centre nacional de microelectrònica (imb-cnm)

26
1 NIKHEF 28 JAN 2013 Centre Nacional de Microelectrònica (IMB-CNM) Institut de Física d’Altes Energies(IFAE) Enric Cabruja (IMB- CNM) Manuel Lozano (IMB- CNM) Thorsten Lux (IFAE)

Upload: reece

Post on 24-Feb-2016

85 views

Category:

Documents


0 download

DESCRIPTION

Centre Nacional de Microelectrònica (IMB-CNM). Institut de Física d’Altes Energies(IFAE). Enric Cabruja (IMB-CNM) Manuel Lozano (IMB-CNM) Thorsten Lux (IFAE). Centro Nacional de Microelectrónica. Instituto de Microelectrónica de Barcelona. Project funding splitting: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

1 NIKHEF 28 JAN 2013

Centre Nacional de Microelectrònica (IMB-CNM)

Institut de Física d’Altes Energies(IFAE)

Enric Cabruja (IMB-CNM)Manuel Lozano (IMB-CNM)Thorsten Lux (IFAE)

Page 2: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

2 NIKHEF 28 JAN 2013

Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona

2012 Budget: 11,5 M€External funding: 49,4 %

Project funding splitting: EU FP: 26 % National (includes Eur. JTI): 40 % Industrial contracts: 35 %

Page 3: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

3 NIKHEF 28 JAN 2013

idea

product

CNM covers all the Value Chain

Strategic vs Pragmatic

Long term vs short term

Top down vs bottom-up

Industrial (partic. SMEs) weight balance in the

consortium

R&D Value Chain at CNM

Page 4: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

4 NIKHEF 28 JAN 2013

IMB-CNM Structure

Micro & Nanosystems Department

Systems Integration

Department

ICTS: Micro & Nanointegration Clean Room

Page 5: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

5 NIKHEF 28 JAN 2013

Main Clean Room• 1,500 m2 Class 100-10,000• CMOS integrated circuits• Microsystems technologies• Nanolithography and

nanofabrication

Back-end Clean Room• 40 m2 Class 1000• Chip packaging• High Density FlipChip

Integrated Micro and Nano Fabrication Clean Room

Page 6: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

6 NIKHEF 28 JAN 2013

• Microsystems / Sensors Characterization• General Chemistry / Chemical Transducers• Biochemical Systems characterization• Chemical Transducers• Integrated Optics• Power Circuits and Systems characterization• Thermal reliability• Integrated Circuits and systems• Advanced packaging• Radiation Detectors• Reverse Engineering• Integrated Optics• SAM/SEM• Prototyping• 3D Rapid Manufacturing

Research & Application Laboratories

Page 7: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

7 NIKHEF 28 JAN 2013

MICRO & NANO INTEGRATED SYSTEMS

IMB-CNM Research Focus

Food and Environment

Health

Energy

Page 8: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

8 NIKHEF 28 JAN 2013

• People– 3 permanent doctors– 2 contracted doctors– 4 PhD students– 2 Engineer

• Activities started in 1996

• Experiments– Members of the RD50 CERN Collaboration– ATLAS, ATLAS upgrade (sLHC)– GRI (Gamma Radiation Imager)

Radiation Detectors group

Page 9: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

9 NIKHEF 28 JAN 2013

• Silicon radiation detectors– Layout design, simulation, fabrication,

characterization– Pad, strip and pixel designs– P-in-N, N-in-P and N-in-N technologies

developed– Silicon oxigenation

• 3D detectors– Electrodes deep into silicon bulk– Low full depletion voltage

• Pad pitch adaptors for detector modules

– ATLAS-SCT Forward Modules

• Medical imaging– X-ray radiation pixel detectors– DEAR-MAMA European Project– Real time stereotactic biopsy– Complete pre-industrial system

• Hardware, software, and chip design

• Radiation effects on devices and materials– Thin dielectrics for submicronic

technologies– Silicon radiation detectors– MOS, BiCMOS and bipolar devices

• High density bump bonding– Fine pitch by electrodeposition– For image devices

Activities in Radiation Detectors

Page 10: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

10 NIKHEF 28 JAN 2013

• Technologies:– P-on-N, N-on-P, N-on-N– Pad, strip and pixels detectors– High resistivity poly, capacitive coupling, two metal layers, two

side processing– Limited to 4 inches wafers– Radiation hard devices: Oxygenated FZ and magnetic Czochralski

silicon.

N-in-N

N

N+

P+ Guard ring

P+ implant

Detector design and fabrication

Page 11: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

11 NIKHEF 28 JAN 2013

• Sentaurus (Synopsys)• Technology simulation• Electrical simulation

– Static and dinamic– Charge collection in 3D

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,51E9

1E10

1E11

1E12

1E13

1E14

1E15

1E16

1E17

1E18

1E19

1E20

1E21

Con

cent

ratio

n(cm

-3)

Distance(m)

Measurement Net concentration Boron concentration (after Annealing) Boron concentration (before Annealing)

Boron:Implantation energy=50KeVDose=4.2 *1015cm-3

P-N diodes

0,00 2,50x10-8 5,00x10-8 7,50x10-8 1,00x10-7 1,25x10-7 1,50x10-7 1,75x10-7 2,00x10-710-10

10-9

10-8

10-7

10-6

Distance from back contact 100m 500m 900m

Tota

l Cur

rent

(A)

Time(s)

Total current on pixel 5CdTe 1mm thickCharge generated at t=1e-9s

Detector simulation

Page 12: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

12 NIKHEF 28 JAN 2013

• DearMama project: digital mammography system

• Pixel silicon detectors fabricated at CNM• We investigated the use of CdTe from

Acrorad. • Use of Medipix2 chip

Detectors for x-ray imaging

Fabricated at CNM Read-Out at IFAE

Page 13: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

13 NIKHEF 28 JAN 2013

• In collaboration with IFAE• Bump bonding already working• Medipix and ATLAS pixels successfully bonded• Now working to increase yield and qualify the

technology• SET/Süss FC150 machine• 1 micron placing accuracy• In-situ reflow

Bump Bonding Hybridization

Page 14: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

14 NIKHEF 28 JAN 2013

• 1996: start of IFIC-CNM collaboration

• 1998: first detector fabrication (simple diodes)

• 1999: silicon oxygenation technology

• 2000: P-on-N pad detectors (RH 1x1015 cm-2)

• 2002: P-on-N & N-on-P strip detectors (RH 5x1015 cm-2)

• 2003: Signature of contract with CERN for pitch adaptors production at CNM clean room for ATLAS End-Cap SCT

• 2003: N-on-N strip detectors (double-side processing) (RH 5x1015 cm-2)

• 2005: MCz strip detectors (RH 1x1016 cm-2)

• 2005: End of ATLAS fanins production at CNM’s Clean Room

• 2006: Moderated p-spray N-on-P strip detectors• 2007: Mammography System• 2007: Pixel detectors• 2008: 3D detectors technology• 2008: ALiBaVa System development• 2009: Ultra-thin 3D detectors• 2009: Proposal of SiGe tech for FE• 2010: Neutron detectors• 2010: Edgeless detectors• 2010: Evaluation of LDMOS• 2011: Transparent detectors for alignment• 2011: Signature of contract with CERN for the fabrication of

1/3 IBL of pixel 3D sensors together with FBK

Achievements

Page 15: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

15 NIKHEF 28 JAN 2013

• Pitch adaptor production– 10,000 pieces for ATLAS Inner Detector Endcaps in

three years– The biggest commercial contract of IMB-CNM/D+T– WE contracted new technicians working only for

this production– Good experience

Some examples: ATLAS pitch adaptors

Page 16: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

16 NIKHEF 28 JAN 2013

• Material– Silicon doping: n-type– Thickness: 800 microns– Resistivity: between 20 and 30 kOhm·cm

• Electrode structures– Electrodes formed to run orthogonally on both sides of the silicon.– Electrode strip length: ~ 4 cm– Electrode strip pitch: 500 µm– Electrode strip width: 400 µm– Interstrip gap: 100 µm– Electrode strip material: End of strip connection suitable for wire bonding.– Number of strips: 64 on each side (total 128)– Guard ring: Multiple guard ring structures >= 1mm wide with channel stoppers– Signal coupling: DC

• Performance– Leakage current < 12 nA/cm2 at 20°C – Gettering process to reduce leakage current: Yes

• Samples delivered– D+T will process at least 10 wafers to ensure at least 7 working detectors.– The detectors will be delivered cut.

n+p

n-

p+

Al SiO2

Passivation

SiO2Passivation

n+p

n-

p+

Al SiO2

Passivation

SiO2Passivation

Some examples: Double Side Detectors

Page 17: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

17 NIKHEF 28 JAN 2013

Some examples: Double Side Detectors

Page 18: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

18 NIKHEF 28 JAN 2013

• Double sided 3D technology developed at CNM-Barcelona

– Holes are etched from both sides– Reduction of stress– Simplification of fabrication process

• Not compatible with thin wafers– Support wafer ca not be used

• Complete process at our Clean Room– Second demonstration of 3D feasibility after

Stanford

• 3D pixel detectors for Insertable B-layer for ATLAS

• Current manufacturers: (Stanford+Sintef), FBK, CNM

• Good results proved with Medipix2 chips• Atlas chips under study

Passivation

n+ doped

55um pitch

50-0um

300-250ump- type substrate

p+ doped

10um

Oxide0.4um1um

p+ doped

Metal

Poly 3um

OxideMetal

P-stop p+

50-0um TEOS 2um

5um

Some examples: 3D pixel detectors

Page 19: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

19 NIKHEF 28 JAN 2013

1) Process backside of thick detector wafer (structured) implant.

2) Bond detector wafer on handle wafer.

3) Thin detector wafer to desired thickness (grinding & etching).

4) Process front side of the detector wafer in a standard (single sided) process line.

5) Etch handle wafer. If necessary: add Al-contacts. Leave frame for stiffening and handling, if wanted

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special lab

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special lab

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special lab

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special lab

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special lab

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special lab

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special lab

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special labsensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special lab

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special lab

Some examples: Thin detectors using SOI wafers

Page 20: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

Gas Detector R&D at IFAE

T. Lux

Page 21: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

21 NIKHEF 28 JAN 2013

2005: Start R&D efforts for a MPGD TPC for T2KEuropean GEM collaboration: UniGe, IFIC, INFN Bari, IFAE

13/12/2012 21Thorsten Lux (IFAE/UAB) 21/19

• 2 GEM tower• 3 GEM each• ~20x24 cm2• also small setup at IFAE

T2K: MPGD Detector R&D

Page 22: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

22 NIKHEF 28 JAN 20132213/12/2012

• IFAE participated in setting up testbench• characterization of ~ 90 MM modules• ~12 m2 readout area• nowadays focus on analysis

T2K: MPGD Detector R&D

Page 23: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

23 NIKHEF 28 JAN 2013

Electroluminescence Detector R&D

13/12/2012 23

Started for a double beta experiment in 2005 Set up a high pressure gas system at IFAE First stage: small chamber with 5 APDs Allowed to develop readout electronics Excellent energy resolution achieved Low threshold possible

(8.2 ± 0.1)% FWHMxenon

23

Page 24: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

24 NIKHEF 28 JAN 2013

13/12/2012 24

• Larger chamber with 25 APDs• Pressure up-to 5 bar• Focus on tracking

EL Detector R&D

Page 25: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

27 NIKHEF 28 JAN 2013

• Granted Spanish project: Openning a new line in gaseous detectors

• Proposal submitted to Qatar Foundation: Collaboration with a group in Qatar??

• Collaboration with all of you???

Present and Future

Page 26: Centre  Nacional  de  Microelectrònica  (IMB-CNM)

28 NIKHEF 28 JAN 2013

Thanks for your attention!