cubiertas - cat-coacm.es · rotura y descuelgue. 19 * d.1.1.3. crecimiento de plantas. 21 *...

45
CUBIERTAS

Upload: lekien

Post on 26-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS

Page 2: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

1

Prólogo Uno de los objetivos que se plantearon en la nueva etapa del C.A.T. del C.O.A.C.M. era el de elaborar

periódicamente una serie de documentos de utilidad técnica para los colegiados, que se inició con la

publicación: “Cerramientos de fachada” en enero de 2.005.

La presente publicación recoge el trabajo desarrollado en el primer semestre de 2.005 por el C.A.T. en

torno a las cubiertas, tema que se eligió tanto por su interés técnico como por su continuidad con el

semestre anterior.

Quiero agradecer a la E.C.C. de Castilla La-Mancha su colaboración en esta publicación, con la

creación de las hojas de cálculo que se anexan, ya que permiten calcular de forma sencilla aspectos

fundamentales de las cubiertas.

De igual forma, mi agradecimiento a Don Juan Monjo Carrió, por facilitarnos y autorizarnos a utilizar el

material de su ponencia “Problemas de humedades en cubiertas. Drenaje y filtración”, enmarcada

dentro de las jornadas sobre cubiertas que se celebraron en Albacete.

Os animo a plantear temas o a realizar sugerencias que consideréis interesantes, quedando a vuestra

disposición para cualquier duda o consulta.

María del Carmen Real Tomás.

Arquitecta responsable del C.A.T. del C.O.A.C.M.

Page 3: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

2

Índice A. Consideraciones generales sobre las cubiertas. 4

B. Cubiertas inclinadas. 5 B.1. Introducción. Exigencias básicas. 5

B.2. Geometría. 5

- B.2.1. Variantes. 5

- B.2.2. Elementos. 6

B.3. Soluciones constructivas. 6

- B.3.1. Estructura soporte. 6

- B.3.2. Faldón. 7

- B.3.3. Impermeabilización. 7

- B.3.4. Cobertura. 7

- B.3.5. Drenaje. 7

B.4. Puntos singulares. 8

C. Cubiertas planas. 9 C.1. Introducción. Exigencias básicas. 9

C.2. Soluciones funcionales. 9

- C.2.1. Mediterránea o fría. 9

- C.2.2. Caliente transitable. 9

- C.2.3. Invertida con protección de grava. 10

- C.2.4. Invertida con protección de losa aislante. 10

- C.2.5. Autoprotegida no transitable. 11

- C.2.6. Invertida con acabado flotante. 11

- C.2.7. Ajardinada. 11

- C.2.8. Industrial. 11

- C.2.9. Inundada. 12

- C.2.10. Tránsito rodado. Aparcamiento.12

C.3. Soluciones constructivas. 12

- C.3.1. Estructura soporte. 13

- C.3.2. Faldón. 13

- C.3.3. Impermeabilización. 13

- C.3.4. Protección. 14

- C.3.5. Drenaje. 14

C.4. Puntos singulares. 15

Page 4: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

3

D. Problemas provocados por mal diseño de las cubiertas. 17 D.1. Fallo del sistema de drenaje. 17

- D.1.1. En cubiertas inclinadas. 18

* D.1.1.1. Embalse y saturación. 18

* D.1.1.2. Rotura y descuelgue. 19

* D.1.1.3. Crecimiento de plantas. 21

* D.1.1.4. Vertido incorrecto. 21

- D.1.2. En cubiertas planas. 22

* D.1.2.1. Embalse de cuartel de cubierta. 23

* D.1.2.2. Manchas de humedad en zonas de bajantes. 25

D.2. Filtración. 26

- D.2.1. En cubiertas inclinadas. 27

* D.2.1.1. Manchas interiores de humedad en techo de última planta. 27

* D.2.1.2. Manchas interiores de humedad en la parte superior del interior de muros de fachada o medianera, o en aleros y

coronación de fachada. 29

- D.2.2. En cubiertas planas. 32

* D.2.2.1. Manchas interiores de humedad en techo de última planta. 32

* D.2.2.2. Manchas interiores de humedad en la parte superior del interior de muros de fachada o medianera, o en coronación

de fachada. 32

E. Hojas de cálculo. 34 E.1. Diseño de cubiertas inclinadas. 34

E.2. Diseño de cubiertas planas. 37

E.3. Cálculo de condensaciones en cubiertas inclinadas. 38

E.4. Cálculo de condensaciones en cubiertas planas. 40

F. Normativa. 34

G. Bibliografía. 35

Page 5: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

4

A. Consideraciones generales sobre las cubiertas La cubierta es el sistema constructivo que surge de la forma más espontánea. Siempre ha sido

necesario protegerse de las tanto de las inclemencias atmosféricas como de la hostilidad y

agresividad del entorno.

Para solucionar esta necesidad se emplearon recursos que estaban al alcance de la mano. En

principio se aprovecharon los cobijos que brindaba la propia naturaleza, cuevas, oquedades. Más

tarde se utilizaron materiales y medios naturales próximos.

En su evolución para conseguir mejorar los espacios, se alejaron las cubiertas o planos de cobijo lo más

posible de la superficie pisable, siendo necesario recurrir a elementos sustentantes entre ambos.

El siguiente paso fue la mejora de la estanqueidad, obteniendo un gran avance cuando se consiguió

paliar la discontinuidad de los materiales de cobertura, cuestión que prácticamente no se ha logrado

hasta nuestros días.

En la continua propuesta de mejora de la cubierta, posteriormente se ampliaron las distancias entre los

apoyos de los elementos sustentantes.

Una vez solucionados los problemas de penetración de agua y viento, manejando también elementos

sustentantes que permitieran conseguir cada vez luces mayores, se planteó mejorar las condiciones de

habitabilidad de los locales bajo la cubierta, en aspectos tales como el comportamiento térmico o

higrotérmico.

En la actualidad, a todas estas cuestiones se añaden otros condicionantes referentes a tiempos de

ejecución, sistematización de procedimiento, control presupuestario, garantía de calidad, etc.

A modo de resumen:

- La estanqueidad se empezó resolviendo mediante la yuxtaposición de materiales de pequeño

tamaño, apoyados en planos con gran inclinación y en la actualidad, la evolución de los materiales

de cobertura permite la utilización de sistemas continuos, obtenidos por soldadura de las piezas

constituyentes, con lo que se puede actuar sobre planos de mínima inclinación.

- El nivel de confort de los espacios habitables ha pasado de no tenerse en consideración a ser exigido

por la normativa.

- La diafanidad de los espacios a cubrir ha aumentado considerablemente, resolviéndose esta

demanda mediante estructuras cada vez más sofisticadas y ligeras.

Cualquier tipo de solución de cubierta tiene los mismos requerimientos funcionales y se resuelven

constructivamente mediante los mismos componentes.

En cuanto a funcionalidad, se le debe exigir a una cubierta:

- Estanqueidad a la penetración de agua, nieve y viento.

- Protección ante soleamiento, frío y calor.

- Confort ante solicitaciones térmicas e higrotérmicas.

Tradicionalmente se acepta, para simplificar el estudio, una división en dos grandes tipos de cubiertas,

basada principalmente en el sistema de protección y drenaje del agua de lluvia; aparecen así las

Page 6: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

5

llamadas cubierta inclinada y cubierta plana. Aunque sus nombres parecen indicar una diferenciación

básicamente geométrica, la diferencia real es su sistema de drenaje. En el caso de la inclinada, la

protección contra el agua consiste en su expulsión lo más rápida posible hacia el perímetro exterior por

inclinación de los faldones. En el caso de la cubierta plana, la protección se consigue mediante un

material continuo e impermeable, que permite constituir un vaso que retendrá el agua hasta que se

conduzca fuera a través de un desagüe.

En los dos casos, la solución constructiva pasa por el uso de una serie de elementos que componen la

cubierta y que se pueden agrupar como sigue:

- Estructura soporte: es el elemento que le da resistencia frente a las cargas exteriores, tanto

permanentes como variables o estáticas como dinámicas.

- Faldones: son las superficies que establecen la geometría de la cubierta y cuyas inclinaciones

determinan el sistema de drenaje. Constructivamente pueden apoyar sobre la estructura o constituirla

ellos mismos.

- Impermeabilización: es la encargada de asegurar la estanqueidad frente al agua. En la cubierta

plana será una lámina impermeable, mientras que en las inclinadas puede ser un conjunto de placas

que a modo de escamas colocadas con inclinación, van drenando el agua hacia el exterior.

- Cobertura: se trata de una nueva hoja en el caso de la cubierta plana, ya que es necesario, en otros

casos la impermeabilización actúa con doble función.

- Sistema de drenaje: es el conjunto de sumideros, canales y bajantes que permiten conducir el agua.

B. Cubiertas inclinadas B.1. Introducción. Exigencias básicas Son aquellas que drenan el agua por expulsión directa hacia el borde, por ello son más tradicionales

en climas lluviosos y de nevadas abundantes, ya que resulta más fácil alcanzar la estanqueidad con

materiales menos impermeables, aunque también son usuales en climas menos lluviosos, puesto que

aportan otras características funcionales y compositivas:

- Su inclinación permite obtener espacios medianamente habitables entre el techo de la última planta

y la propia cubierta.

- Cuando no se habitan estas cámaras, con una ventilación controlada, permiten una buena

regulación del aislamiento térmico de la propia cubierta, reduciendo su transmisión térmica.

B.2. Geometría Desde el punto de vista de su geometría y composición general, se pueden distinguir las siguientes

variantes como más usuales.

- B.2.1. Variantes - A un agua, son las que están constituidas por un plano únicamente, que vierte el agua hacia ese

lado.

- A dos aguas, formadas por dos planos separados por una línea superior y que vierten el agua en

direcciones opuestas.

Page 7: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

6

- En pabellón, la forman tres o cuatro planos que se unen en un punto central y vierten el agua hacia el

perímetro.

- En chapitel, poseen más de cuatro planos unidos en un vértice central, vertiendo el agua hacia el

perímetro. Cuando la pendiente es muy pronunciada, se denominan flechas.

- En bóveda, es una variante de la cubierta a dos aguas en la que se sustituyen los dos planos por una

superficie cilíndrica horizontal.

- En cúpula, sustituye la pirámide de la cubierta en capitel por un casquete esférico o elipsoidal.

- En diente de sierra, se resuelven a base de un módulo longitudinal repetido a dos aguas, pudiendo

ser la pendiente de sus faldones igual o distinta. Se utiliza cuando la superficie a cubrir es muy grande,

evitando así los faldones demasiado grandes y las excesivas alturas.

- B.2.2. Elementos En todos los casos se pueden distinguir una serie de elementos que conforman la geometría y

condicionan su aspecto y funcionamiento:

- Faldón, es cada uno de los planos que recibe directamente el agua de lluvia.

- Limatesas, son los diedros convexos hacia fuera formados por dos faldones adyacentes que dividen

las aguas.

- Cumbrera, es la limatesa superior, normalmente horizontal.

- Limahoyas, son los diedros cóncavos hacia fuera formados por dos faldones adyacentes que

recogen las aguas.

- Aleros, son los bordes inferiores de los faldones, vuelan sobre las fachadas y ayudan a alejar el agua

de las mismas, así como proteger y proyectar sombra.

- Canalones y bajantes, es el sistema de drenaje que se coloca cuando no se puede echar el agua

hacia el exterior.

B.3. Soluciones constructivas Las soluciones constructivas dependen de las distintas técnicas y materiales utilizados en cada uno de

sus elementos componentes.

- B.3.1. Estructura soporte

Existen básicamente dos tipos:

- Las entramadas, son las más tradicionales y se resuelven mediante pares paralelos a la pendiente y

correas perpendiculares a ella, apoyados entre sí y sobre vigas perimetrales hasta conseguir un plano.

En cualquiera de las soluciones de este tipo, los elementos estructurales de apoyo pueden sustituirse

por elementos triangulados. Se puede utilizar cualquier material estructural lineal, desde la madera

hasta elementos de hormigón armado, pasando por perfiles metálicos.

Un caso corriente dentro de este tipo son los tabiques palomeros, que se ejecutan sobre la estructura

horizontal que cubre la última planta, se trata de muretes muy ligeros, paralelos a la pendiente,

levantados con ladrillo hueco y trabados entre sí mediante tabiques perpendiculares.

- Las superficiales, son más modernas y consisten en utilizar como estructura soporte un elemento

estructural continuo, como una losa de hormigón armado, o un forjado de viguetas y bovedillas,

Page 8: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

7

incluso las más tradicionales de superficie curva en los casos de bóvedas y cúpulas. En muchas

ocasiones la misma estructura hace la función de faldón.

- B.3.2. Faldón Para obtener la superficie continua que marque la pendiente de la cubierta, se pueden utilizar diversos

sistemas y materiales, lo que dependerá, entre otras cosas, de la estructura utilizada. Para estructuras

superficiales, las opciones se reducen al no necesitar una nueva hoja rígida, excepto en los casos de

soluciones trianguladas. En cualquier caso, será importante considerar el aislamiento higrotérmico del

faldón, además de su aislamiento acústico.

- B.3.3. Impermeabilización Cuando la pendiente es suficiente, no resulta necesaria una impermeabilización adicional, ya que la

estanqueidad se obtiene con el mismo material de cobertura convenientemente solapado. Sólo en los

casos de pendientes inferiores a los 15ª, con régimen de lluvias muy importante o duda sobre la

colocación del material de cobertura, puede ser recomendable el uso de una lámina impermeable

adicional.

- B.3.4. Cobertura Es la capa exterior y debe hacer frente a los agentes atmosféricos así como determinar el aspecto

visual de la cubierta. Desde el punto de vista constructivo, su cometido fundamental es la

estanqueidad a la lluvia, lo que normalmente se consigue gracias a:

- La pendiente del faldón.

- El bajo coeficiente de succión del material.

- El solape suficiente entre las distintas piezas.

Existen numerosas opciones con distintos materiales.

- B.3.5. Drenaje Es el conjunto de conductos que canaliza el agua hasta un punto donde se puede controlar, bien la

red de saneamiento o una zona exterior donde no moleste.

En realidad, las cubiertas inclinadas no lo necesitan, ya que el agua de lluvia baja por los faldones

gracias a su inclinación, produciéndose un drenaje por geometría, hasta legar al alero donde es

expedido hacia el exterior con caída libre, resolviendo así la estanqueidad de la cubierta. Será

necesario en dos casos:

- Cuando el alero sobresalga muy poco y no queramos que el agua resbale por la fachada.

- Cuando exista algún paso o estancia especial sobre el que no queramos que se vierta el agua de

lluvia.

Los elementos que componen dicho sistema de conductos son:

- Canalón, paralelo al alero, con capacidad adecuada al tamaño del faldón y a la pluviometría y

pendiente mínima.

Page 9: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

8

- Gárgolas, en sus extremos, vertiendo a puntos inofensivos.

- Bajantes, hasta la red de saneamiento o el suelo, en número suficiente según la cantidad de agua a

evacuar.

B.4. Puntos singulares. En este tipo de cubiertas son los encuentros del faldón con una serie de elementos constructivos, que

generalmente limitan la extensión de las cubiertas en lo que respecta a su perímetro o a los encuentros

de los propios faldones entre sí. Los más característicos son:

- Aleros. La solución depende de las condiciones requeridas para la recogida o no del agua de lluvia,

pero existen algunas consideraciones genéricas a tener en cuenta:

* Siempre debe formarse goterón.

* Debe impedirse el retroceso del agua mediante baberos o crear contrapendiente.

* La primera hilera del material de cobertura debe ir fijada al soporte.

- Borde lateral del faldón. Este encuentro se resuelve mediante piezas que actúan como cubrejuntas

del encuentro del plano de cubierta con el hastial. Se utilizan diversos materiales, la solución más

común es la basada en chapas de zinc, organizadas de forma que la cobertura se coloca encima de

esta chapa que a su vez tapa el hastial.

Es necesario tener en cuenta:

* Debe fijarse mecánicamente.

* Debe llevar incorporado goterón.

- Encuentros con medianeras. En este caso, se pueden distinguir dos variantes, cuando el encuentro

del faldón con el paramento se efectúa ortogonalmente y cuando lo hace en ángulo obtuso. En

ambos casos, se puede resolver mediante la realización de un babero que solapa con las piezas que

constituyen el encuentro. El material utilizado es generalmente zinc, aunque se pueden utilizar otros

como bandas impermeables rígidas con terminación exterior metálica. En el caso de que los

materiales de cobertura aplicados al faldón sean prefabricados, las industrias ofrecen piezas

especiales para solucionar estos casos.

Las consideraciones principales son:

* La pieza debe fijarse mecánicamente a uno de los faldones.

* Si se fijan a los dos faldones, deben permitir absorber los movimientos.

* Las soluciones industrializadas permitirán la ventilación de la cubierta.

- Encuentros de faldones en hoya. Una de las soluciones más habituales consiste en crear un cauce

aprovechando el encuentro de los faldones. Este cauce se impermeabiliza para conseguir su

estanqueidad mediante bandas formadas por chapas de zinc, plomo o en algunos casos membranas

asfálticas, aunque es una solución poco recomendable.

Hay que tener en cuenta:

* Que la banda sea lo más ancha posible para evitar rebosaduras.

* Debe hacerse una cama de mortero matando vivos.

Page 10: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

9

C. Cubiertas planas

C.1. Introducción. Exigencias básicas Las cubiertas planas obtienen la estanquidad basándose en materiales impermeables continuos que

recogen el agua sobre la propia cubierta y la conducen hasta unos sumideros evitando que el agua

pase debajo de ellas.

Hasta principios del siglo XX, con la aparición de los materiales bituminosos, el uso de las cubiertas

planas no se generalizó en países lluviosos, sólo se utilizaban en países secos y se resolvían mediante

capas de barro sobre entramados de cañas; la arcilla se volvía impermeable al mojarse, por lo que

bastaba con protegerla con baldosas de barro cocido durante las épocas secas para que no se

agrietase excesivamente.

Actualmente, gracias a la generalización de los productos impermeables, las cubiertas planas se han

convertido en las más utilizadas.

Tienen la posibilidad de su utilización con distintos usos: terraza, jardín, instalaciones, etc.

Presentan dos limitaciones a tener en cuenta:

- Tienen una silueta muy uniforme.

- No facilitan la obtención de espacios habitables bajo ellas, si no es colocando un nuevo piso.

C.2. Soluciones funcionales Desde el punto de vista de su uso, se pueden distinguir los siguientes tipos, que exigen soluciones

constructivas específicas:

- C.2.1. Mediterránea o fría Tiene una arraigada tradición en latitudes con veranos calurosos. Su baja pendiente posibilita el uso

intensivo de su superficie como terraza. El elemento diferencial de esta cubierta es la cámara

ventilada bajo el pavimento y su soporte. Ésta permite retardar el flujo de calor hacia los pisos

inferiores, evita el calentamiento del último forjado y facilita la evaporación de la humedad que

pudiera acumularse en cualquiera de sus capas.

La principal dificultad está en conseguir un adecuado desagüe de seguridad que impida que el agua

pueda introducirse por la ranuras de ventilación, lo que terminaría por arruinar todo el conjunto de la

cubierta. Para evitarlo, se debe proyectar una salida directa del agua al exterior, siempre a un nivel

por debajo de la cota de ventilación, en previsión de que puedan tupirse los desagües por falta de

mantenimiento.

Actualmente y debido a que es necesaria mucha mano de obra para su construcción en la forma

tradicional, se tiende a sustituir por cubiertas invertidas con protección a base de pavimento flotante.

- C.2.2. Caliente transitable Este tipo de cubiertas es una modificación de la mediterránea y está diseñada para situaciones

climáticas con inviernos rigurosos y veranos suaves.

Page 11: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

10

Es aconsejable colocar el aislamiento por encima de la impermeabilización por cuestiones

dedurabilidad. En esta posición, el aislante ayuda a mantener caliente la impermeabilización y permite

que trabaje correctamente como barrera de vapor. Es fundamental que el pavimento y su mortero

constituyan una capa flotante independiente del resto de la cubierta, para ello se diseñarán las

oportunas juntas de trabajo en el perímetro e interior del pavimento.

- C.2.3. Invertida con protección de grava Se utiliza en azoteas no transitables, con acceso restringido al personal especializado y donde se

prevé escaso o nulo mantenimiento.

La grava debe ser natural, ni tan pequeña que se pueda escapar por los desagües, ni tan grande que

haga difícil su colocación y extendido.

Se deben utilizar piezas perforadas o enrejadas en torno a las cazoletas y canalones, que se puedan

retirar con facilidad para su inspección y limpieza.

El espesor de grava se calcula en proporción directa a ala máxima succión producida por las ráfagas

de viento. En los bordes de la cubierta, el espesor de la capa de grava debe ser mayor, pues es donde

se producen las mayores succiones. Si la azotea tiene pendiente desde el centro hacia el perímetro, al

enrasar la grava estamos cumpliendo esta exigencia de lastrado del aislante. En caso contrario,

podemos optar por uniformizar el espesor calculado para el borde.

Es conveniente añadir alguna capa antirraíces cuando se prevea la aparición de vegetales

indeseados dentro de la grava, sobre todo en los casos de azoteas a baja altura, situadas junto a

árboles más altos, con frecuentes precipitaciones, etc.

- C.2.4. Invertida con protección de losa aislante Es la solución indicada para conseguir una zona transitable al público, sin especiales limitaciones de

cargas y a la que se puede dar pendiente mínima, ofreciendo además un buen aspecto en una visión

próxima. En esta solución no es necesario el lastrado, pues cada placa aislante es suministrada con

una capa de mortero modificado que resuelve al mismo tiempo la exigencia de protección.

Se debe incrementar en 15% el espesor del aislante obtenido en el cálculo y absorber así la pérdida de

rendimiento que sufre al mojarse.

Las losas aislantes tienen un rebaje en los cantos para evitar que se adosen completamente,

permitiendo así su dilatación y facilitando el desagüe. Es recomendable utilizar las mayores

dimensiones posibles, si bien superar los 60x60 cm. dificulta la colocación por un solo operario.

La protección flotante hace especialmente sencilla la inspección y reparación del impermeabilizante,

por lo que puede resultar una buena solución a la hora de rehabilitar azoteas con baja pendiente.

Page 12: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

11

- C.2.5. Autoprotegida no transitable Es una solución constructiva de mínimo espesor y prestación específica, dirigida a resolver la

impermeabilización de cubiertas de elementos arquitectónicos en los que se desea que ésta pase

inadvertida. Marquesinas, voladizos, pequeños cuerpos volados de hormigón armado o de fábrica

pueden protegerse de la lluvia con este tipo de cubierta.

A la solución más tradicional a base de láminas asfálticas autoprotegidas, habría que añadir las

cubiertas de láminas sintéticas de PVC con plastificantes estabilizados y los revestimientos con

películas de resina y poliuretano.

El diseño correcto de este tipo de cubiertas, exige la inclusión en los bordes perimetrales de pequeños

perfiles en forma de goterón que rematen la impermeabilización e impidan el ensuciamiento de los

bordes libres.

- C.2.6. Invertida con acabado flotante Esta solución reproduce en horizontal la fachada transventilada, por lo que presenta grandes ventajas

funcionales y compositivas. Se logra un pavimento totalmente horizontal, en el que las juntas entre las

baldosas facilitan la dilatación y el drenaje, la cámara de aire reduce las exigencias térmicas a la

impermeabilización y se favorece la difusión del vapor de agua.

El principal inconveniente de este tipo radica en la limitación de sobrecargas de uso y en la fragilidad

de las baldosas flotantes, pues ante cargas accidentales puede llegar a colapsar por tensiones

excesivas de flexotracción. Para evitarlo, las baldosas deben armarse con alambre de alta resistencia

en el caso de terrazo o de hormigón y, en el caso de baldosas de piedra natural, su espesor debe

calcularse con un coeficiente de mayoración de las cargas doble del ordinario.

- C.2.7. Ajardinada El desarrollo de láminas drenantes, que acumulan cierta reserva de agua, permite mantener especies

vegetales con muy poco esfuerzo. Debido a la presencia permanente de agua, es recomendable que

los petos perimetrales sean prolongación de la base estructural de la cubierta y que la lámina se

levante al menos 15 cm. en el perímetro y en todos los paramentos verticales que existan en su interior.

El espesor de tierra vegetal debe ir en proporción al tamaño de las especies vegetales a plantar,

pudiéndose eliminar por encima de espesores de 30 cm. la capa de aislamiento térmico.

- C.2.8. Industrial En los edificios industriales se utiliza este tipo de cubierta, se precisa poca pendiente, tienen poco peso

y no es necesario conseguir un buen aislamiento acústico.

Page 13: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

12

Admite el transito de personas para su mantenimiento así como la instalación de maquinaria, aunque

es necesario crear pasillo sobre la lámina cuando se prevea tránsito frecuente por la cubierta. Los

equipos más pesados deben instalarse sobre bases, y tanto éstas como las perforaciones de la

cubierta para aireadores, pasatubos o chimeneas, precisan de piezas especiales para resolver

adecuadamente la estanqueidad.

- C.2.9. Inundada Este tipo se desarrolló a partir de las primeras experiencias negativas con láminas asfálticas, ya que

éstas se degradaban y perdían su flexibilidad y su capacidad impermeabilizante cuando se exponían

a la intemperie, mientras que las láminas que estaban cubiertas con una pequeña capa de agua

mantenían sus prestaciones mucho más tiempo.

El sistema necesita la existencia de un alimentador continuo de agua que neutralice la tendencia de

ésta a evaporarse; así como de rebosaderos que recojan el agua sobrante o de precipitación.

En la actualidad, las primeras láminas asfálticas han dejado paso a las sintéticas y a los recubrimientos

en forma de películas impermeables adheridas al soporte, ya que se comportan mejor, especialmente

en la banda situada unos centímetros por encima y por debajo de la línea de agua, donde se

producen tensiones que ponen a prueba la tenacidad y resistencia de la lámina.

Precisan mantenimiento ordinario, salvo en el caso de existir vegetación próxima o que se quiera una

lámina de agua visible y decorativa, en cuyo caso se precisará una limpieza frecuente y aportación

de algicidas.

- C.2.10. Tránsito rodado. Aparcamiento Esta solución es la adecuada para edificios que precisen un tratamiento especial de la cubierta, con

objeto de soportar grandes cargas puntuales, cargas dinámicas y, en general, solicitaciones derivadas

del tráfico rodado.

Es conveniente establecer el menor número de paños posibles, mejor a un agua y con pendiente

moderada.

Cuando haya elementos que deban atravesar el impermeabilizante se debe prestar atención

especial, asegurando la estanquidad del conjunto en estos puntos con el correcto diseño de los

encuentros y la utilización de piezas de embudo invertido.

Las rejillas protectoras deberán ser de fundición o de acero para soportar sin deformarse las

sobrecargas del tránsito.

C.3. Soluciones constructivas Las soluciones constructivas dependen de las distintas técnicas y materiales utilizados en cada uno de

sus elementos componentes.

Page 14: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

13

- C.3.1. Estructura soporte Suele ser la propia estructura que define el techo del local que se cubre, cabe distinguir dos casos tipo:

- Forjado horizontal, es el caso más corriente y principalmente se da en los edificios de varias plantas.

- Entramado de pares y correas, normalmente suelen ser metálicas y principalmente es el caso de

edificios industriales y comerciales de gran extensión. Suele presentar la pendiente necesaria para la

evacuación del agua de lluvia (>= 1.5%)

- C.3.2. Faldón Se apoya sobre la estructura y sirve de base para la lámina impermeable; suele tener muy poca

pendiente, entre 1.5% y 5% y el conjunto tiene también limatesas y limahoyas. Se suelen formar

cuarteles rodeados de limatesas recogiendo el agua en un mismo sumidero, con una superficie total

de cada cuartel inferior a 100 m2.

Cuando está rodeada de peto perimetral, que es lo corriente en edificios de tamaño mediano, los

faldones tienen que separarse del mismo mediante una junta de dilatación, ya que los cambios de

temperatura son muy importantes.

En el faldón se tiene que incorporar el aislamiento térmico, tanto para invierno como para verano, así

como el acústico, lo que se consigue por varios procedimientos:

- El propio mortero aligerado de pendiente, que ofrece un aislamiento muy pobre.

- Una capa de aislante como complemento de la capa de pendiente, que mejora algo el

funcionamiento en invierno, pero no en verano y que además requiere barrera de vapor.

- La cámara de aire ventilada, que mejora el aislamiento, disipa el vapor de agua evitando

condensaciones y el calor en verano.

- Una capa de aislante sobre la lámina impermeable, que la protege contra radiaciones ultravioletas, y

mejora el aislamiento en invierno, se trata en este caso de una cubierta invertida.

- Una capa de aislante sobre la estructura y dentro de la cámara de aire, que mejora el aislamiento en

general.

- C.3.3. Impermeabilización Es el elemento fundamental en las cubiertas planas, es la lámina que permite obtener la estanquidad

del vaso.

Sus condiciones fundamentales son:

- Estanqueidad total al paso de agua.

- Elasticidad para absorber variaciones dimensionales por cambios de temperatura.

- Resistencia a la radiación ultravioleta.

- Posibilidad de aplicación con continuidad.

Para su colocación es necesario un plano de apoyo más o menos rígido, lo que se debe obtener con

el faldón. Presenta dos puntos débiles:

Page 15: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

14

- Posibilidad de perforación por punzonamiento, lo que obliga a una protección mecánica cuando se

prevea el paso de personas.

- Posibilidad de desgarro, cuando aparecen tensiones de tracción fuertes, normalmente por

variaciones dimensionales a consecuencia de cambios de temperatura.

En cualquier caso, hay que cuidar especialmente todos los encuentros para asegurar la continuidad

de la estanquidad del vaso.

- C.3.4. Protección Es la hoja exterior y tiene como misión proteger la lámina impermeable contra la radiación ultravioleta

y contra el punzonamiento. Debe permitir las variaciones dimensionales sin introducir tensiones.

Las más utilizadas son:

- Grava, colocada suelta sobre un fieltro antipunzonante; funciona bien para la radiación ultravioleta

pero mal ante punzonamiento, por lo que no se debe utilizar cuando la cubierta es accesible.

- Baldosas filtrantes, colocadas sueltas sobre fieltro antipunzonante, bien con colchón de espuma

incorporado o sobre plancha de espuma previa, actuando como cubierta invertida. Tiene buen

funcionamiento mecánico y químico.

- Baldosas cerámicas o pétreas, recibidas con mortero de cemento sobre fieltro antipunzonante, útiles

cuando se trata de una cubierta visitable.

- Pavimento flotante, a base de baldosas apoyadas sobre torretas regulables, con juntas abiertas entre

sí. Se puede obtener una superficie totalmente horizontal.

- Césped artificial, colocado sobre fieltro antipunzonante, con suficiente resistencia mecánica y

química. Es más económico.

- Jardín, a base de capa drenante y tierra vegetal.

- Lámina de agua permanente para mantener más invariables las condiciones higrotérmicas de la

cubierta y sus materiales.

- C.3.5. Drenaje Es el conjunto de sumideros y bajantes, debe tener la capacidad suficiente para canalizar la posible

agua de lluvia sin provocar embalsamiento y permitir la limpieza para un adecuado mantenimiento.

Puede, asimismo, permitir el aprovechamiento del agua de lluvia para su almacenamiento.

Se pueden distinguir los siguientes elementos:

- Cazoleta sumidero, normalmente prefabricada de PVC, con rejilla para evitar atascos. Se colocan en

la confluencia de las limahoyas de unión de los distintos faldones, bien en el centro o en el perímetro.

No deben colocarse tangencialmente al faldón por el peligro de embalsamiento que conlleva.

- Canalón perimetral, también prefabricado y con rejilla. Cuando el faldón envía las aguas a un mismo

lado, el canalón vierte a una o más bajantes o gárgolas.

- Bajante, a partir del sumidero o del canalón. Puede ser interior o vista.

- Gárgola, cuando se vierten las aguas al exterior sustituye a la bajante.

Page 16: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

15

C.4. Puntos singulares Son aquellos puntos que requieren un tratamiento especial:

- Encuentro de la impermeabilización con un elemento vertical. Los encuentros de la

impermeabilización con los elementos verticales de cubierta como petos, muros de los casetones de

escaleras y ascensores, chimeneas, etc. Deben ajustarse a los siguientes criterios básicos:

* La impermeabilización debe prolongarse por encima de la protección superior de la cubierta, sea

baldosas, capa de grava, etc. De forma que se garantice la estanquidad de las zonas inferiores de

dichos paramentos. La NBE QB-90, la UNE 104-416 y otras normas europeas coinciden en fijar dicha

dimensión en 15 cm.

* Debe disponerse una segunda membrana del mismo tipo que la primera, que proteja la zona de

doblado de ésta, evitándose doblar la impermeabilización a 90ª, para lo que le NBE QB-90, contempla

que la esquina se acabe con una escocia o chaflán que forma en ángulo de 135ª±10ª.

En el caso de no poder realizarse dicho chaflán debe reforzarse el encuentro con otra lámina además

de la de doblado.

Cuando la lámina sea susceptible de tener retracciones, como ocurre con muchas láminas

poliméricas, debe hacerse un corte en las proximidades del encuentro.

* La entrega de la impermeabilización en el paramento vertical deberá protegerse de forma análoga

al resto de los paños horizontales y se garantizará que el extremo de la lámina quede fijo, para lo que

se asienta en una roza o resalto horizontal del muro, o se dispone una fijación mecánica. No es

aconsejable dejar la lámina simplemente pegada al paramento vertical y protegida simplemente con

un enfoscado, por ser dicha disposición susceptible al despegue ante los movimientos de origen

térmico.

* Deberá dejarse una junta de dilatación entre el faldón de cubierta y los paramentos verticales,

cuando dicho faldón esté formado por capas continuas como hormigón ligero de formación de

pendientes, capas e asiento de las láminas, etc.

Algunos casos particulares de encuentro entre impermeabilización y elemento vertical son los

siguientes:

* Encuentro de un faldón con un conducto vertical, debe realizarse mediante un elemento intermedio

que independice los movimientos diferenciales existentes entre la lámina y el tubo metálico.

* Anclaje de elementos pesados en una cubierta, básicamente el anclaje de los elementos metálicos

de fijación puede realizarse directamente sobre el forjado o sobre la impermeabilización, a través de

un elemento intermedio, como por ejemplo una banda de neopreno de espesor mínimo de 5 mm. y

dimensión mayor a la de la placa de fijación, de forma que ésta no punzone la lámina.

* Encuentro con cubierta inclinada, deberá asegurarse la continuidad entre el elemento de

impermeabilización de la cubierta inclinada y la lámina, para lo que ésta deberá prolongarse por

encima del nivel inferior de aquella.

* Encuentro con lucernarios, deberá preverse un zócalo, de forma que pueda asegurarse una entrega

de la impermeabilización sobre dichos elementos, de al menos 15 cm. por encima de la protección

superior de la cubierta.

- Encuentro de la impermeabilización con las puertas de acceso. Como en el encuentro con un

paramento vertical, las distintas normativas especifican que el umbral de las puertas de acceso a las

Page 17: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

16

cubiertas debe estar situado al menos 15 centímetros sobre el nivel más alto de la protección de la

cubierta.

La NBE QB-90 contempla, como solución alternativa, la posibilidad de que la puerta quede

retranqueada como mínimo 1 metro y el suelo en el retranqueo disponga de una pendiente del 10%

hacia el exterior.

Otros aspectos importantes de cara al correcto funcionamiento son:

* Disponer piezas de umbral con pendiente hacia el exterior y con goterón.

* Prever asimismo una pendiente al solado para evitar que el agua quede acumulada sobre éste,

garantizando así el adecuado uso de la cubierta y favoreciendo que el agua pueda desaguar en

gran parte a través de dicho solado, sin llegar a la impermeabilización.

- Desagües. El desagüe de una cubierta plana puede hacerse directamente, a través de la pendiente

del faldón, hacia un sumidero o mediante canalones que a su vez desagüen en un sumidero.

* Sumidero. Básicamente los sumideros pueden ser interiores a la cubierta, con bajantes que pasen a

través de ésta o perimetrales, con tubos o gárgolas que pasen a través del cerramiento o peto exterior

de la cubierta.

En ambos casos, el sumidero debe estar situado en el punto mas bajo de la línea de pendiente y

siempre bajo la cota inferior de la impermeabilización, garantizando una correcta unión entre ambos,

mediante un adecuado solape, que la NBE QB-90 señala en un mínimo de 10 centímetros.

* Canalones. El canalón puede ser exterior al borde del faldón de cubierta o interior a ésta, quedando

oculto por el cerramiento o peto exterior. En el primer caso suelen ser metálicos o de plástico, fijándose

al borde del faldón de cubierta mediante unas abrazaderas o chapas preformadas. Cuando los

canalones son interiores pueden realizarse con la propia impermeabilización, que en general

dispondrá de una lámina exterior autoprotegida.

En todos los casos deberá cuidarse especialmente la estanqueidad del propio canalón, la pendiente

de éste que, al menos, será del 1% para canalones prefabricados y del 3% para los realizados con la

propia impermeabilización, y la unión entre el canalón y la membrana, con un solape mínimo de 15

centímetros.

- Juntas de dilatación. Tanto la impermeabilización, como el resto de capas que forman el faldón de

cubierta, deberán respetar las juntas de dilatación estructurales del edificio.

Se pueden dar dos situaciones diferentes en cuanto a la localización de dichas juntas: en paños

intermedios de cubierta y en zonas de encuentro con un elemento vertical. En ambos casos será

importante que se prevea la distribución de los paños de pendiente de forma que las juntas de

dilatación coincidan con los puntos de mayor cota.

En paños intermedios, la NBE QB-90, plantea una solución en la que básicamente se prevé una lámina

inferior, en forma de pliegue de reducida longitud, que garantiza la continuidad de la estanquidad en

los dos lados de la junta, con un sellado que, de forma más o manos parecida, es la solución que con

más frecuencia se realiza en edificación. Esta disposición se puede mejorar realizando un resalto a

cada lado de la junta, de forma que la impermeabilización tenga una entrega por encima de la

protección superior de la cubierta de, al menos 15 centímetros, no siendo en tal caso necesario confiar

la estanqueidad de la junta a la lámina.

Cuando la junta de dilatación se realice entre el faldón de cubierta y un elemento vertical, la

impermeabilización deberá garantizarse mediante el solape entre elementos fijados sólo a uno de los

Page 18: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

17

lados de la junta, siendo conveniente evitar soluciones en las que la estanqueidad se confíe a un

sellado, por buenas que sean las características de éste.

- Bordes extremos libres de un faldón. Cuando el borde extremo de la cubierta no permita disponer un

escalón al que realizar la entrega de la impermeabilización, será necesario prever el desagüe de ésta.

D. Problemas provocados por mal diseño de las cubiertas Distinguimos dos tipos de problemas provocados por mal diseño de las cubiertas:

–Fallo del sistema de drenaje:

* Por cálculo deficiente.

* Por falta de mantenimiento.

–Filtración:

* Por rotura de tejas o membrana. * Por errores constructivos de encuentros.

D.1. Fallo del sistema de drenaje Aunque los nombres de las cubiertas indican una diferenciación básicamente geométrica, la

diferencia real es su sistema de drenaje. En las cubiertas inclinadas, la protección contra el agua de

lluvia consiste en su expulsión lo más rápida posible hacia el perímetro exterior por inclinación de los

faldones como si se tratase de un paraguas, se trata de un drenaje por geometría que genera unos

planos inclinados. Por el contrario, en las cubiertas planas, la protección se consigue mediante un

material continuo e impermeable que permite constituir un vaso que retiene el agua de lluvia hasta

que se conduce fuera a través de un desagüe.

Por este motivo, según el tipo de cubiertas, los problemas provocados por mal diseño del sistema de

drenaje son diferentes:

– En cubiertas inclinadas:

* Por fallo de canalones y bajantes.

– En cubiertas planas:

* Por atasco de sumideros y bajantes.

Page 19: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

18

- D.1.1. En cubiertas inclinadas Los problemas aparecen principalmente en los canalones y son debidos a:

–Embalse y saturación.

–Rotura y descuelgue.

–Crecimiento de plantas.

–Vertido incorrecto.

Si es necesario colocar el canalón por exigencia municipal o por paso importante de usuarios bajo el

alero, hay que:

–Asegurar la capacidad de drenaje de canalones y bajantes, sobre todo en canalones ocultos.

–Evitar la formación de atascos en bajantes que pueden provocar embalse excesivo de canalones,

con el consiguiente desbordamiento.

–Asegurar la facilidad de su limpieza y mantenimiento.

Si el canalón no es necesario, que es lo más frecuente, lo aconsejable es evitarlo y asegurar suficiente

vuelo del alero.

* D.1.1.1. Embalse y saturación

Las posibles causas del embalse de canalones y vertido descontrolado del agua son:

- Capacidad insuficiente del canalón.

- Ausencia de pendiente en el canalón.

- Capacidad insuficiente de las bajantes, por:

* Diámetro pequeño o número escaso.

* Distancia excesiva entre bajantes.

* Acumulación de suciedad en canalón por falta de mantenimiento.

- Obstrucción de las bajantes por falta de rejillas “antiatasco”.

Page 20: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

19

Medidas de prevención en el diseño constructivo:

–Evitar el uso de canalones, excepto en casos obligados por normativa o por paso frecuente de

usuarios en puntos determinados.

–Especificar tamaño de canalón:

* Clima lluvioso

* Clima seco

–Especificar número y tamaño de bajantes:

* Clima lluvioso, Ǿ = 110 cada 50 m2.

* Clima seco, Ǿ = 110 cada 80 m2.

–Limitar la distancia máxima entre bajantes:

* Clima lluvioso, 10 m.

* Clima seco, 15 m.

-Incorporar rejillas anti-atasco en bajantes, según detalle. * D.1.1.2. Rotura y descuelgue Las posibles causas del descuelgue de canalones y bajantes vistos, incluso rotura de los mismos son:

-Debilidad en el sistema de sujeción.

-Acumulación de suciedad en canalón por falta de mantenimiento.

-Dilataciones y contracciones de canalones y bajantes, con rotura por falta de holgura suficiente,

sobre todo en elementos de gran longitud.

Faldón >6m Faldón <6m

Canalón visto Ǿ = 25 cm. Ǿ = 20 cm.

Canalón oculta 30x30 cm. 30x30 cm.

Faldón >6m Faldón <6m

Canalón visto Ǿ = 20 cm. Ǿ = 15 cm.

Canalón oculta 30x20 cm. 30x20 cm.

Page 21: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

20

Medidas de prevención en el diseño constructivo:

-Evitar el uso de canalones, excepto en casos obligados por normativa o por paso frecuente de

usuarios en puntos determinados.

-Asegurar la sujeción de canalones y bajantes, según detalle.

–Incorporar juntas de dilatación en canalones:

* Clima suave, cada 8 m.

* Clima extremo, cada 4 m.

–Diseñar unión entre canalón y bajante con holgura, según detalle.

Page 22: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

21

* D.1.1.3. Crecimiento de plantas Las posibles causas del crecimiento de plantas en canalones y obstrucción de la escorrentía son:

–Acumulación de suciedad en canalón por falta de inclinación y mantenimiento.

–Acumulación de tierra en canalón visto por descuelgues. Medidas de prevención en el diseño constructivo:

-Evitar el uso de canalones, excepto en casos obligados por normativa o por paso frecuente de

usuarios en puntos determinados.

–Especificar una pendiente en toda la longitud del canalón superior al 1,5%.

–Asegurar mantenimiento periódico. * D.1.1.4. Vertido incorrecto Las posibles causas de manchas de humedad en coronación por vertido incorrecto del agua en

canalones vistos son:

–Canalón excesivamente próximo a la fachada o frente de alero.

–Tejas canales sin solape suficiente sobre el canalón.

–Bajante empotrada en fachada a media altura.

–Rotura o corrosión de canalones.

Page 23: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

22

Medidas de prevención en el diseño constructivo:

–Evitar el uso de canalones, excepto en casos obligados por normativa o por paso frecuente de

usuarios en puntos determinados.

–No colocar canalones vistos sobre impostas.

–Diseñar situación relativa de canalón visto según detalle.

–Separar canalón de fachada un mínimo de 5 cm.

–Asegurar solape de tejas canales sobre canalón.

–No empotrar la bajante en la fachada a media altura.

- D.1.2. En cubiertas planas Los problemas aparecen principalmente por riesgo de atasco de sumideros y bajantes debido a:

–Ausencia, mala funcionalidad de rejilla anti-atascos, o falta de mantenimiento.

–Diámetro insuficiente de sumideros o bajantes.

–Buzones mal diseñados.

Page 24: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

23

Puede ocasionar:

- Embalse de cuartel de cubierta.

- Manchas de humedad en zonas de bajantes.

* D.1.2.1. Embalse de cuartel de cubierta

Las posibles causas del embalse de cuartel de cubierta son:

- Capacidad insuficiente del sumidero o del buzón de acceso.

- Capacidad insuficiente de las bajantes, por diámetro pequeño o número escaso.

- Tamaño excesivo de los cuarteles.

- Falta de inclinación suficiente de los faldones.

- Acumulación de suciedad en sumidero o en bajante por falta de mantenimiento o de rejillas anti-

atasco.

- Situación elevada de buzón de acceso a bajante o a gárgola.

Page 25: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

24

Medidas de prevención en el diseño constructivo:

–Evitar el uso de buzones circulares de acceso a bajantes o gárgolas, tangentes al suelo de la cubierta. –Diseñar buzón de acceso según detalle, teniendo en cuenta las siguientes condiciones:

* Especificar ancho de entrada del buzón:

Clima lluvioso, 30 cm.

Clima seco, 20 cm.

* Colocación rebajada con respecto al faldón.

–Diseñar el sumidero según detalle, teniendo en cuenta las siguientes condiciones:

* Especificar tamaño del sumidero:

Clima lluvioso, Ǿ = 25 cm.

Clima seco, Ǿ = 20 cm.

* Colocar rejilla anti-atascos peraltada en cubiertas no transitables.

Page 26: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

25

–Limitar tamaño máximo de cuarteles:

Clima lluvioso, 40 m2.

Clima seco, 60 m2.

–Especificar diámetro de bajantes:

Clima lluvioso, Ǿ = 110 mm cada 40 m2.

Clima seco, Ǿ = 110 mm cada 60 m2.

* D.1.2.2. Manchas de humedad en zonas de bajantes Las posibles causas de manchas de humedad en zonas de bajantes son:

- Obstrucción de bajante por:

* Diámetro insuficiente.

* Acumulación de suciedad.

- Rotura de bajante por sujeción deficiente.

- Entrada de agua desde la cubierta por el exterior de la bajante, como consecuencia de solape

erróneo de la membrana impermeable en el sumidero.

Page 27: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

26

Medidas de prevención en el diseño constructivo:

–Especificar diámetro de bajantes:

Clima lluvioso, Ǿ = 110 mm cada 40 m2.

Clima seco, Ǿ = 110 mm cada 60 m2.

–Asegurar sujeción de bajantes, según detalle.

–Diseñar unión entre sumidero, o buzón, y bajante con continuidad de material impermeable, según

detalle.

D.2. Filtración Según el tipo de cubiertas, los problemas provocados por filtración del agua de lluvia son diferentes:

– En cubiertas inclinadas:

* Por falta de solape o rotura de tejas.

* Por solape insuficiente de elementos complementarios (lucernarios, chimeneas, etc.).

* Por falta de vuelo suficiente en aleros.

–En cubiertas planas,

* Por rotura de la membrana impermeable por:

Falta de protección mecánica, y punzonamiento.

Page 28: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

27

Falta de protección solar, y rigidización.

Falta de juntas de dilatación, y desgarro.

* Por filtración en borde de faldón por:

Levantado insuficiente de los bordes.

Falta de protección superior.

- D.2.1. En cubiertas inclinadas En estas cubiertas se pueden dar dos tipos de manchas:

- Manchas interiores de humedad en techo de última planta.

- Manchas interiores de humedad en la parte superior del interior de muros de fachada o medianera, o

en aleros y coronación de fachada, con posibilidad de eflorescencias y erosiones.

* D.2.1.1. Manchas interiores de humedad en techo de última planta Las posibles causas de manchas interiores de humedad en techo de última planta son:

- Falta de solape suficiente entre tejas plaquetas o planchas.

* En faldón.

* Sobre limahoyas.

- Rotura o desprendimiento de tejas, plaquetas o planchas:

* En zonas centrales de faldón.

* En cumbreras o limatesas.

- Rotura de material impermeable de limahoyas.

- Encuentro erróneo con paños verticales:

* Canal previa a casetones, chimeneas y lucernarios.

* Extremo de faldón con casetones.

- Perforación de faldón y cobertura por conductos de instalaciones.

Page 29: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

28

Medidas de prevención en el diseño constructivo:

- Especificar solape mínimo de tejas, según detalle:

* Orientación lluviosa.

Normal, 7 cm.

Con banda de estanqueidad, 4 cm.

–Orientación seca.

Normal, 5 cm.

Con banda de estanqueidad, 3 cm.

Page 30: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

29

- Incorporar limahoya de material impermeable en todos los cambios de plano cóncavos hacia el

exterior, incluso encuentros intermedios con paños verticales, con solape suficiente, según detalle.

–Utilizar piezas especiales para cumbreras y limatesas, según tipo y material de cobertura, con sujeción

especial según suministrador.

–Diseñar solapes adecuados en elementos pasantes (conductos).

* D.2.1.2. Manchas interiores de humedad en la parte superior del interior de muros de fachada

o medianera, o en aleros y coronación de fachada Las posibles causas de manchas interiores de humedad en la parte superior del interior de muros de

fachada o medianera, o en aleros y coronación de fachada son:

- Falta de vuelo suficiente del alero, permite que el viento empuje el agua de nuevo hacia la fachada.

Page 31: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

30

- Rotura o desprendimiento de tejas de borde del alero.

- Existencia de canalón oculto previo al alero, con rotura o atasco.

- Mal funcionamiento del canalón visto, con:

* Rebosamiento.

* Obstrucción.

* Rotura o desprendimiento.

- Grietas en hastiales por dilatación del faldón con respecto a la estructura.

- Ejecución incorrecta de junta de dilatación perimetral con edificio medianero:

* Sin marcar la junta.

* Sin sellar o proteger con babero.

Medidas de prevención en el diseño constructivo:

–Evitar incorporación de canalón (visto u oculto) excepto en casos necesarios, en esos casos, diseñar

canalón según indicaciones.

Page 32: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

31

–Diseñar vuelo mínimo de aleros:

* Orientación lluviosa.

Frontal (siempre) 60 cm.

Lateral (alternativo) 40 cm.

* Orientación seca.

Frontal (siempre) 50 cm.

Lateral (alternativo) 30 cm.

–Diseñar protección contra la humedad de frente de vuelo, según detalle.

* Vuelo suficiente y goterón.

* Solape suficiente y separación del canalón.

–Incorporar tejas de borde adecuadas según sistema de cobertura.

Page 33: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

32

- D.2.2. En cubiertas planas En estas cubiertas se pueden dar dos tipos de manchas:

- Manchas interiores de humedad en techo de última planta.

- Manchas interiores de humedad en la parte superior del interior de muros de fachada o medianera, o

en coronación de fachada, con posibilidad de eflorescencias y erosiones.

* D.2.2.1. Manchas interiores de humedad en techo de última planta Las posibles causas de manchas interiores de humedad en techo de última planta son:

- Solape insuficiente entre láminas, o mal ejecutado.

- Punzonamiento de la membrana impermeable, normalmente en zonas centrales de paso, cuando no

tiene la protección adecuada, o ésta falla.

- Desgarro de la membrana impermeable, normalmente por la aparición de tensiones de tracción, al

contraer el conjunto y no tener juntas de dilatación el faldón al que está adherida.

- Mala ejecución del solape de la membrana sobre la cazoleta en sumidero.

Medidas de prevención en el diseño constructivo:

- Protección de la lámina impermeable ante:

* Radiación ultravioleta, en general:

Incorporada en la lámina (arenilla, gofrado, etc.).

Colocada en obra (baldosas, césped artificial, etc.).

- Protección ante acciones mecánicas, sobre todo en cubiertas visitables o con instalaciones, según

detalle, con:

* Fieltro antipunzonante sobre la lámina (en cualquier caso).

* Planchas de aislante (alternativo).

*Posible pavimento de:

Césped artificial.

Baldosa filtrante con colchón de espuma.

Baldosa recibida con mortero.

- Incorporación de juntas de dilatación intermedias para lámina adherida.

* D.2.2.2. Manchas interiores de humedad en la parte superior del interior de muros de fachada

o medianera, o en coronación de fachada Las posibles causas de manchas interiores de humedad en la parte superior del interior de muros de

fachada o medianera, o en coronación de fachada son:

- Desgarro perimetral de la membrana por solución incorrecta del encuentro con el peto:

* Falta de junta de dilatación perimetral (mimbel) en tela adherida.

* Mala ejecución del babero de protección de la junta:

Solape erróneo con el peto.

Falta de goterón o de vuelo.

* Ejecución errónea de zabaleta:

Page 34: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

33

Falta de solape sobre rodapié.

Falta de fuelle en el doblado de la membrana.

- Doblado del borde de la membrana con altura insuficiente, especialmente en zona próxima al

sumidero, con nivel de agua que lo supera.

- Grietas en peto por dilatación del mismo con respecto a la estructura.

- Solución correcta del encuentro perimetral con peto:

* Con membrana adherida, junta de dilatación en todo el perímetro mediante independencia del

faldón de la lámina con respecto al peto o paño vertical (mimbel) con babero de protección, según

detalle.

* Con membrana adherida, junta de dilatación en todo el perímetro mediante fuelle perimetral de la

membrana en su encuentro con el peto, y protección del solape con rodapié inclinado (zabaleta).

* Con membrana no adherida, fuelle perimetral y anclaje mecánico del borde superior del faldón

mediante pieza metálica inoxidable especial.

* En cualquier caso, altura suficiente del faldón perimetral en todo el perímetro, con borde superior

protegido de la intemperie.

Page 35: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

34

E. Hojas de cálculo Las hojas de cálculo que se anexan tienen las siguientes utilidades:

- Diseño de cubiertas inclinadas.

- Diseño de cubiertas planas.

- Cálculo de condensaciones en cubiertas inclinadas.

- Cálculo de condensaciones en cubiertas planas.

Se inserta a continuación un ejemplo de cada una y las correspondientes instrucciones de uso.

E.1. Diseño de cubiertas inclinadas

DISEÑO DE CUBIERTAS INCLINADAS HOJA 1/5C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

DISEÑO DE CUBIERTA PESO DE LOS MATERIALES DE CUBIERTATipo de cubierta Pendiente(%) 29,00 TEJA Y TABLERO 1,35Tipo de teja Pendiente (º) 16 TABIQUILLOS PALOMEROS 0,00Longitud del faldón proy horizontal (m) 7 Longitud real (m) 7,28 AISLAMIENTO 0,50Ancho del faldón(m) 10 Tipo de canalón CURVO

Altura máxima(m) 2 TOTAL 1,85DATOS CLIMÁTICOS DATOS PLUVIOMETRICOS

Zona climática ZONA 3 Situación 2 Zona pluviometrica XMAPA DE ZONAS CLIMÁTICAS MAPA INT. DE PRECIPITACION

PENDIENTES Y SOLAPES MÍNIMOSCASO 1PENDIENTE MINIMA(%) 28 DISEÑO CORRECTO CUMPLEPendiente minima(º) 16 DISEÑO CORRECTO CUMPLESolape mínimo(cm) SIT.CRITICA H. SOLAPE LONGITUDINAL(CM) NO HAY HOLGURASolape transv. mín.(cm) NO HAY SOLAPE TRANSVERSAL H. SOLAPE TRANSVERSAL(CM) NO HAY HOLGURACALCULO DE LA EVACUACION DE AGUA DE LLUVIASUPERFICIE(en proy. horizontal)m2 70 SUPERFICIE MAX DE EVACUACION 100Diámetro o sección equivalente del canalón 100 DIAMETRO MIMIMO BAJANTE 80

DIÁMETRO RECOMENDADO 125NUMERO MINIMO DE BAJANTES 1

SOBRE FORJADO INCLINADOCURVA

Page 36: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

35

DISEÑO DE CUBIERTAS INCLINADAS HOJA 3/5C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

2.TABLAS PARA CÁLCULO DE PENDIENTES Y SOLAPES

TABLA 1.PENDIENTES MÍNIMAS Y SOLAPES PARA TEJAS CURVASZONA 1PENDIENTE 26 28 30 32 34 36 38 40 42 44 >46P(º) 15 16 17 18 19 20 21 22 23 24 >25SOLAPE 15 14 13,5 13 12,5 12 11,5 11 10 10 7ZONA 2PENDIENTE 26 28 30 32 34 36 38 40 42 44 >46P(º) 15 16 17 18 19 20 21 22 23 24 >25SOLAPE SIT.CRITICA 15 14.5 14 13,5 13 12,5 12 11 10 7ZONA 3PENDIENTE 26 28 30 32 34 36 38 40 42 44 >46P(º) SIT.CRITICA 16 17 18 19 20 21 22 23 24 >25SOLAPE SIT.CRITICA SIT.CRITICA SIT.CRITICA 15 14,5 14 13,5 13 12 11 7

TABLA2.PENDIENTES MÍNIMAS PARA TEJAS MIXTAS Y PLANAS MONOCANALFALDON <6,5 m FALDON DE 6,5-9,5m FALDON DE 9,5-12m

ZONA1 ZONA2 ZONA3 ZONA1 ZONA2 ZONA3 ZONA1 ZONAZONA31 25 25 27 1 26 28 30 1 26 28 302 25 27 30 2 28 32 36 2 28 32 363 33 37 40 3 35 39 43 3 35 39 43

TABLA 3.PENDIENTES MÍNIMAS PARA TEJAS ALICANTINASSITUACION < 6,5 6,5-9,5 9,5<12

1 35 40 502 40 50 603 60 70 80

DISEÑO DE CUBIERTAS INCLINADAS HOJA 2/5C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

1. CALCULO DE PESOS DE CUBIERTATEJA Y TABLERO (sin pendiente) TABIQUILLOS PALOMEROS(NBE-AE-88. tablas 2,4 y 2,5) (NTE-ECG. tabla 12- comentario)

kN/m2 1,3 kN/m2 por cada 1 m de altura media 1,30TEJA CURVA CORRIENTE 0,50TABLERO DE BARDOS 0,40 AISLAMIENTO kN/m2

MORTERO DE AGARRE 0,40 Considerando densidad media: 0,50TOTAL 1,30

2. CALCULO DE PENDIENTES Y SOLAPES MÍNIMOS

CASO 1 TEJA CURVA

PENDIENTE MINIMA(%) 28PENDIENTE MINIMA(º) 16SOLAPE MIN(CM) SIT.CRITICA

CASO 2 TEJA MIXTA Y PLANA MONOCANAL

PENDIENTE MINIMA(%) 36PENDIENTE MINIMA(º) 20faldon <6,5m FALSOfaldon entre 6,5-9.5 36faldon entre 9.5-12 FALSO

CASO 3 TEJA ALICANTINA

PENDIENTE MINIMA(%) 50PENDIENTE MINIMA(º) 27

LEYENDA MAPA ZONAS CLIMATICAS LEYENDA MAPA INT. DE PRECIPITACIONAZUL BLANCOAMARILLO AMARILLOBLANCO AZUL

ZONA 1 ZONA XZONA 2 ZONA YZONA 3 ZONA Z

Page 37: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

36

DISEÑO DE CUBIERTAS INCLINADAS HOJA 4/5C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

3. CALCULO DE LA EVACUACIÓN DE AGUA DE LLUVIA

3.1.CALCULO DE CANALONES

TIPO DE CANALON CURVO DIÁMETRO CANALON 100SECCIÓN EQUIVALENTE 110

TABLA 4. DIÁMETROS DE CANALON EN FUNCIÓN DE LA SUPERFICIE DE EVACUACIÓN

X87 150 255 350 450 550 650 750 850 998

100 150 150 200 200 200 250 250 250 250Y

59 100 174 200 300 375 400 500 600 680100 150 150 200 200 200 250 250 250 250

Z44 75 130 180 220 281 350 400 450 510

100 150 150 200 200 200 250 250 250 250

3.2.CALCULO DE BAJANTES

SUPERFICIE MÁXIMA DE EVACUACIÓN 100 DIAMETRO BAJANTE 80

TABLA 5. DIÁMETROS DE BAJANTE EN FUNCIÓN DE LA SUPERFICIE DE EVACUACIÓN

X10 20 75 100 200 300 400 500 600 800 100040 50 60 80 80 80 80 80 100 125 150

Y5 15 35 65 100 135 200 335 465 600 665

40 50 60 80 80 80 80 80 100 125 150Z

5 10 35 65 90 135 220 265 310 355 44540 50 60 80 80 80 80 100 100 125 150

DISEÑO DE CUBIERTAS INCLINADAS HOJA 5/5C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

INSTRUCCIONES DE USOUTILIDAD: DISEÑO DE CUBIERTAS INCLINADAS

NUMERO DE HOJAS: 5HOJA 1: ENTRADA DE DATOS Y RESULTADOS FINALESHOJA 2: CALCULO DE PESOS DE MATERIALES DE CUBIERTA Y CALCULO DE PENDIENTES Y SOLAPES MINIMOSHOJA 3: TABLAS PARA EL CÁLCULO DE PENDIENTES Y SOLAPESHOJA 4: CALCULO DE LA EVACUACIÓN DEL AGUA DE LLUVIAHOJA 5: INSTRUCCIONES

CÓDIGO DE COLORES:

AZUL: CELDAS PARA INTRODUCIR INTRODUCIR DATOSCELDAS CON COMENTARIO CON INFORMACIÓN PARA LA ENTRADA DE DATOS

NARANJA: NO SE DEBE INTODUCIR DATOS SALVO DECISIÓN CONSCIENTERESULTADOS PARCIALES DE IMPORTANCIA Y RESUMEN DE RESULTADOS FINALES

BLANCO: NO SE DEBE INTODUCIR DATOS SALVO DECISIÓN CONSCIENTEAPORTA TEXTOS, DATOS FIJOS y RESULTADOS PARCIALES DE MENOR IMPORTANCIA EN COLOR AZUL

MARRÓN: Notas aclaratorias

PARTICULARIDADES:

GENERALES DE LA HOJA:

1.- Se deberá atender a los comentarios de las celdas con marca roja y aclaraciones en color marrón2.- No se debe modificar las celdas blancas y naranjas.Se podrá hacer bajo criterio propio, siendo consciente de que se eliminarán las funciones que contienen.

Page 38: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

37

E.2. Diseño de cubiertas planas

DISEÑO DE CUBIERTAS PLANAS HOJA 1/3C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

DISEÑO DE CUBIERTA PESO DE LOS MATERIALES DE CUBIERTATipo de cubierta Pendiente (º) 5 MATERIAL DE ACABADO 0,8Tipo de ventilación Longitud real (m) 10,04 MATERIALES DE PENDIENTE 2,21Longitud del faldón proy horizontal (m) 10 Intensidad de precipitación Im(mm/h) 80 AISLAMIENTO 0,50Ancho del faldón(m) 10 TOTAL 2,71DATOS CLIMÁTICOS DATOS PLUVIOMETRICOSZona climática ZONA 1 Situación 1 Zona pluviometrica X

MAPA DE ZONAS CLIMÁTICAS MAPA INT. DE PRECIPITACION

CALCULO DE LA EVACUACION DE AGUA DE LLUVIASUPERFICIE(en proy. horizontal)m2 100 SUPERFICIE MAX DE EVACUACION 200DIAMETRO MINIMO DE BAJANTE 80 SE RECOMIENDA NO SOBREPASAR LOS 80 m2 POR BAJANTEDIAMETRO RECOMENDADO DE BAJANTE 125NUMERO MINIMO DE BAJANTES >1

TRANSITABLESIN VENTILAR

DISEÑO DE CUBIERTAS PLANAS HOJA 2/3C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

1. CALCULO DE PESOS DE CUBIERTAAZOTEA TIPO DE ACABADO(NBE-AE-88. tablas 2,2 y 2,5)

cm kN/m2 kN/m2

MORTERO AGARRE 2 0,40 GRAVAS 0,40CAMA ARENA 2 0,30HORMIGÓN PDTE 30 1,50 PAVIMENTO 0,80

TOTAL 34 2,20 AISLAMIENTO kN/m2

Considerando densidad media: 0,502. EVACUACIÓN DE AGUA DE LLUVIA

SUPERFICIE MÁXIMA DE EVACUACIÓN 200 DIAMETRO BAJANTE 80

TABLA 5. DIÁMETROS DE BAJANTE EN FUNCIÓN DE LA SUPERFICIE DE EVACUACIÓN

X10 20 75 100 200 300 400 500 600 800 100040 50 60 80 80 80 80 80 100 125 150

Y5 15 35 65 100 135 200 335 465 600 665

40 50 60 80 80 80 80 80 100 125 150Z

5 10 35 65 90 135 220 265 310 355 44540 50 60 80 80 80 80 100 100 125 150

LEYENDA MAPA ZONAS CLIMATICAS LEYENDA MAPA INT. DE PRECIPITACIONAZUL BLANCOAMARILLO AMARILLOBLANCO AZUL

ZONA XZONA YZONA Z

ZONA 1ZONA 2ZONA 3

Page 39: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

38

E.3. Cálculo de condensaciones en cubiertas inclinadas

DISEÑO DE CUBIERTAS PLANAS HOJA 3/3C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

INSTRUCCIONES DE USOUTILIDAD: DISEÑO DE CUBIERTAS PLANAS

NUMERO DE HOJAS: 3HOJA 1: ENTRADA DE DATOS Y RESULTADOS FINALESHOJA 2: CALCULO DE LOS PESOS DE MATERIALES DE CUBIERTA Y CALCULO DE LA EVACUACIÓN DEL AGUA DE LLUVIAHOJA 3: INSTRUCCIONES DE USO

CÓDIGO DE COLORES:

AZUL: CELDAS PARA INTRODUCIR INTRODUCIR DATOSCELDAS CON COMENTARIO CON INFORMACIÓN PARA LA ENTRADA DE DATOS

NARANJA: NO SE DEBE INTODUCIR DATOS SALVO DECISIÓN CONSCIENTERESULTADOS PARCIALES DE IMPORTANCIA Y RESUMEN DE RESULTADOS FINALES

BLANCO: NO SE DEBE INTODUCIR DATOS SALVO DECISIÓN CONSCIENTEAPORTA TEXTOS, DATOS FIJOS y RESULTADOS PARCIALES DE MENOR IMPORTANCIA EN COLOR AZUL

MARRÓN: Notas aclaratorias

PARTICULARIDADES:

GENERALES DE LA HOJA:

1.- Se deberá atender a los comentarios de las celdas con marca roja y aclaraciones en color marrón2.- No se debe modificar las celdas blancas y naranjas.Se podrá hacer bajo criterio propio, siendo consciente de que se eliminarán las funciones que contienen.

CALCULO DE CONDENSACIONES EN CUBIERTAS INCLINADAS HOJA 1/4C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

DATOS Tipo de cubiertaRESUMEN DEL CÁLCULO DE CONDENSACIONESCASO 1¿EXISTE RIESGO DE CONDENSACIONES? SISE DEBERIA VENTILAR LA CÁMARA O COLOCAR BARRERA DE VAPOR

CASO 1Ti (ºC)= 18 HRi (%) = 60 Pvi (mbar)= 12,2Te (ºC)= 0 HRe (%)= 95 Pve (mbar)= 5,8ΔTtot (ºC)= 18 ΔPvtot (mbar)= 6,4

CAPA L λ r ΔT T rv Rv ΔPv Pv Pvs CONDENSA(m) (W / m.ºC) (m2.ºC / W) (ºC) (ºC) (MN.s / g.m) (MN.s / g) (mbar) (mbar) (mbar) Pv > Pvs

tabla 2,8 tabla 4,2aire (*) (**)

exterior 0,00superficieexterior 0,06 0,336 0,336 5,800 6,24 NO

tejacerámica 0,900 5,040 5,376 100 0,000 0,000 5,800 8,91 NOmortero

de cemento 0,3 1,2 0,250 1,400 6,777 30 9,000 3,229 9,029 9,81 NObardos

0,04 0,42 0,095 0,533 7,310 161 6,440 2,310 11,339 10,23 SIcamarade aire 0,240 1,344 8,654 30 0,000 0,000 11,339 11,17 SIaislantef. Vidrio 0,04 0,034 1,176 6,589 15,243 60 2,400 0,861 12,200 17,27 NO

forjado H.A. 0,190 1,064 16,307 0,000 0,000 12,200 18,53 NO

Enlucido yeso 0,05 0,26 0,192 1,077 17,384 0,000 0,000 12,200 19,74 NO

superficieinterior 0,11 0,616 18,000 0,000 0,000 12,200 20,64 NO

Σ r = 3,214 Σ Rv = 17,840 CONDENSA

(*) si la capa es una cámara de aire, el valor de r se deberá buscar en la tabla 2,2 de NBE-CT-79(**) si T<0, el valor de Pvs se deberá buscar en la tabla 4,1 de NBE-CT-79

SOBRE FORJADO PLANO

Page 40: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

39

CALCULO DE CONDENSACIONES EN CUBIERTAS INCLINADAS HOJA 2/4C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

CASO 2

Ti (ºC)= 18 HRi (%) = 60 Pvi (mbar)= 12,2Te (ºC)= 0 HRe (%)= 95 Pve (mbar)= 5,8ΔTtot (ºC)= 18 ΔPvtot (mbar)= 6,4

CAPA L λ r ΔT T rv Rv ΔPv Pv Pvs CONDENSA(m) (W / m.ºC) (m2.ºC / W) (ºC) (ºC) (MN.s / g.m) (MN.s / g) (mbar) (mbar) (mbar) Pv > Pvs

tabla 2,8 tabla 4,2aire (*) (**)

exterior 0,00superficieexterior 0,06 0,368 0,368 5,800 6,24 NO

tejacerámica 0,900 5,521 5,889 100 0,000 0,000 5,800 9,23 NOmortero

de cemento 0,3 1,2 0,250 1,534 7,423 30 9,000 3,525 9,325 10,29 NOaislante f. vidrio 0,04 0,034 1,176 7,217 14,640 161 6,440 2,522 11,847 16,61 NOforjado

H.A. 0,190 1,166 15,806 30 0,000 0,000 11,847 17,95 NOEnlucido

Yeso 0,015 0,26 0,058 0,354 16,160 60 0,900 0,353 12,200 18,29 NO

otro 0,00 0,00 0,190 1,166 17,325 0,000 0,000 12,200 19,74 NO

otro 0,00 0,00 0,000 0,000 17,325 0,000 0,000 12,200 19,74 NOsuperficie

interior 0,11 0,675 18,000 0,000 0,000 12,200 20,64 NOΣ r = 2,934 Σ Rv = 16,340 NO CONDENS

(*) si la capa es una cámara de aire, el valor de r se deberá buscar en la tabla 2,2 de NBE-CT-79(**) si T<0, el valor de Pvs se deberá buscar en la tabla 4,1 de NBE-CT-79

CALCULO DE CONDENSACIONES EN CUBIERTAS INCLINADAS HOJA 3/4C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

NBE-CT-79 tabla 4,1 para temperaturas entre 0º C y 25,9 ºC

ºC 0 1 2 3 4 5 6 7 8 9

0 6,11 6,15 6,2 6,24 6,28 6,33 6,37 6,43 6,47 6,521 6,57 6,61 6,67 6,71 6,76 6,81 6,85 6,91 6,96 7,012 7,05 7,11 7,16 7,21 7,27 7,32 7,36 7,41 7,47 7,523 7,57 7,63 7,68 7,75 7,8 7,85 7,91 7,96 8,01 8,084 8,13 8,19 8,25 8,31 8,36 8,43 8,48 8,55 8,6 8,675 8,72 8,79 8,84 8,91 8,97 9,03 9,12 9,16 9,23 9,286 9,35 9,41 9,48 9,55 9,61 9,68 9,75 9,81 9,88 9,957 10,01 10,08 10,16 10,23 10,29 10,36 10,44 10,5 10,59 10,658 10,72 10,8 10,87 10,95 11,03 11,09 11,17 11,3 11,32 11,49 11,48 11,56 11,64 11,72 11,79 11,87 11,95 12 12,12 12,2

10 12,28 12,36 12,44 12,52 12,61 12,69 12,77 12,9 12,95 13,0411 13,12 13,21 13,31 13,39 13,48 13,57 13,65 13,8 13,84 13,9312 14,03 14,12 14,21 14,31 14,4 14,49 14,59 14,7 14,77 14,8813 14,97 15,07 15,17 15,27 15,37 15,47 15,57 15,7 15,77 15,8814 15,99 16,08 16,19 16,29 16,4 16,51 16,61 16,7 16,83 16,9515 17,05 17,16 17,27 17,39 17,49 17,6 17,72 17,8 17,95 18,0716 18,17 18,29 18,41 18,53 18,65 18,77 18,89 19 19,13 19,2517 19,37 19,49 19,61 19,74 19,86 20 20,13 20,3 20,37 20,518 20,64 20,76 20,89 21,02 21,16 21,29 21,42 21,6 21,69 21,8219 21,97 22,1 22,24 22,38 22,52 22,66 22,8 22,9 23,09 23,2420 23,38 23,52 23,66 23,81 23,96 24,1 24,26 24,4 24,56 24,7221 24,86 25,02 25,17 25,33 25,48 25,64 25,8 26 26,12 26,2822 26,57 26,6 26,76 26,92 27,09 27,25 27,42 27,6 27,76 27,9223 28,09 28,26 28,42 28,6 28,77 28,94 29,13 29,3 29,84 29,6524 29,84 30,01 30,2 30,38 30,56 30,74 30,93 31,1 31,3 31,4925 31,68 31,86 32,05 32,24 32,44 32,62 32,82 33 33,21 33,41

Page 41: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

40

E.4. Cálculo de condensaciones en cubiertas planas

CALCULO DE CONDENSACIONES EN CUBIERTAS INCLINADAS HOJA 4/4C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

INSTRUCCIONES DE USOUTILIDAD: CALCULO DE CONDENSACIONES EN CUBIERTAS INCLINADAS

NUMERO DE HOJAS: 4HOJA 1: ENTRADA DE DATOS GENERALES, CALCULO CASO 1 Y RESULTADOS FINALESHOJA 2: CALCULO CASO 2HOJA 3: TABLA DE TEMPERATURASHOJA 4: INSTRUCCIONES DE USO

CÓDIGO DE COLORES:

AZUL: CELDAS PARA INTRODUCIR INTRODUCIR DATOSCELDAS CON COMENTARIO CON INFORMACIÓN PARA LA ENTRADA DE DATOS

NARANJA: NO SE DEBE INTODUCIR DATOS SALVO DECISIÓN CONSCIENTERESULTADOS PARCIALES DE IMPORTANCIA Y RESUMEN DE RESULTADOS FINALES

BLANCO: NO SE DEBE INTODUCIR DATOS SALVO DECISIÓN CONSCIENTEAPORTA TEXTOS, DATOS FIJOS y RESULTADOS PARCIALES DE MENOR IMPORTANCIA EN COLOR AZUL

MARRÓN: Notas aclaratorias

PARTICULARIDADES:

GENERALES DE LA HOJA:

1.- Se deberá atender a los comentarios de las celdas con marca roja y aclaraciones en color marrón2.- No se debe modificar las celdas blancas y naranjas.Se podrá hacer bajo criterio propio, siendo consciente de que se eliminarán las funciones que contienen.

CALCULO DE CONDENSACIONES EN CUBIERTAS PLANAS HOJA 1/4C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

DATOS Tipo de cubierta Tipo de ventilaciónRESUMEN DEL CALCULO DE CONDENSACIONESCASO 1¿EXISTE RIESGO DE CONDENSACIONES? SISE DEBERIA VENTILAR LA CÁMARA O COLOCAR BARRERA DE VAPOR

CASO 1 CUBIERTA PLANA NO VENTILADATi (ºC)= 18 HRi (%) = 60 Pvi (mbar)= 12,2Te (ºC)= 0 HRe (%)= 95 Pve (mbar)= 5,8ΔTtot (ºC)= 18 ΔPvtot (mbar)= 6,4

CAPA L λ r ΔT T rv Rv ΔPv Pv Pvs CONDENSA(m) (W / m.ºC) (m2.ºC / W) (ºC) (ºC) (MN.s / g.m) (MN.s / g) (mbar) (mbar) (mbar) Pv > Pvs

tabla 2,8 tabla 4,2aire (*) (**)

exterior 0,00superficieexterior 0,06 0,405 0,405 5,800 6,28 NO

pavimento 0,3 1,4 0,214 1,447 1,852 150 45,000 3,161 8,961 6,96 SImortero

de cemento 0,3 1,2 0,250 1,688 3,539 100 30,000 2,107 11,068 7,85 SIaislante

poliestireno 0,04 0,028 1,429 9,644 13,183 253 10,120 0,711 11,779 15,07 NOlamina

impermeab 0,01 0,16 0,063 0,422 13,605 0 0,000 0,000 11,779 15,57 NOhormigón

celular 0,1 0,63 0,159 1,072 14,677 60 6,000 0,421 12,200 16,61 NOforjado

H.A. 0,190 1,283 15,959 0,000 0,000 12,200 18,07 NOEnlucido

yeso 0,05 0,26 0,192 1,298 17,257 0,000 0,000 12,200 19,61 NOsuperficie

interior 0,11 0,743 18,000 0,000 0,000 12,200 20,64 NOΣ r = 2,666 Σ Rv = 91,120 CONDENSA

(*) si la capa es una cámara de aire, el valor de r se deberá buscar en la tabla 2,2 de NBE-CT-79(**) si T<0, el valor de Pvs se deberá buscar en la tabla 4,1 de NBE-CT-79

TRANSITABLE NO VENTILADA

Page 42: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

41

CALCULO DE CONDENSACIONES EN CUBIERTAS PLANAS HOJA 2/4C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

CASO 2 CUBIERTA PLANA VENTILADATi (ºC)= 18 HRi (%) = 60 Pvi (mbar)= 12,2Te (ºC)= 0 HRe (%)= 95 Pve (mbar)= 5,8ΔTtot (ºC)= 18 ΔPvtot (mbar)= 6,4

CAPA L λ r ΔT T rv Rv ΔPv Pv Pvs CONDENSA(m) (W / m.ºC) (m2.ºC / W) (ºC) (ºC) (MN.s / g.m) (MN.s / g) (mbar) (mbar) (mbar) Pv > Pvs

tabla 2,8 tabla 4,2aire (*) (**)

exterior 0,00superficieexterior 0,06 0,396 0,396 5,800 6,24 NO

pavimento 0,3 1,4 0,214 1,414 1,810 100 30,000 4,013 9,813 6,96 SIimpermeab 0,01 0,6 0,017 0,000 0,000 0,000 0,000 9,813 6,11 SI

m.cem 0,3 1,2 0,250 1,650 3,461 30 9,000 1,204 11,017 7,8 SIbardos

0,04 0,42 0,095 0,629 4,089 161 6,440 0,862 11,879 8,13 SIcamarade aire 0,170 1,122 5,211 30 0,000 0,000 11,879 8,84 SIaislante

poliestireno 0,04 0,028 1,429 9,429 14,641 60 2,400 0,321 12,200 16,61 NOforjado

H.A. 0,190 1,254 15,895 0,000 0,000 12,200 17,95 NOEnlucido

yeso 0,05 0,26 0,192 1,269 17,164 0,000 0,000 12,200 19,49 NOsuperficie

interior 0,11 0,726 17,890 0,000 0,000 12,200 20,37 NOΣ r = 2,727 Σ Rv = 47,840 CONDENSA

(*) si la capa es una cámara de aire, el valor de r se deberá buscar en la tabla 2,2 de NBE-CT-79(**) si T<0, el valor de Pvs se deberá buscar en la tabla 4,1 de NBE-CT-79

CALCULO DE CONDENSACIONES EN CUBIERTAS PLANAS HOJA 3/4C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

NBE-CT-79 tabla 4,1 para temperaturas entre 0º C y 25,9 ºC

ºC 0 1 2 3 4 5 6 7 8 9

0 6,11 6,15 6,2 6,24 6,28 6,33 6,37 6,4 6,47 6,521 6,57 6,61 6,67 6,71 6,76 6,81 6,85 6,9 6,96 7,012 7,05 7,11 7,16 7,21 7,27 7,32 7,36 7,4 7,47 7,523 7,57 7,63 7,68 7,75 7,8 7,85 7,91 8 8,01 8,084 8,13 8,19 8,25 8,31 8,36 8,43 8,48 8,6 8,6 8,675 8,72 8,79 8,84 8,91 8,97 9,03 9,12 9,2 9,23 9,286 9,35 9,41 9,48 9,55 9,61 9,68 9,75 9,8 9,88 9,957 10,01 10,08 10,16 10,23 10,29 10,36 10,44 11 10,59 10,658 10,72 10,8 10,87 10,95 11,03 11,09 11,17 11 11,32 11,49 11,48 11,56 11,64 11,72 11,79 11,87 11,95 12 12,12 12,2

10 12,28 12,36 12,44 12,52 12,61 12,69 12,77 13 12,95 13,0411 13,12 13,21 13,31 13,39 13,48 13,57 13,65 14 13,84 13,9312 14,03 14,12 14,21 14,31 14,4 14,49 14,59 15 14,77 14,8813 14,97 15,07 15,17 15,27 15,37 15,47 15,57 16 15,77 15,8814 15,99 16,08 16,19 16,29 16,4 16,51 16,61 17 16,83 16,9515 17,05 17,16 17,27 17,39 17,49 17,6 17,72 18 17,95 18,0716 18,17 18,29 18,41 18,53 18,65 18,77 18,89 19 19,13 19,2517 19,37 19,49 19,61 19,74 19,86 20 20,13 20 20,37 20,518 20,64 20,76 20,89 21,02 21,16 21,29 21,42 22 21,69 21,8219 21,97 22,1 22,24 22,38 22,52 22,66 22,8 23 23,09 23,2420 23,38 23,52 23,66 23,81 23,96 24,1 24,26 24 24,56 24,7221 24,86 25,02 25,17 25,33 25,48 25,64 25,8 26 26,12 26,2822 26,57 26,6 26,76 26,92 27,09 27,25 27,42 28 27,76 27,9223 28,09 28,26 28,42 28,6 28,77 28,94 29,13 29 29,84 29,6524 29,84 30,01 30,2 30,38 30,56 30,74 30,93 31 31,3 31,4925 31,68 31,86 32,05 32,24 32,44 32,62 32,82 33 33,21 33,41

Page 43: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

42

F. Normativa - Ámbito nacional:

* Cubiertas transitables NTE OAT 73.

* Cubiertas no transitables NTE QAN 73.

* Cubiertas ajardinadas NTE OAA 76.

* Cubiertas con materiales bituminosos NBE OB-90.

* Condiciones térmicas en los edificios NBE-CT-79

* UNE 53-411/86 Plásticos. Láminas de polietileno clorado sin armadura para la impermeabilización de

edificios. Características y métodos de ensayo

* UNE 53-586/86 Elastómeros. Láminas de elastómeros, sin refuerzo ni armadura para la

impermeabilización. Características y métodos de ensayo.

* UNE 104-301/91 Láminas de polietileno clorosulfonado con inserción de tejidos sintéticos para la

impermeabilización de edificios. Características y métodos de ensayo.

* UNE 104-302/00 EX. Materiales sintéticos. Láminas de poli(cloruro de vinilo) plastificado para la

impermeabilización de cubiertas de edificios. Características y métodos de ensayo.

* UNE 104-304/00 Materiales sintéticos. Puesta en obra. Determinación de la resistencia de la soldadura

por pelado entre láminas sintéticas instaladas utilizadas en impermeabilización.

* UNE 104-305/00 Materiales sintéticos. Determinación de la inflamabilidad relativa de las láminas

sintéticas utilizadas en impermeabilización.

* UNE 104-306/00 Materiales sintéticos. Determinación del contenido de plastificantes en láminas de

poli(cloruro de vinilo) plastificado, PVC-P, utilizadas en impermeabilización.

CALCULO DE CONDENSACIONES EN CUBIERTAS PLANAS HOJA 4/4C.A.T Proyecto: PRUEBA DESCRIPCIÓN:

C.O.A.C.M. Fecha: 22/11/2004

INSTRUCCIONES DE USOUTILIDAD: CALCULO DE CONDENSACIONES EN CUBIERTAS PLANAS

NUMERO DE HOJAS: 4HOJA 1: ENTRADA DE DATOS GENERALES, CALCULO CASO 1 Y RESULTADOS FINALESHOJA 2: CALCULO CASO 2HOJA 3: TABLA DE TEMPERATURASHOJA 4: INSTRUCCIONES DE USO

CÓDIGO DE COLORES:

AZUL: CELDAS PARA INTRODUCIR INTRODUCIR DATOSCELDAS CON COMENTARIO CON INFORMACIÓN PARA LA ENTRADA DE DATOS

NARANJA: NO SE DEBE INTODUCIR DATOS SALVO DECISIÓN CONSCIENTERESULTADOS PARCIALES DE IMPORTANCIA Y RESUMEN DE RESULTADOS FINALES

BLANCO: NO SE DEBE INTODUCIR DATOS SALVO DECISIÓN CONSCIENTEAPORTA TEXTOS, DATOS FIJOS y RESULTADOS PARCIALES DE MENOR IMPORTANCIA EN COLOR AZUL

MARRÓN: Notas aclaratorias

PARTICULARIDADES:

GENERALES DE LA HOJA:

1.- Se deberá atender a los comentarios de las celdas con marca roja y aclaraciones en color marrón2.- No se debe modificar las celdas blancas y naranjas.Se podrá hacer bajo criterio propio, siendo consciente de que se eliminarán las funciones que contienen.

Page 44: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

43

* UNE 104-307/01 Edificación. Sellantes. Clasificación y especificaciones.

* UNE 104-400-3/99 Instrucciones para la puesta en obra de sistemas de impermeabilización con

membranas asfálticas para la impermeabilización y rehabilitación de cubiertas. Control, utilización y

mantenimiento.

* UNE 104-402/96 Sistemas para la impermeabilización de cubiertas con materiales bituminosos y

bituminosos modificados.

* UNE 104-416/ 01 Materiales sintéticos. Sistemas de impermeabilización de cubiertas realizados con

membranas impermeabilizantes formadas con láminas de poli(cloruro de vinilo) plastificado.

* UNE EN 26927 Edificación. Productos para juntas. Vocabulario ISO.

* Real Decreto 952/1997 de 20 de junio Residuos Tóxicos y Peligrosos.

* Ley 10/1998 de 21 de abril de Residuos.

* Real Decreto 782/1998 de 30 de abril Envases y residuos de envases.

* Real Decreto 1481/2001 de 27 de diciembre por el que se regula la eliminación de residuos mediante

depósito en vertedero.

* Orden MAM/304/2002, de 8 de febrero, por la que se publican las operaciones de valorización y

eliminación de residuos y la lista europea de residuos.

- Ámbito europeo:

* prEN 13956:2001 (E) Flexible sheets for waterproofing. Plastic and rubber sheets for roof waterproofing.

Definitions and characteristics.

* Reglamento CE 2037/2000 del Parlamento Europeo y del Consejo, de 29 de junio de 2000, relativo a

sustancias que agotan la capa de ozono.

* Directiva 1999/31/CE del Consejo Europeo de 26 de abril de 1999 relativa al vertido de residuos.

* Decisión 2000/532/CE de la Comisión Europea de 3 de mayo de 2000 que sustituye a la Decisión

94/3/CE por la que se establece una lista de residuos.

* Decisión 2001/118/CE de la Comisión Europea de 16 de enero de 2001 en lo que se refiere a lista de

residuos.

* Decisión 2001/573/CE de la Comisión Europea de 23 de julio de 2001 en lo que se refiere a lista de

residuos.

G. Bibliografía - Monjo Carrió, Juan. Material ponencia. Albacete, mayo 2005.

- Jalvo J., Jordán de Urríes J., Luzón J. Mª y Muñoz A. Puntos críticos en la estanquidad al agua de

fachadas y cubiertas. INTEMAC. 1999.

- Monjo Carrió, Juan y otros. Tratado de la construcción. Sistemas. Ediciones Munilla- Lería, S.L. Madrid,

septiembre 2001.

- Monjo Carrió, Juan y otros. Tratado de la construcción. Fachadas y cubiertas. Ediciones Munilla- Lería,

S.L. Madrid, marzo 2003.

- Tectónica 6. Cubiertas (I). ATC ediciones, S.L. Septiembre-diciembre 1997.

- Tectónica 6. Cubiertas (II). ATC ediciones, S.L. Mayo-agosto 1998.

Page 45: CUBIERTAS - cat-coacm.es · Rotura y descuelgue. 19 * D.1.1.3. Crecimiento de plantas. 21 * D.1.1.4. Vertido incorrecto. 21 - D.1.2. ... obtenidos por soldadura de las piezas

CUBIERTAS C.A.T. - C.O.A.C.M.

44

- Trujillo Lara, Caula Lluís. Manual de diagnosis e intervención en cubiertas planas. Col-legi

d’aparelladors i arquitectes tècnics de Barcelona. Octubre 2002.

- Normativa vigente, detallada en el apartado anterior.