

    corriente a las condiciones especificadas. Se calcula el diámetro máximo conociendo la caída de presión por unidad de

    longitud y viceversa y, adicionalmente, propiedades de flujo como velocidad, factor de fricción, viscosidad, etc.

    1. Utilice la tecla clave para abrir la ventana Available Utilities 2. Seleccione la opción “Pipe Sizing” y presione el

    botón “Add Utility”. Se desplegará una ventana como la que muestra la Figura 14. El botón “Select Stream” permite

    seleccionar la corriente a la que se le va a anexar la tabla de propiedades. En nuestro caso se omite, porque solo se tiene

    una corriente que aparece seleccionada

    Simulación de Procesos con Aspen Hysys 2006Ing. José Luis Aguilar Salazar

    3. En el cuadro “Pressure Drop (kPa/m)” digite el valor 10. Observe que HYSYS ha calculado el diámetro máximo catálogo

    40, seleccionados en los cuadros “Calculation Type” y “Schedule”

    Figura 13. Conductividad Térmica versus Presión para la corriente “Gas”

    Figura 14. Dimensionamiento de una tubería 25

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    4. Haga clic en la pestaña “Performance” y observe el cálculo del Régimen de Flujo

    (Estratificado) de la corriente “Gas” a las condiciones especificadas que incluye propiedades de transporte (fases, viscosidad,

    densidad, flujo y densidad) y parámetros adicionales del régimen de flujo (Número de Reynolds y factor de fricción). Observe

    la Figura 15

    Figura 15. Régimen de Flujo de la corriente “Gas”

    7. CASOS DE ESTUDIO Utilizando el simulador HYSYS

    1. Determine las propiedades críticas del benceno 2. Construya el diagrama P-T y P-H del amoníaco 3. Construya gráficos de

    densidad de una mezcla equimolar de metano y etano a presiones entre 2000 kPa y 9000 kPa a temperaturas de 30, 50 y

    100 °C 4. Determine el régimen de flujo de una mezcla equimolar de acetona y agua a 40 °C, 110 kPa y un flujo de 100

    kmol/h

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

  • 8/17/2019 Curso Basico de Simulacion Hysys

    13/22

    4. DIVISORES, MEZCLADORES Y FRACCIONADORES

    1.1. Determinar las variables de diseño de un divisor, un mezclador y un fraccionador de corrientes 1.2. Simular el

    desempeño de un mezclador, un fraccionador y un divisor de corrientes 1.3. Comparar las especificaciones requeridas en la

    simulaciones de divisores, mezcladores y fraccionadores con las variables de diseño estimadas en 1.1

    2. INTRODUCCION Divisor de corrientes

    Un divisor de corrientes simula el fraccionamiento del flujo de una corriente que fluye a través de una tubería en varias

    corrientes. Un diagrama para un divisor de corrientes en dos corrientes se muestra en la Figura 1.

    Figura 1. Divisor de Corrientes

    Siendo z, las composiciones en la corriente de alimento, y X’s las composiciones en las corrientes de salida, el balance de

    materia para cada uno de los C componentes es

    (4.1)

    F, es el flujo de la corriente de entrada y F1 y F2, son los flujos de las corrientes de salida, i, es el número relativo a cada uno

    de los C componentes.

    El balance de energía es dado por

    2211hFhFQFh+=+(4.2)

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Para una corriente de entrada y dos corrientes de salida, el sistema consta de las siguientes variables y ecuaciones

    Variables Cantidad

    Corrientes de entrada y salida3(C + 2)

    Corriente de energía 1

    Total Variables 3(C + 2) + 1 = 3C + 7

    Ecuaciones o Restricciones Cantidad

    Balances de materia C

    Balance de energía 1Igualdad de temperaturas 1

    Igualdad de presiones 1

    Total Ecuaciones 2C + 2

    Total de variables de diseñoC + 5

    Igualdades entre las concentraciones de F y F1 C – 1

     Al disminuir las C + 2 especificaciones de la corriente de entrada, resulta un faltante de tres especificaciones. El divisor de

    HYSYS es considerado adiabático, es decir, Q = 0 y, además, le asigna la presión de la corriente de entrada. Por lo tanto,

    requiere de la especificación de la relación entre los flujos de una corriente de salida con respecto al flujo de la corriente de

    entrada. Para “n” corrientes de salida, se requieren “n – 1” relaciones de flujo

    Mezclador de corrientes

    Los mezcladores de corrientes representan la operación de suma de corrientes cuyos fluidos pueden tener distintas

    composiciones, temperaturas y estados de agregación. Un diagrama de un mezclador de corriente se muestra en la Figura 2.

    Figura 2. Mezclador de corrientes 28

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Siendo X, fracción molar, i, el primer número del subíndice relativo al componente y el segundo número relativo a la corriente,

    el balance de materia para cada uno de los C componentes es

    (4.3) i

    El balance de energía en el proceso de mezclado simplificado es

    FhQhFhF=++21(4.4)

  • 8/17/2019 Curso Basico de Simulacion Hysys

    14/22

    Siendo h, las entalpías específicas correspondientes a cada una de las corrientes.

    Variables Cantidad

    Corrientes de entrada y salida3(C + 2)

    Corriente de energía 1

    Total Variables 3(C + 2) + 1 = 3C + 7

    Ecuaciones o Restricciónes Cantidad

    Balances de materia C

    Balance de energia 1

    Total Ecuaciones C + 1

    Total de variables de diseño 2C + 6

    El análisis para los grados de libertad es el siguiente:

     Al disminuir las 2C + 4 especificaciones de las dos corrientes de entrada, resulta un faltante de dos especificaciones. El

    mezclador de HYSYS es considerado adiabático, es decir, Q = 0 y, por lo tanto, requiere de una especificación adicional para

    completar los grados de libertad.

    La variable que usualmente se fija en el diseño de un mezclador es la presión de la corriente de salida. Se sugiere asignar, a

    la corriente de salida, la menor presión entre las de las corrientes de entrada

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Fraccionador de corrientes

    HYSYS dispone de un fraccionador de corrientes o “Splitter” cuya simulación representa la separación de una corriente en

    dos corrientes que requieren de la especificación de las fracciones de recuperación de cada componente en una de ellas,

    ademas de otros cuatro parámetros. Un esquema de este fraccionador se muestra en la Figura 3.

    Figura 3. Fraccionador de corrientes o “Splitter”

    Siendo F’s los flujos de las corrientes, “z”, “y” e “x” las fracciones molares de los componentes en cada una de las corrientes y

    “Q” el calor requerido

    Un balance de materia de componente “i” se expresa mediante la ecuación

    iiixFyFFz21+=(4.5)

    Para C componentes, i = 1,…,C y, por lo tanto, se plantean C ecuaciones de balance de materia de componentes

    Un balance de energía se expresa mediante la ecuación

    2211hFhFQFhF+=+(4.6)

    El análisis de variables de diseño en un fraccionador de corrientes es el siguiente:

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Corrientes de salida 3(C +2)

    Flujo calórico 1

    Total Variables 3C + 7

    Ecuaciones Cantidad

    Balances de materiaC

    Balances de energía1

    Total Ecuaciones C + 1

    Variables Cantidad Total de variables de diseño 2C + 6

     Al disminuir las C + 2 variables de la corriente de entrada, las variables que usualmente se fijan son “C” fracciones de

    recuperación de componentes en una corriente (por ejemplo, F1) y cuatro parámetros adicionales como las presiones o las

    temperaturas o las fracciones de vapor, Vf, de las corrientes de salida.

    a. Ecuación:Peng Robinson

    3. SIMULACION DE UN FRACCIONADOR DE CORRIENTES 1. Abra un nuevo caso, y defina el siguiente paquete fluido b.

    Componentes: Etano, propano, i-butano, n-butano, i-pentano, n-pentano y n-hexano c. Sistema de unidades: Field

    2. Instale una corriente con las siguientes especificaciones:

  • 8/17/2019 Curso Basico de Simulacion Hysys

    15/22

    a. Nombre: Uno b. Temperatura: 200 °F c. Presión: 500 psia d. Flujo molar: 1000 lbmol/h e. Composición (Fracción Molar) i.

    Etano 0.2 i. Propano 0.6 i. i-Butano 0.1 iv. n-Butano 0.1 v. 3. Instale otra corriente con las siguientes especificaciones:

    a. Nombre: Dos b. Temperatura: 200 °F c. Presión: 500 psia d. Flujo molar: 800 lbmol/h e. Composición (Fracción Molar)

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar i. n-Butano 0.8 i. i-Pentano 0.1 i. n-Pentano 0.05 iv. n-Hexano 0.05

    4. Instale un mezclador de corrientes (Mixer) y en la página “Connections” de la pestaña “Design” de su ventana de

    propiedades introduzca los siguiente:

    a. Nombre: M-100 b. Entradas: Uno, Dos c. Salida: Alimento

    5. Haga clic en la página “Parameters” y observe que HYSYS, por defecto, sugiere que asigne a la corriente de salida la

    menor presión entre las de las corrientes de entrada

    6. Instale un “Splitter” con el nombre de “X-100” y conéctelo como muestra la Figura 4

    Figura 4. Conexiones de un “Splitter”

    7. Haga clic en la página “Parameters” y especifique las fracciones de vapor y las presiones en las corrientes de producto

    como se observan en la Figura 5.

    8. Haga clic en la página “Splits” para especificar las fracciones de recuperación cada uno de los componentes en la corriente

    “Pro 1”. Observe en la Figura 6 que HYSYS calcula las fracciones correspondientes a la corriente “Pro 2”

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Figura 5. Especificaciones de presiones y fracciones de vapor en el “Splitter”

    Figura 6. Fracciones de recuperación de cada uno de los componentes

    9. Haga clic en la pestaña “Worksheet” y observe las condiciones y las composiciones de las corrientes productos del

    fraccionador. Observe las Figuras 7 y 8

    10. Instale un divisor de corrientes (Tee) y en la página “Connections” de la pestaña “Design” de su ventana de propiedades

    introduzca los siguiente:

    a. Nombre: D-100 b. Entrada: Pro 2 c. Salida: Tres, Cuatro

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

  • 8/17/2019 Curso Basico de Simulacion Hysys

    16/22

    Figura 7. Condiciones de las corrientes del “Splitter”

    Figura 8. Concentraciones de las corrientes del “Splitter”

    1. Haga clic en la página “Parameters” y especifique con un valor de 0.5, la fracción de la corriente de entrada que saldrá

    como la corriente “Tres”. 12. Observe las especificaciones de las corrientes en el divisor

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    5. CICLO DE REFRIGERACIÓN

    1.1. Determinar los grados de libertad en los elementos de un ciclo de refrigeración 1.2. Simular un ciclo de refrigeración 1.3.

    Determinar los requerimientos energéticos en un ciclo de refrigeración

    Los elementos de un ciclo de refrigeración simple son un condensador, una válvula de Joule-Thompson, un evaporador y un

    compresor, además del medio refrigerante. En el ciclo de refrigeración mostrado en la Figura 1, la corriente “1” contiene

    propano líquido saturado a una temperatura de 122 °F y se expande isoentalpicamente en la válvula. La mezcla líquido-vapor

    en la corriente “2” es vaporizada completamente a una temperatura de 0 °F y, a su vez, dicho vapor es comprimido y

    condensado para regenerar la corriente “1” en estado de líquido saturado

    Figura 1. Ciclo de refrigeración

    Válvula de Joule-Thompson

    En este tipo de válvula, los grados de libertad son de un total de C + 4. Si se fija la temperatura, la fracción de vapor y la

    composición de la corriente “1” HYSYS hace un cálculo de evaporación espontánea T-Vf y especifica completamente dichacorriente. En una válvula de Joule-Thompson como la que muestra la Figura 1 la expansión es isoentálpica, los flujos y las

    composiciones de las corrientes “1” y “2” también son iguales y, por lo tanto, hay un grado de libertad. Si se fija la caída de

    presión permisible en la

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar válvula, HYSYS calcula la presión de la corriente “2” y completa su especificación mediante un

    cálculo de evaporación espontánea P-H

    Evaporador

    En el calentador que muestra la Figura 1, el propósito es vaporizar completamente la corriente “2”. Las corrientes “2” y “3” son

    de flujos y composiciones iguales, pero el calor suministrado a través del intercambiador de calor hace que sus temperaturas

    y presiones sean diferentes. Un balance de energía en el evaporador es el siguiente.

    3322hFQhF=+(5.1)

    Siendo F’s y h’s , los flujos de las corrientes y las entalpías de las corrientes y Q el flujo calórico cedido a la corriente “2”

  • 8/17/2019 Curso Basico de Simulacion Hysys

    17/22

    El análisis entre variables, ecuaciones y especificaciones nos muestra que en un vaporizador hay C + 4 grados de libertad.

    Especificada la corriente de entrada, si se fija la caída de presión en el intercambiador, su especificación completa es posible

    alcanzarla de dos maneras a saber:

    1. Fijando el valor de “Q”, la ecuación (1) permite el cálculo de la entalpía de la corriente “3” y HYSYS realiza un cálculo de

    evaporación espontánea P-H para su especificación completa 2. Fijando el valor de la temperatura de la corriente “3”, HYSYS

    realiza un cálculo de evaporación espontánea T-P y, por lo tanto, de su entalpía. Con la ecuación (1) se calcula, entonces, el

    flujo calórico requerido en el evaporador

    Compresor

    El compresor que muestra la Figura 1 opera isoentrópicamente. Las corrientes “3” y “4” son de flujos y composiciones iguales

    pero se requiere un trabajo de compresión que se calcula con la siguiente ecuación k k

    s P PVPk

    kW(5.2)

    Siendo k = Cp/Cv,, P’s las presiones de las corrientes de entrada y salida y V3, el volumen específico de la corriente de

    entrada

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Pero el trabajo real se calcula fijando una eficiencia isoentrópica para el compresor o mediante el cambio de entalpía entre las

    corrientes de salida y entrada en el compresor, es decir

    caisoentrópi

    reals−=−=−η(5.3)

    En este tipo de compresor el número de grados de libertad es C + 4. Si se especifica completamente la corriente de entrada,

    el número de variables de diseño requeridas es dos

    Si se fija la presión de la corriente de salida (o el ∆P en el compresor) y la eficiencia del compresor, se calcula su trabajo

    isoentrópico con la ecuación (5.2) y su trabajo real con la primera igualdad de la ecuación. La entalpía de la corriente “4” se

    calcula con la segunda igualdad de la ecuación (5.3). HYSYS realiza un cálculo de evaporación espontánea P-H para la

    especificación completa de la corriente “4”.

    Condensador

    El análisis de los grados de libertad el condensador del ciclo de refrigeración de la Figura 1 es el mismo del evaporador, es

    decir, C + 4. En este caso, se especifica la caída de presión y el ciclo converge satisfactoriamente. ¿Por qué converge con

    solo una especificación si se requieren dos adicionales a las C + 2 de la corriente de entrada?

    3. SIMULACION DEL CICLO DE REFRIGERACION

    1. Abra un nuevo caso y añada el siguiente paquete fluido a. Ecuación: Peng Robinson b. Componente: Propano c. Unidades

    Field

    2. Haga clic sobre el botón “Enter Simulation Environment” cuando esté listo para empezar a construir la simulación

    3. Presione la tecla clave F11 instalar una corriente y desplegar su vista de propiedades

    a. Nombre1

    c. Temperatura120 °F

    d. Flujo molar 100 lbmol/h

    4. Introduzca las siguientes especificaciones b. Fracción de vapor 0.0 e. Composición (Fracción molar) 1.0

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    5. Instale una válvula de Joule-Thompson seleccionando de la paleta de objetos el icono de nombre “Valve” y conéctela como

    se observa en la Figura 2.

  • 8/17/2019 Curso Basico de Simulacion Hysys

    18/22

    Figura 2. Conexiones de la válvula en el ciclo de refrigeración

    6. Instale un evaporador seleccionando de la paleta de objetos el icono de nombre

    “Heater” y conéctelo como se observa en la Figura 3. ¿Cuántas variables se necesitan introducir para que el conjunto Válvula-

    Evaporador quede completamente especificado?

    Figura 3. Conexiones del evaporador en el ciclo de refrigeración

    7. Haga clic sobre la página “Parameters” e introduzca una caída de presión de 1 psi en el cuadro “Delta P”.

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    8. Haga clic en la pestaña “Worksheet” y en la columna de la corriente “3” introduzca una fracción de vapor de 1.0 y una

    temperatura de 0 °F ¿Cuánto es el calor requerido en el evaporador?

    9. Instale un compresor seleccionando de la paleta de objetos el icono de nombre

    “Compressor” y conéctelo como se observa en la Figura 4. ¿Cuántas variables se requieren para especificar completamente

    el compresor?. Si usted introduce una presión de 200 psia a la corriente “4” ¿Por qué converge la simulación del compresor?

    Figura 4. Conexiones del compresor en el ciclo de refrigeración

    10. Borre la presión de 200 psia introducida en la corriente “4” e instale un condensador seleccionando de la paleta de objetos

    el icono de nombre “Cooler” y conéctelo como se observa en la Figura 5. ¿Cuántas variables se requieren especificar para

    que converja el conjunto Compresor-Condensador?

    1. Haga clic sobre la página “Parameters” e introduzca una caída de presión de 6.5 psi en el cuadro “Delta P” ¿Por quéconverge el conjunto Compresor-Condensador con solo especificar la caída de presión en el condensador?

    12. Haga clic en la pestaña “Performance” para que observe el comportamiento entre algunas variables a través del

    intercambiador. En la página perfiles o “Profiles” se observan los estados de temperatura, presión, fracción de vapor y

    entalpía molar de la corriente enfriada. En la página Gráficos o “Plots” se observa, por defecto, la variación de la entalpía con

    la temperatura y se dispone de otras opciones de análisis entre variables. En la página Tablas o “Tables” se observa

    información similar

    13. Despliegue la ventana de propiedades de la Válvula y verifique si su operación es isoentálpica

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    14. Despliegue la ventana de propiedades del Compresor y verifique si su operación es isoentrópica. Si no es isoentrópica,

    entonces, ¿Qué tipo de operación se realizó en el compresor?

  • 8/17/2019 Curso Basico de Simulacion Hysys

    19/22

    Figura 5. Conexiones del condensador en el ciclo de refrigeración

    4. CASO DE ESTUDIO

    El distribuidor local propone a su planta la venta de una mezcla propano/etano de 95/5 (% molar). ¿Qué efecto, si lo hay,

    provoca esta nueva composición en el ciclo de refrigeración?

    Flujo, kgmol/h

    Condensador, kJ/h

    Evaporador, kJ/h

    Compresor, hp

    Utilice el caso base para comparación y llene la siguiente tabla: Propiedad Caso Base: 100 % C3 Caso Nuevo: 5% C2, 95%

    C3 40

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    6. SEPARACION DE FASES INSTANTANEO

    1.1. Determinar el número de grados de libertad en un separador de fases instantáneo 1.2. Simular un separador de fases

    isotérmico adiabático y no adiabático 1.3. Verificar las ecuaciones del modelo matemático estacionario de un separador de

    fases isotérmico

    Un separador de fases instantáneo simula la evaporación súbita de una (o varias corrientes). El caso típico es el flujo a través

    de una restricción cuya caída de presión en forma adiabática provoca una vaporización parcial, debido a lo cual en un tanque

    posterior puede lograrse la separación en las fases líquido y vapor, respectivamente. Observe la Figura 1 con la válvula como

    restricción y el tanque V-100.

    En el modelamiento de un separador de fases se asume que:

    1. El líquido y el vapor tienen el tiempo de contacto suficiente para lograr el equilibrio 2. La presión de líquido y vapor son las

    del tanque separador, es decir, que no hay caída de presión 3. Existe solo una fase líquida y vapor y 4. No existen reaccionesquímicas

    Figura 1. Separador de fases instantáneo

    Las ecuaciones de un modelo, en estado estacionario, para un separador instantáneo son Balances de materia para cada

    uno de los C componentes (C ecuaciones)

    Simulación de Procesos con Aspen Hysys 2006Ing. José Luis Aguilar Salazar iiiLxVyFz+= (6.1) Balance de energía

    LVFLhVhQFh+=+(6.2)

    Relaciones de equilibrio (N ecuaciones)

    iiixKy=(6.3)

    Restricciones

    PPPLV==(6.4)

    TTTLV== (6.5)

    Variables Cantidad

    Corriente Vapor C + 2

    Corriente Líquido C + 2

    Corriente Calor 1

    Total Variables 2C + 5

    Ecuaciones y RestriccionesCantidad

    Balances de materia C

    Balance de energía1

    Restricciones 2

  • 8/17/2019 Curso Basico de Simulacion Hysys

    20/22

    El análisis de grados de libertad es el siguiente: Relaciones de equilibrio C Total Ecuaciones y Restricciones 2C + 3

    Total grados de libertad 2

    Una especificación común es la que corresponde a una separación isotérmica. En este caso, se especifican la presión y la

    temperatura del separador.

    Separación instantánea isotérmica

    El cálculo de las corrientes de vapor y líquido para este tipo de separación suelen realizarse utilizando la ecuación (6)propuesta por Rachford y Rice (1952) que permite calcular la fracción de alimento vaporizado, V/F, suponiendo que las

    constantes de equilibrio son independientes de las concentraciones y solo dependen de la temperatura y la presión.

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    i KFV

    (6.6)

    Separación instantánea adiabática

    Una especificación muy común es la que corresponde a una separación instantánea adiabática (Q = 0). En este caso, fijado

    Q, solo queda por asignar una variable, por ejemplo, la presión de operación del sistema. De esta manera, quedan por

    calcularse la temperatura y demás propiedades de las corrientes de salida.

    Dado que se desconoce la temperatura, el balance de energía queda acoplado y debe resolverse simultáneamente con la

    ecuación (6.6). Para ello, la ecuación (6.2) se expresa como una función de temperatura y fracción vaporizada de la siguiente

    manera:

    FLFV h h FV

    FVFVTg))/(1()/(1)/,(−−−=(6.7)

    Para la solución simultánea de las ecuaciones (6.6) y (6.7) se puede proceder de la siguiente manera

    1. Se supone una temperatura 2. Se calcula la fracción de vaporización con la ecuación (6.6) y 3. Se verifican dichos

    resultados con la ecuación (6.7) definiendo un error para la función g(T, V/F)

    3. SIMULACION DE UN SEPARADOR DE FASES INSTANTANEO

    1. Abra un nuevo caso y añada el siguiente paquete fluido a. Ecuación: Peng Robinson b. Componentes: Etano, Propano, n-

    Butano, n-Pentano, n-Hexano c. Unidades: Field

    2. Haga clic sobre el botón “Enter Simulation Environment” para desplegar la ventana PFD de HYSYS

    3. Presione con el botón derecho del Mouse el icono de la corriente de materia y en forma sostenida arrastre el Mouse hasta

    la ventana del PFD

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar a. Nombre: F b. Temperatura: 150 °F c. P resión: 50 psia d. Composición (Fracción molar) i.

    Etano 0.05 i. Propano 0.15 i. n-Butano 0.25 iv. n-Pentano 0.2 v. n-Hexano 0.35

    5. Instale una válvula de Joule-Thompson, asígnele como nombre “VLV-100” y conéctela con corriente de entrada “F” y

    corriente de salida “F1”

    6. Haga clic en la página “Parameters” de su ventana de propiedades e introduzca una caída de presión de 1 psi en el cuadro

    “Delta P”

    7. Instale un separador de fases seleccionando de la paleta de objetos el icono de nombre “Separator”, asígnele como

    nombre “V-100” y conéctelo como indica la Figura 2.

  • 8/17/2019 Curso Basico de Simulacion Hysys

    21/22

    Figura 2. Corrientes de materia y energía conectadas al separador

    8. Haga clic en la página “Parameters” e introduzca una carga calórica de cero en el cuadro de nombre “Duty” y seleccione el

    radio botón “Heating”, como se observa en la Figura 3

    9. Haga clic en la pestaña “Rating” para observar la ventana que permite definir algunos aspectos geométricos corto del

    tanque separador. Observe que en el grupo “Geometry” se elige la forma del tanque (Cilíndrica o Esférica), la

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar orientación (Vertical u Horizontal) y un dimensionamiento de volumen, altura y diámetro

    10. Haga clic sobre el botón “Quick Size” y observará que HYSYS propone unas medidas para el diámetro y la altura y calcula

    el correspondiente volumen. El usuario puede modificar estas dimensiones especificando dos de ellas con las cuales HYSYS

    calcula la tercera. Observe la relación altura/ diámetro definida para el dimensionamiento en la Figura 4

    Figura 3. Carga calórica asignada al separador

    Figura 4. Dimensionamiento del tanque separador 45

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    1. Haga clic en la pestaña “Worksheet” y observe los flujos y las entalpías de las corrientes de producto del separador.

    Verifique el cumplimiento de la ecuación (6.7)

    12. Cambie la carga calórica al separador por un valor de 5e+5. ¿Qué cambios con respecto a la operación adiabática se

    observan en los resultados de la simulación?. Verifique dichos resultados con las ecuaciones

    4. CASOS DE ESTUDIO

    1. Borre la temperatura especificada para la corriente “F” e introduzca un valor de 65000 Btu/lbmole en el cuadro “Molar

    Enthalpy”. ¿Explique lo realizado y los cambios observados en los resultados de la simulación? 2. Borre la presión

    especificada para la corriente “F” e introduzca un valor de 150 °F para la temperatura manteniendo la entalpía molar

    introducida anteriormente. ¿Explique lo realizado y los cambios observados en la simulación? 3. Simule la separación para

    una presión de 50 psia y una fracción de vaporización de 0.4. Analice los resultados 4. Simule la separación para una

    tempertura de 150 °F y una fracción de vaporización de 0.6. Analice los resultados

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    7. SEPARADOR DE TRES FASES

    1. OBJETIVOS

    1.1. Separar en forma instantánea una corriente con un contenido de hidrocarburos y agua 1.2. Determinar los puntos de

    rocío y burbuja para una mezcla de hidrocarburos - agua

    Una corriente que contiene hidrocarburos y agua puede presentarse en varias fases, dependiendo de sus condiciones de

    estado. Los cálculos para determinar sus puntos de rocío y burbuja se describen en libros como “Design of Equilibrium Stage

    Processes” de Smith Buford D., McGraw-Hill (1963) y son de un relativo interés académico. HYSYS dispone de una unidad

    para separar, en forma instantánea, una carga que se alimente con tres fases, vapor, líquida y acuosa

    3. SEPARACION DE UNA MEZCLA DE HIDROCARBUROS - AGUA

    1. Abra un nuevo caso y defina el siguiente paquete fluido 2. Ecuación: Peng Robinson

  • 8/17/2019 Curso Basico de Simulacion Hysys

    22/22

    5. Entre al ambiente de simulación e instale una corriente con el nombre de

    “Alimento” y las siguientes especificaciones a. Temperatura: 20 °C b. Presión: 200 kPa c. Flujo: 100 kgmol/h d. Composición

    (Fracción Molar) i. Metano 0.10 i. Etano 0.03 i. Propano 0.04 iv. i-Butano 0.08 v. n-Butano 0.10 vi. i-Pentano 0.12 vii. n-

    Pentano 0.13 viii. Agua 0.40 6. Maximice la ventana de propiedades de la corriente “Alimento” y observe las condiciones de

    las tres fases que la componen en la Figura 1 7. Haga clic en la página “Composition” y observe las composiciones

    correspondientes a dicha corriente en la Figura 2. 8. Presione el icono de nombre “3-Phase Separator” que se encuentra en la

    paleta de objetos y en forma sostenida desplace con el clic derecho del Mouse arrástrelo hasta la ventana del PFD de

    HYSYS. 9. Seleccione el separador de 3 fases haciendo doble clic sobre el icono correspondiente en la paleta de objetos.

    Simulación de Procesos con Aspen Hysys 2006

    Ing. José Luis Aguilar Salazar

    Figura 1. Especificaciones de la corriente “Alimento”

    Figura 2. Composición de las tres fases de la corriente “Alimento”

    10. En la página “Connections” de la pestaña “Design” introduzca los nombres de las corrientes de entrada y salida como se

    observan en la Figura 3. 1. Haga clic en la página “Parameters” y observe que, por defecto, la caída de presión es cero.Introduzca una caída de presión de 10 kPa y observe la diferencia en los resultados. 12. Haga clic en la pestaña “Rating” y

    presione el botón “Quick Size” para dimensionar, por defecto, el tanque cilíndrico horizontal correspondiente al separador de

    tres fases