caracterizaciÓn y respuesta antibacteriana de la

181
CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA SUPERFICIE DEL BIOMATERIAL TI6AL4V SOMETIDO A DIFERENTES MODIFICACIONES FÍSICAS Memoria presentada por D. Miguel Ángel Pacha Olivenza para optar al Título de Doctor por la Universidad de Extremadura Tesis Doctoral realizada bajo la dirección de los Doctores Dña Amparo María Gallardo Moreno, Dña María Luisa González Martín y D. Ciro Pérez Giraldo Departamento de Física Aplicada Universidad de Extremadura

Upload: others

Post on 09-Jul-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

SUPERFICIE DEL BIOMATERIAL TI6AL4V SOMETIDO A

DIFERENTES MODIFICACIONES FÍSICAS

Memoria presentada por D. Miguel Ángel Pacha Olivenza para optar al Título de

Doctor por la Universidad de Extremadura

Tesis Doctoral realizada bajo la dirección de los Doctores Dña Amparo María Gallardo

Moreno, Dña María Luisa González Martín y D. Ciro Pérez Giraldo

Departamento de Física Aplicada

Universidad de Extremadura

Page 2: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

ÍNDICE

Page 3: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

Capítulo 1: Introducción ............................................................................................ 1

1.1. Los implantes y el problema asociado a las infecciones....................................... 3

1.2. La aleación Ti6Al4V .......................................................................................... 9

1.2.1. Pasivado superficial del Ti6Al4V ............................................................... 10

1.3. La superficie y su relevancia en la adhesión microbiana .................................... 11

1.3.1. Propiedades superficiales ........................................................................... 13

1.3.1.1. Hidrofobicidad .................................................................................... 13

1.3.1.2. Energía de Gibbs superficial................................................................ 14

1.3.1.3. Potencial eléctrico de interacción. Potencial zeta ................................. 17

1.3.1.4. Caracterización electroquímica de la superficie ................................... 19

1.3.1.4.1. Polarización lineal ....................................................................... 21

1.3.1.4.2. Espectroscopía de Impedancia Electroquímica (EIS) ................... 23

1.3.1.4.2.1. Interpretación del sistema en base a un circuito eléctrico

equivalente ........................................................................................... 26

1.3.1.4.3. Propiedades electrónicas de las vacantes anódicas y catódicas.

Ensayos Mott-Schottky ............................................................................... 29

1.4. Métodos de evaluación de la adhesión microbiana ............................................ 30

1.4.1. Modelos teóricos de adhesión microbiana .................................................. 30

1.4.1.1. Determinación de la energía de Gibbs de interacción ........................... 33

1.4.2. Metodología empírica: Adhesión estática y dinámica ................................. 34

1.5. Objetivo ............................................................................................................ 37

1.6. Bibliografía....................................................................................................... 37

Modificación superficial basada en implantación con silicio................................... 47

Capítulo 2: Si+ ion implantation reduces the bacterial accumulation on the

Ti6Al4V surface ....................................................................................................... 48

2.1. Introduction ...................................................................................................... 49

2.2. Materials and methods ..................................................................................... 50

2.2.1. Ti6Al4V surface modification .................................................................... 50

2.2.2. Surface characterization ............................................................................. 50

2.2.3. Bacterial strains .......................................................................................... 50

2.2.4. Adhesion experiments ................................................................................ 50

2.3. Results and discussion ...................................................................................... 51

2.4. References ........................................................................................................ 53

Page 4: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

Modificación superficial basada en irradiación con luz UV-C ................................ 55

Capítulo 3: Effect of UV irradiation on the surface Gibbs energy of Ti6Al4V and

thermally oxidized Ti6Al4V ...................................................................................... 56

3.1. Introduction ...................................................................................................... 57

3.2. Materials and methods ..................................................................................... 59

3.2.1. Sample characterization ............................................................................. 59

3.2.2. Experimental procedures ............................................................................ 60

3.3. Results and discussion ...................................................................................... 61

3.4. Conclusions ...................................................................................................... 72

3.5. References ........................................................................................................ 72

Capítulo 4: Influence of slight microstructural gradients on the surface properties

of Ti6Al4V irradiated by UV .................................................................................... 76

4.1. Introduction ...................................................................................................... 77

4.2. Materials and methods ..................................................................................... 79

4.2.1. Material...................................................................................................... 79

4.2.2. Microstructural characterization ................................................................. 79

4.2.3. Surface wettability characterization ............................................................ 80

4.3. Results and discussion ...................................................................................... 82

4.4. Conclusions ...................................................................................................... 91

4.5. References ........................................................................................................ 91

Capítulo 5: In vitro biocompatibility and bacterial adhesion of physico-chemically

modified Ti6Al4V surface by means of UV irradiation ........................................... 95

5.1. Introduction ...................................................................................................... 96

5.2. Materials and methods ..................................................................................... 97

5.2.1. Ti6Al4V ..................................................................................................... 97

5.2.2. Cell culture ................................................................................................ 98

5.2.3. Cell spreading assays ................................................................................. 99

5.2.4. Bacterial strains and culture........................................................................ 99

5.2.5. Bacterial adhesion-retention experiments ................................................. 100

5.2.6. Physico-chemical surface characterization ................................................ 101

5.2.6.1. Contact angle measurements ............................................................. 101

5.2.6.2. Zeta potential measurements ............................................................. 101

5.2.7. X-DLVO analysis .................................................................................... 102

5.2.8. Statistical analysis .................................................................................... 103

5.3. Results and discussion .................................................................................... 103

Page 5: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

5.3.1. Effect of UV treatment on cell behaviour ................................................ 104

5.3.2. Effect of UV treatment on bacterial adhesion ........................................... 107

5.3.3. Effect of ultra-violet treatment on bacterial retention ................................ 111

5.3.4. Physico-chemical approach to adhesion and retention .............................. 114

5.4. Conclusions .................................................................................................... 117

5.5. References ...................................................................................................... 118

Capítulo 6: Bactericidal behavior of Ti6Al4V surfaces after exposure to UV-C light ................................................................................................................................. 123

6.1. Introduction .................................................................................................... 124

6.2. Materials and methods ................................................................................... 126

6.2.1. Ti6Al4V ................................................................................................... 126

6.2.2. Bacterial strains and culture...................................................................... 127

6.2.3. Adhesion experiments .............................................................................. 128

6.2.4. Viability tests on adhered bacteria ............................................................ 128

6.2.4.1. Staining-based methods ..................................................................... 128

6.2.4.2. Serial dilution method ....................................................................... 129

6.2.4.3. Direct transfer of bacteria to solid agar .............................................. 129

6.2.5. Biofilm formation on the Ti6Al4V surface ............................................... 129

6.2.6. Evaluation of changes on the Ti6Al4V surface after irradiation ................ 130

6.2.6.1. Photocatalysis on the irradiated surface ............................................. 130

6.2.6.2. Duration time of the post-radiation effect .......................................... 131

6.2.6.3. Radiation emission from the irradiated surface .................................. 131

6.2.6.4. Electrical interaction potential at the irradiated surface ...................... 132

6.2.6.5. Surface charge excess on the irradiated surface ................................. 132

6.2.7. Statistical analysis .................................................................................... 132

6.3. Results ............................................................................................................ 133

6.3.1. Quantification of adhered bacteria to the control and irradiated surface .... 133

6.3.2. Evaluation of the viability of adhered bacteria to the control and irradiated

surface ............................................................................................................... 134

6.3.3. Assessment of bacterial biofilm growth on the control and irradiated surface

.......................................................................................................................... 137

6.3.4. Insights into the post radiation antimicrobial mechanisms ........................ 138

6.3.4.1. Photocatalysis on the irradiated surface ............................................. 138

6.3.4.2. Duration time of the post-radiation effect .......................................... 138

6.3.4.3. Radiation emission ............................................................................ 140

6.3.4.4. Electrical interaction potential at the irradiated surface ...................... 141

6.3.4.5. Surface charge excess on the irradiated surface ................................. 141

Page 6: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

6.4. Discussion ...................................................................................................... 142

6.4.1. The antimicrobial effect ........................................................................... 142

6.4.2. Mechanisms underlying the antimicrobial effect ....................................... 143

6.5. Conclusions .................................................................................................... 145

6.6. References ...................................................................................................... 146

Capítulo 7: Explaining the bactericidal behavior of the UV-treated Ti6Al4V

substrata through electrochemical surface analysis .............................................. 152

7.1. Introduction .................................................................................................... 153

7.2. Materials and methods ................................................................................... 155

7.2.1. Ti6Al4V ................................................................................................... 155

7.2.2. Solution electrolyte .................................................................................. 155

7.2.3. Electrochemical characterization .............................................................. 156

7.2.4. Electrochemical Impedance Spectroscopy ................................................ 156

7.2.5. Potentiodynamic polarization curves ........................................................ 156

7.2.6. Mott-Schottky curves ............................................................................... 157

7.3. Results and discussion .................................................................................... 157

7.3.1. Electrochemical Impedance Spectroscopy ................................................ 158

7.3.1.1. EIS for Ti6Al4V before and after the UV irradiation treatment ......... 158

7.3.1.2. EIS for Ti6Al4V after different post-radiation times .......................... 161

7.3.2. Potentiodynamic polarization curves ........................................................ 163

7.3.3. Mott-Schottky experiments ...................................................................... 164

7.4. Conclusions .................................................................................................... 167

7.5. References ...................................................................................................... 167

Capítulo 8: Conclusiones generales ........................................................................ 173

Page 7: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

1

CAPÍTULO 1

Introducción

Page 8: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

2

Esta Tesis se ha realizado dentro del Grupo de Investigación Superficies e Interfases de

la Universidad de Extremadura. Ha supuesto una progresión en su línea de investigación

de adhesión bacteriana en biomateriales, ya que se ha extendido el estudio de superficies

poliméricas a superficies metálicas, ampliando la metodología utilizada y colaborando

activamente con otros centros de investigación. Concretamente, en esta memoria se

presentan los resultados obtenidos de la aleación Ti6Al4V a la que se ha modificado su

superficie para mejorar su respuesta como biomaterial, mediante la implantación de iones

de silicio o mediante irradiación con luz ultravioleta. Esta última es la que ha provocado

alteraciones más importantes en las propiedades superficiales de la aleación, por lo que

ha sido más extenso el trabajo que se ha realizado sobre ella. Los resultados que se han

obtenido en esta investigación, junto con los correspondientes estudios mecánicos y de

citocompatibilidad llevados a cabo por los grupos de investigación del Centro Nacional

de Investigaciones Metalúrgicas (CENIM, CSIC, Madrid) y del Instituto de

Investigación Biomédica del Hospital La Paz (Madrid) dirigidos por el Dr. González

Carrasco y la Dra. Vilaboa Díaz, se han proyectado en cinco artículos internacionales,

además de en doce comunicaciones en congresos, que se corresponden con los

Capítulos 2 a 7 de esta Tesis. Finalmente, hay que señalar que el Capítulo 1 se ha

dedicado a proporcionar una visión general de las bases sobre las que se sustenta esta

Tesis.

Page 9: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

3

1.1. LOS IMPLANTES Y EL PROBLEMA ASOCIADO DE LAS INFECCIONES

Los implantes están diseñados para ser incorporados al sistema vivo reemplazando

alguna función de sus tejidos o de sus órganos o para ser soporte para la regeneración de

estos tejidos. Sus usos son múltiples, por ejemplo, para sustituciones permanentes o

para fijaciones temporales en el tejido duro, óseo, (hombros, dedos, rodillas, caderas,

etc) o en el tejido blando, muscular (hernias inguinales) o como elementos permanentes

en el sistema cardiovascular (válvulas cardíacas, marcapasos, arterias y venas

artificiales), en el sistema respiratorio (laringe, tráquea y bronquios, diafragma,

pulmones), en el sistema digestivo (esófago, conductos biliares e hígado), en el sistema

genitourinario (riñones, uréter, uretra, vejiga) y en los órganos sensitivos (córneas,

oídos…) [1].

El origen de los materiales que se emplean para estos implantes puede ser biológico o

artificial. Los primeros son soportes habituales para las cada vez mayores aplicaciones

de la ingeniería de tejidos, pero el concepto de biomaterial está restringido a aquellos

“materiales no viables empleados para la fabricación de dispositivos médicos diseñados

para interaccionar con los sistemas biológicos” [2].

Para elegir correctamente el biomaterial con el que se debe construir el implante, es

esencial entender las relaciones existentes entre su estructura, sus propiedades y la

función que va a desarrollar. En este sentido, se acepta ampliamente que los requisitos

que debe cumplir un biomaterial sean [1]:

Ser biocompatible, es decir, debe ser aceptado por el organismo, no provocar

que éste desarrolle mecanismos de rechazo ante su presencia.

Ser químicamente estable, es decir, no presentar degradación en el tiempo y ser

inerte.

Tener una resistencia mecánica adecuada.

Tener un tiempo de fatiga compatible con las necesidades de su uso.

Tener densidad y peso apropiados a su aplicación.

Tener un diseño de ingeniería correcto; esto es, el tamaño y la forma del

implante deben ser acordes a su finalidad.

Page 10: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

4

Los cuatro tipos generales de biomateriales son los metálicos, los cerámicos, los

poliméricos y los compuestos. Concretamente el interés de esta Memoria se centra en

uno de los biomateriales metálicos más habituales, la aleación de titanio Ti6Al4V.

Aunque los biomateriales metálicos tienen distintos usos, su empleo en implantes

estructurales es básico, reemplazando determinados componentes del cuerpo humano,

fundamentalmente cuando se requiere soportar cargas (implantes dentales, huesos y

articulaciones), o también como elementos de fijación temporales. Por tanto, además de

ser biocompatibles, es necesario que tengan buenas propiedades mecánicas y una gran

resistencia a la corrosión.

Una de las complicaciones que puede aparecer relacionada con el uso de implantes,

prótesis u otros elementos artificiales es el desencadenamiento de procesos infecciosos

originados por su colonización por microorganismos. La incidencia de este tipo de

procesos infecciosos es bastante habitual en dispositivos como catéteres vasculares o

sondas vesicales alcanzando, tras 1000 días de uso, el 5-15 % de los casos, dependiendo

del área de hospitalización que se analice. En el caso de implantes metálicos en

ortopedia, si bien la tasa de infección oscila entre un 2-4 % cuando se trata de implantes

fijos, se eleva hasta un 45 % en el caso de los clavos empleados como fijadores

externos. El aumento progresivo del número de implantes hace que los episodios de

infección se estén incrementando de forma absoluta con un coste humano, además del

económico, muy elevado, ya que el proceso asociado a una sustitución de un implante

originado por una infección supone un gasto de unos 50000 € por caso [3].

La causa directa del desarrollo de un proceso infeccioso en un implante es la formación

de una biocapa sobre la superficie del material. Una biocapa se puede definir como un

conjunto de células eucariotas y procariotas distribuidas sobre la superficie de un

determinado material, bien sea inerte o vivo, y embebidas en una matriz orgánica de

origen biológico [4]. Los estudios han revelado que las biocapas están presentes en

todos los ecosistemas. De hecho, en la mayoría de los ambientes naturales la asociación

de los microorganismos con una superficie formando biocapas es el “estilo de vida”

prevalente. Actualmente se admite que en ambientes naturales entre el 95-99% de los

microorganismos se encuentran en biocapas [5] y que la forma de vida planctónica no es

más que un medio de traslado de una superficie a otra [6]. La capacidad de formación

Page 11: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

5

de biocapa no parece restringida a ningún grupo específico de microorganismo y se

considera que bajo condiciones ambientales adecuadas se podrían encontrar cepas

formadoras de biocapas de cualquiera de ellos. [7].

Es interesante mencionar que, incluso restringiéndonos al ámbito de la salud, la

presencia de una biocapa no es necesariamente una circunstancia perjudicial. Así, por

ejemplo, las biocapas de lactobacilos presentes en la vagina previenen la colonización

por microorganismos patógenos como Gardnerella vaginalis y otros microorganismos

anaerobios [8]. También la biocapa formada sobre la superficie de los dientes protege

frente a la colonización por otros patógenos exógenos, siempre que las especies

bacterianas que la constituyan se mantengan en equilibrio [8]. Sin embargo, en el

ámbito de este trabajo, la formación de biocapas en la superficie de implantes

esqueléticos es un proceso perjudicial, que se trata de evitar en la mayor extensión

posible, y en el que están implicadas mayoritariamente cepas de Staphylococcus

epidermidis y Staphylococcus aureus.

La formación de la biocapa es un proceso dinámico complejo que, aunque algunos

autores describen asociado a condiciones de flujo turbulento [9], es muy similar

independientemente del ambiente en el que habiten los microorganismos, pero en

cualquier caso ha de comenzar con la adhesión inicial de algunos microorganismos a la

superficie del material.

Se ha propuesto una particular metáfora patogénica para explicar la situación que ocurre

después del proceso de inserción de un implante: “La carrera por la superficie” [10]. De

acuerdo con este concepto, tanto la adhesión microbiana como la integración de los

biomateriales con el tejido del hospedador son procesos que se llevan a cabo de forma

similar, aunque las consecuencias finales en cada caso sean muy diferentes, de modo

que si el implante está adecuadamente integrado con el tejido consigue tener una mejor

defensa frente a la contaminación bacteriana. Aunque esta “carrera por la superficie” se

ha descrito en términos de microorganismos y células eucariotas del hospedador,

conviene señalar que después de la implantación tiene lugar una secuenciación de etapas

con participación activa de otros agentes biológicos que culminan con la formación de

la biocapa madura [11-13]:

Page 12: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

6

Es importante señalar que inmediatamente después de implantar el material y contactar

con el medio fisiológico tiene lugar una cascada de procesos en su superficie que

originan la interfase entre el material y el medio. Nada más ponerse en contacto el

implante con los fluidos fisiológicos, las moléculas de agua, al ser las mayoritarias en

estos medios, son las primeras en alcanzar y acomodarse a la superficie del material,

formando sobre este una monocapa o bicapa, cuya estructura es diferente a la del agua

líquida (Fig. 1.1a). En líneas generales el agua interacciona de manera diferente con las

superficies de acuerdo a las propiedades de mojabilidad de éstas; en una superficie

hidrofílica las moléculas de agua pueden disociarse formando una superficie terminada

en grupos –OH o bien se adsorben fuertemente en forma molecular. En cambio, en una

superficie hidrofóbica, las moléculas de H2O, sin disociarse, se adsorben débilmente a la

superficie [13].

De forma casi simultánea y debido a la ionización de la superficie al ponerse en

contacto con el líquido, la interfase se enriquece con iones del medio biológico, como

Na+ y Cl

-, formando lo que se denomina doble capa eléctrica (se describirá con mayor

detalle más adelante) cuya extensión depende fundamentalmente de las propiedades

electrostáticas de la superficie del implante y de la fuerza iónica del medio (Fig. 1.1b).

A continuación, proteínas, como la albúmina, la fibronectina, el fibrinógeno, la

vitronectina o la laminina, y otras macromoléculas se acercan a la interfase donde se

adsorben en base a su concentración relativa en el medio, su tamaño, las propiedades de

la superficie y el grado de hidratación tanto de la superficie como de la proteína. (Fig.

1.1c). Es interesante destacar que este proceso de formación de la interfase biomaterial-

fluido fisiológico es un proceso muy dinámico y en el que la competición por la

superficie entre proteínas provoca que la composición y estructura de la interfase se

vaya modificando en el transcurso del tiempo, desplazando unas proteínas a otras de la

capa adsorbida y forzando su reorientación, lo que se conoce como efecto Vroman [14].

Page 13: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

7

Fig. 1.1. Secuencia de eventos que ocurren al colocar un biomaterial dentro del cuerpo humano

[13].

Si nos centramos en los procesos de adhesión bacteriana, el siguiente evento tras la

formación de esta película acondicionadora de proteínas en la superficie del material es

la aproximación de los posibles microorganismos planctónicos. Los mecanismos a

través de los cuales son transportados hacia la superficie del hospedador incluyen el

movimiento Browniano, la sedimentación, la difusión forzada y natural y el transporte

activo mediado por actividad flagelar que puede incluir o no quimiotaxis [15]. Una vez

que los microorganismos planctónicos están próximos a la superficie del implante,

comienza el proceso de formación de la biocapa propiamente dicho, que se puede

resumir en cuatro etapas: adherencia primaria o inespecífica, adherencia secundaria o

específica, acumulación y separación o dispersión (Fig. 1.2).

En la fase de adherencia primaria, también conocida como fase reversible o

inespecífica, los microorganismos se retienen sobre el sustrato. Existen bacterias Gram

negativas como Pseudomonas aeruginosa, Vibrio cholerae, Escherichia coli,

Salmonella enterica en las que los flagelos suponen un elemento decisivo para alcanzar

la superficie ya que la motilidad ayuda a la bacteria a aproximarse al sustrato

contrarrestando posible fuerzas repulsivas. Sin embargo, aunque la motilidad ayuda al

proceso no parece ser un requisito esencial, pues muchas bacterias Gram positivas

inmóviles como Estafilococos, Estreptococos y Micobacterias son igualmente capaces

de formar biocapas. La retención de los microorganismos tiene lugar a través de fuerzas

físico-químicas como son las fuerzas de van der Waals, hidrofóbicas o relacionadas con

(a) (b) (c)

Page 14: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

8

la polaridad y eléctricas. Una vez que los microorganismos se han aproximado al

sustrato, en una segunda fase conocida como fase irreversible o específica, los

microorganismos retenidos comienzan a producir adhesinas (MSCRAMMs), que son

proteínas de superficie implicadas en la interacción permanente con la película

precursora de proteínas adsorbidas [16, 17].

A continuación, comienzan los procesos de adherencia intercelular que consolidan la

biocapa, es lo que se conoce como fase de acumulación. Después de adherirse al cuerpo

extraño, las bacterias se multiplican y se acumulan como conglomerado de células en

múltiples capas. Las células adheridas generan una gran cantidad de componentes

extracelulares que interaccionan con las moléculas orgánicas e inorgánicas del medio

ambiente más inmediato para formar una matriz extracelular, denominada glicocálix o

slime. Esta matriz extracelular en la que se encuentran embebidas las bacterias,

constituye aproximadamente el 85 % de la totalidad de la biocapa y está compuesta por

una mezcla de materiales tales como polisacáridos, proteínas, ácidos nucleícos, etc y se

considera como el “cemento” que mantiene las células unidas, ayudando a atrapar y

retener nutrientes para el crecimiento de la biocapa y protegiendo a las células de la

deshidratación y de la acción de los antimicrobianos.

Fig. 1.2. Etapas de un proceso de formación de una biocapa.1 Adherencia primaria o

inespecífica; 2 Adherencia secundaria o específica; 3 y 4 fase de acumulación y 5 fase de

separación [18].

Por último, algunas células se liberan al medio líquido posibilitando la dispersión a

otras superficies. Un mecanismo propuesto, particularmente cuando se trata de biocapas

situadas en zonas expuestas al flujo del fluido, es por disgregación mecánica, por

Page 15: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

9

fuerzas de cizalla. Sin embargo, estudios más recientes sugieren que la separación,

llamada frecuentemente “dispersión” o “disolución”, es un proceso activo que está

regulado por las células adheridas, las cuales son capaces de comunicarse entre ellas

dentro de la biocapa con mecanismos conocidos como quorum sensing [19, 20] que

estimulan la salida de bacterias desde la biocapa hacia el medio, lo que les permite

colonizar otras zonas alejadas de la biocapa primaria.

1.2. LA ALEACIÓN TI6AL4V

El Ti es un metal de transición muy atractivo debido al buen balance entre sus

propiedades mecánicas, su alta resistencia a la corrosión y su buena biocompatibilidad,

con módulo de Young de 110 GPa, más cercano que otros metales al del hueso cortical,

tensión de ruptura de 1 GPa y densidad de 4,4 g/cm3. A pesar de ello, se ha dopado el

titanio con ciertos elementos químicos con el fin de mejorar aún más sus propiedades.

En este sentido, la aleación Ti6Al4V es hoy la usada más frecuentemente entre las

aleaciones de titanio para aplicaciones biomédicas. Hay que señalar que la aleación

Ti6Al4V posee ciertas ventajas frente al Ti comercialmente puro (Ti cp). Esta aleación

es más resistente que el Ti cp, es decir tiene un mayor límite elástico, mayor resistencia

máxima a la tracción, mayor resistencia a la fatiga y a la corrosión y además posee una

excelente biocompatibilidad [21, 22].

El titanio es el único metal ligero que presenta dimorfismo, ya que su estructura

compacta hexagonal (fase α) presenta una transformación alotrópica a 882 ºC, pasando

a una microestructura cúbica centrada en el cuerpo (fase β) [23]. El dimorfismo del

titanio ofrece la posibilidad de obtener aleaciones con microestructuras de tipo α, β ó

α/β, dependiendo de los elementos aleantes, que estabilizan una u otra fase a

temperaturas diferentes de las de equilibrio para el Ti puro.

Según la capacidad de los aleantes de estabilizar la fase α o β, se definen tres tipos de

aleaciones de titanio. Las aleaciones tipo α son aquellas que se preparan con elementos,

como el aluminio, el oxígeno, el carbono y el nitrógeno, que incrementan la temperatura

a la cual la fase α es estable. Las aleaciones tipo β son aquellas en que la fase β es

estable a temperaturas inferiores a la temperatura de transición (882ºC) y se obtienen

por la adición de aleantes como el vanadio, el molibdeno y el tántalo, y también el

hierro, el manganeso, el cromo, el cobalto, el níquel, el cobre y el silicio a través de la

Page 16: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

10

formación de sistemas eutectoides con el titanio. Las aleaciones tipo α/β, entre las que

se encuentra la Ti6Al4V, tienen una estructura tal que a temperatura ambiente las fases

α y β se encuentran mezcladas y estabilizadas. La manipulación de estas variaciones

cristalográficas mediante adición de aleantes y procesos termomecánicos da lugar a un

amplio rango de aleaciones y propiedades [23].

1.2.1. Pasivado superficial del Ti6Al4V

El titanio es un metal muy reactivo que cuando se expone a un ambiente oxidante, como

la atmósfera, reacciona prácticamente de forma inmediata a sus estados oxidados. Este

proceso que ocurre en su superficie da lugar a una película superficial de óxido o capa

de pasivado. Con el tiempo, la capa de óxido continúa creciendo espontáneamente y

después de 2 h de exposición al aire y a temperatura ambiente su espesor llega a ser de

aproximadamente 1,7 nm. Después de 70 días puede alcanzar los 5 nm y después de 4

años los 25 nm, aproximadamente. A través de tratamientos como anodización,

aplicación de plasma de oxígeno o calentamiento es posible obtener capas más gruesas

en menos tiempo [24]. Esta capa es muy estable, con una adherencia muy buena y

protege al Ti y a sus aleaciones frente a los agentes oxidantes. El óxido mayoritario en

la capa de pasivado es TiO2, pero otros óxidos tales como Ti2O3 y TiO también están

presentes [24], encontrándose en general en estado amorfo, aunque en ocasiones,

dependiendo del proceso de pasivación seguido, puede hallarse en estado

microcristalino.

El dióxido de titanio cristaliza principalmente en tres estructuras: rutilo, anatasa y

brookita. Sin embargo, el rutilo y la anatasa son las formas más estables del TiO2, las

que juegan un papel más importante en sus aplicaciones y las que comúnmente son

observadas en películas delgadas; en la Fig 1.3 se representa la estructura unidad de

ambos cristales.

Una de las propiedades más interesantes del TiO2 es su carácter semiconductor. Su

banda de valencia está formada por los orbitales 2p del oxígeno y su banda de

conducción por los orbitales 3d del titanio. Esta distribución de bandas da lugar a una

banda prohibida de aproximadamente 3.2 eV capaz de activarse con luz de longitudes

de onda ≤413nm para el rutilo y ≤388nm para la anatasa. En semiconductores

ordinarios, tras la activación, los pares electrón-hueco se recombinan rápidamente, sin

Page 17: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

11

embargo, en el óxido de titanio este proceso es relativamente lento, por lo que después

de la fotoexcitación su superficie sigue siendo estable.

Fig. 1.3. Estructura cristalina de los óxidos de titanio: (a) TiO2-anatasa y (b) TiO2-rutilo.

1.3. LA SUPERFICIE Y SU RELEVANCIA EN LA ADHESIÓN MICROBIANA

La imposibilidad de alterar in situ la superficie de los microorganismos para hacerlos

menos adhesivos, hace que la estrategia más extendida contra la adhesión bacteriana sea

actuar sobre las superficies a las que se van a adherir, modificando sus propiedades

superficiales. Algunas de las propuestas de modificación superficial también llevan

asociadas el objetivo básico de desarrollar biomateriales con propiedades de resistencia

a la corrosión, fatiga y al desgaste mejoradas.

Kasemo y Gold [25] establecen que las modificaciones superficiales pueden dividirse

básicamente en tres categorías: (a) las modificaciones topográficas, tales como tamaño y

distribución de poros, rugosidad, etc.., (b) modificaciones de las propiedades

bioquímicas de la superficie; liberación de especies químicas, adsorción de

biomoléculas, etc.., y (c) modificaciones de las propiedades micro-mecánicas o

viscoelásticas de la superficie.

De este modo se busca controlar la topografía, ya que diferentes estudios han

demostrado que dicha propiedad, tanto a escala micrométrica como nanométrica, tiene

efectos relevantes en el comportamiento microbiano y celular en general [26-31].

Aunque es conveniente señalar que, en relación a la adhesión bacteriana no existe una

norma clara en cuanto al papel de la rugosidad, se ha descrito en diferentes ocasiones

(a) (b)

TiO2-anatasa TiO2-rutilo

Page 18: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

12

que el incremento de la rugosidad en un sólido produce un aumento de la adhesión

bacteriana, debido no tanto a cambios drásticos en sus propiedades físico-químicas sino

al aumento del área superficial disponible para la adhesión [32], sin embargo otros

autores encuentran que ciertas topografías a escalas nanométricas dificultan la adhesión

bacteriana.

Además el objetivo es lograr una superficie activa que interactúe fuertemente con el

medio circundante y que mejore la vida útil del biomaterial. Ejemplos característicos

son, el desarrollo de biomateriales con recubrimientos diseñados para la liberación

controlada de fármacos [33-35], los cuales son inyectados directamente al torrente

sanguíneo actuando de forma eficaz contra los microorganismos presentes, o superficies

modificadas mediante implantación iónica, es decir, mediante la introducción de átomos

de un elemento seleccionado, dentro de las capas subsuperficiales del biomaterial para

conseguir, entre otros efectos, mayor resistencia al desgaste y mejoras en la corrosión y

fatiga.

La Tabla 1.1 presenta un resumen de las técnicas más habituales de modificación

superficial, muchas de ellas son también aplicables a otras áreas con gran éxito, por

ejemplo en la industria mecánica donde la modificación superficial de metales ha

duplicado la vida útil de componentes o piezas de maquinaria [36-39].

Tabla 1.1. Métodos de modificación superficial clasificados de acuerdo al proceso: mecánico,

litográficos, químico o físico. Así como según el efecto de dicha modificación sobre las

propiedades superficiales.

Método Capa Modificada Objetivo Técnica

Mecánicos Modificación de la topografía Diferentes rugosidades Pulido, blasting, grinding

a escalas micrométricas

Litográficos Modificación de la topografía Diferentes rugosidades Fotolitografía, Láser, haz

a escalas micro y nanométricas y patrones de electrones

Químicos Alteración de la superficie Inmersión en ácidos,

químicamente peróxidos

Depósitos de películas delgadas Propiedades físico-químicas Sol-Gel

por Sol-Gel diferentes

Depósitos de películas delgadas Propiedades físico-químicas CVD, PECVD

por evaporización térmica diferentes

Adsorción y autoensamblado Métodos bioquímicos

Page 19: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

13

de biomoléculas

Físicos Depósito de películas delgadas Películas porosas Spray Térmico, flama

en forma de spray

Depósito de películas delgadas Películas densas, duras y Sputtering, Arco

por evaporación física resist. al desgaste y corros. Catódico, haz de iones

Modificación de las capas sup. Implantación iónica Nitruración, iones Si, P

Modificación sup. Titanio Grupos hidroxilos Exposición a luz UV-C

Funcionalización Grupos amino, carboxilos Descargas gaseosas

1.3.1. Propiedades superficiales

En principio, cualquier característica de una superficie puede ser un factor que afecte al

proceso de adhesión bacteriana. La topografía del material, es decir, su mayor o menor

rugosidad, el rango de esta o su distribución, afecta al comportamiento adhesivo

bacteria-sustrato. Incluso se ha reseñado la posibilidad de que la dureza superficial

pueda ejercer cierta influencia en el proceso. En cualquier caso, las propiedades físico-

químicas de las superficies, la hidrofobicidad, la energía de Gibbs superficial y el

potential zeta, son decisivas sobre la adhesión. En este trabajo nos centraremos sobre

estas últimas, puesto que las modificaciones que posteriormente se van a imponer a la

aleación de Ti6Al4V van a afectar principalmente a estas propiedades. Además de

dichas propiedades, en este trabajo se hará un análisis de las características corrosivas

superficiales de la aleación como medida indirecta de la posible presencia de corrientes

superficiales después de someter la aleación a uno de los tratamientos superficiales.

1.3.1.1. Hidrofobicidad

Con el término hidrofobidad se suele hacer referencia a la tendencia que muestran

ciertas moléculas o superficies a evitar el contacto con el agua. Si macroscópicamente la

interacción desfavorable entre el agua y una superficie hidrófoba está caracterizada por

un aumento de la energía libre de Gibbs interfacial, desde el punto de vista

microscópico se puede comprender que este aumento proviene de una contribución

negativa de la entropía en el proceso. El origen está en el propio comportamiento del

agua debido a la fuerte afinidad que presentan entre sí sus moléculas como

consecuencia de la intensidad y coordinación que introducen los puentes de hidrógeno

entre ellas. En el caso de moléculas hidrófobas la interacción entre éstas y las moléculas

de agua es menos favorable que entre las moléculas de agua, debido al reordenamiento

que sufren las moléculas de agua para mantener sus enlaces de puente de hidrógeno,

Page 20: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

14

provocando una disminución de la entropía. Las moléculas o superficies hidrófilas, es

decir, aquellas en las que su interacción con las moléculas de agua es al menos similar a

la de las moléculas de agua entre sí, permiten aumentar la entropía del conjunto, por lo

que estas moléculas pueden disolverse en agua o, en el caso de las superficies, el agua

puede esparcirse sobre ellas [40]. Ahora bien, puesto que en las interacciones

moleculares participan también otra fuerzas, como las Lifshtz-van der Waals o las

ácido-base, que en su definición más amplia incluyen también las fuerzas por puente de

hidrógeno, es realmente este balance de fuerzas quien finalmente define el carácter

hidrófobo/hidrófilo de un material [41-45]. El método más directo que permite

establecer escalas de hidrofobicidad entre superficies lo constituye la medida del ángulo

que se forma en la línea de contacto entre una gota de agua y la superficie, denominado

ángulo de contacto, y que puede variar entre 0º para superficies completamente

hidrófilas hasta prácticamente 180º para las superficies completamente hidrófobas y que

se describe con más detalle en las próximas secciones.

1.3.1.2. Energía de Gibbs superficial

La energía de Gibbs superficial de un determinado material es el exceso de energía de

Gibbs de la superficie respecto del seno del material, lejos de dicha superficie. Esta

magnitud coincide, en el caso de líquidos o de sólidos isótropos con la tensión

superficial o fuerza precisa, por unidad de longitud, para aumentar la extensión de la

superficie, por lo que ambos términos, energía de Gibbs superficial y tensión

superficial, se emplean indistintamente. A pesar de que no es posible evaluar

directamente la energía de Gibbs superficial de un sólido, Young propuso que el ángulo

de contacto (θ) [46] de una gota de un líquido puro depositada sobre una superficie

sólida, rígida, lisa y homogénea es consecuencia del equilibrio de las energías de Gibbs

interfaciales de las tres fases en equilibrio mutuo:

γLV cos θ = γSV - γSL (1.1)

donde γLV (a veces también simbolizada como γL) es la tensión superficial del líquido en

equilibrio con su vapor, γSV es la tensión interfacial del sólido en equilibrio con el vapor

del líquido y γSL, la tensión interfacial sólido-líquido (Fig. 1.4).

Page 21: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

15

Fig. 1.4. Tensiones sobre la línea triple (sólido, líquido, vapor) y ángulo de contacto.

La tensión superficial del sólido, γS, se relaciona con la tensión interfacial γSV mediante

la presión superficial, Πe, que ejerce la película del vapor del líquido que se adsorbe

sobre la superficie del sólido alrededor de la gota, mediante Πe= γS - γSV. De este

modo, la ecuación de Young se puede escribir como:

γLV cos θ = γS - γSL – Πe (1.2)

Sin embargo, se asume que para aquellos sistemas en los que el ángulo de contacto es

mayor que cero la presión superficial de la película adsorbida es prácticamente

despreciable, con lo que la ecuación de Young queda en términos de la energía de

Gibbs superficial del sólido como:

γL cos θ = γS - γSL (1.3)

Esta ecuación permitiría de forma directa conocer la energía de Gibbs interfacial sólido-

líquido si se dispusiera de los valores del ángulo de contacto de un cierto líquido sobre

la superficie del sólido, la energía de Gibbs superficial del líquido y la energía de Gibbs

del sólido. Tanto el ángulo de contacto como la energía de Gibbs del líquido son

magnitudes de acceso experimental directo, pero en cambio no lo son ni la energía de

Gibbs interfacial sólido-líquido, γSL, ni la energía de Gibbs del sólido, γS. Por este

motivo se han desarrollado varios modelos que pretenden expresar la energía de Gibbs

interfacial sólido-líquido en función de la del sólido y de la del líquido, englobados en

dos tendencias generales. De forma resumida, una de ellas supone la existencia de una

relación universal o ecuación de estado, entre la energía de Gibbs interfacial sólido-

líquido y las energías de Gibbs superficiales del sólido y del líquido. Expresando la

energía de Gibbs interfacial sólido-líquido según esta ecuación de estado en la ecuación

de Young (1.3), sería posible determinar la energía de Gibbs superficial del sólido con

sólo disponer de los datos experimentales del ángulo de contacto y la tensión superficial

de un líquido.

(

θ

γL

γSL γS

Page 22: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

16

La segunda tendencia se basa en el análisis de las fuerzas que actúan en las interfases,

siendo el modelo o aproximación de Van Oss uno de los más utilizados, ya que predice

comportamientos experimentales con suficiente bondad [45]. Estas fuerzas incluyen a

las denominadas Lifshitz-van der Waals, que a su vez engloban a las fuerzas de Debye y

de Keeson, o interacciones dipolo-dipolo y dipolo-dipolo inducido, respectivamente, y

las dispersivas de largo alcance de London, o interacciones dipolo inducido-dipolo

inducido. También están presentes fuerzas más específicas y de corto alcance que tienen

en cuenta las contribuciones debidas a las interacciones ácido-base (según Lewis), que

incorporan las interacciones por puente de hidrógeno. La asunción que hacen los autores

que siguen esta segunda tendencia consiste en admitir que la energía de Gibbs

interfacial y superficial puede calcularse como la suma de componentes que reflejan una

contribución a esa energía proveniente de cada uno de los tipos de fuerzas que actúan en

la interfase. Esta hipótesis, proporciona predicciones correctas para muchos sistemas

además de información valiosa respecto de la extensión de las contribuciones al proceso

de cada grupo de fuerzas descritas anteriormente, que suelen concordar adecuadamente

con los resultados experimentales.

Según esto, Van Oss sugiere establecer una división de la energía de Gibbs interfacial

en dos componentes, una correspondiente a las interacciones debidas a las fuerzas

Lifshiftz-Van der Waals, γLW

, y otra a las ácido-base, γAB

, de modo que la energía de

Gibbs superficial total se puede expresar como:

γ = γLW

+ γAB

(1.4)

Además este modelo propone que la contribución ácido-base se pueda expresar como

una media geométrica de dos parámetros que cuantifican la tendencia a ceder electrones

(parámetro electrón-donador, γ-) y a aceptar electrones (parámetro electrón-aceptor, γ

+)

de modo que:

(1.5)

En base a ello, la expresión de γSL, viene dada por la siguiente relación:

(1.6)

Page 23: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

17

Sustituyendo finalmente se obtiene que:

(1.7)

ecuación que permite obtener la componente y los parámetros

de la

energía de Gibbs superficial del sólido resolviendo el sistema de ecuaciones que se

obtiene a partir de las medidas de los ángulos de contacto sobre la superficie de al

menos tres líquidos de características conocidas, entre los que habitualmente se incluye

al agua, formamida y diiodometano, y a partir de ellos, la energía de Gibbs superficial

total del sólido γS ( Ec.(1.4)).

1.3.1.3. Potencial eléctrico de interacción. Potencial zeta

Otro factor importante que se debe considerar para poder caracterizar la interfase

microorganismo-biomaterial es la contribución de las fuerzas de tipo eléctrico que

aparecen entre ambos, microorganismos y superficie, cuando se encuentran en el medio

fisiológico. La superficie bacteriana puede describirse como un tapiz formado por

dominios, más o menos enriquecidos por unos tipos de moléculas u otros, que se

disocian cuando el microorganismo se encuentra en suspensión, de modo que cada uno

de estos dominios presenta una carga eléctrica superficial positiva o negativa. Esta

riqueza estructural permite a las bacterias acomodarse a situaciones diversas, pero para

abordar y predecir, al menos en primera aproximación, la afinidad entre bacteria y

sustrato, se suele considerar la superficie del microorganismo como un todo, con una

carga neta distribuida homogéneamente en su superficie. Del mismo modo, cuando el

biomaterial se pone en contacto con el fluido fisiológico, su superficie adquiere una

carga eléctrica neta debida, por ejemplo, a la ionización de las especies químicas

presentes en esa superficie, la liberación de iones del material o la adsorción específica

de iones presentes en la disolución. La propiedad física que mejor describe este tipo de

características eléctricas superficiales es el potencial zeta, o potencial eléctrico de

interacción, que predice el modelo de la doble capa électrica.

Como ya se ha indicado, cuando un material se sitúa en el seno de una disolución

adquiere una carga eléctrica superficial que suele ser negativa en medios fisiológicos.

Para compensar esta carga se produce una adsorción de iones positivos de la disolución

formándose, en primer lugar, una capa adsorbida en la que estos iones están unidos

Page 24: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

18

irreversible y muy fuertemente a la superficie, de modo que, en el movimiento relativo

superficie-disolución, se desplazan solidaria y rígidamente con la superficie. Esta capa

adyacente y rígida es conocida como capa de Stern (también aproximada en muchos

casos a la capa interna de la doble capa eléctrica) donde los iones no pueden desorberse

ni desplazarse alrededor de la superficie (Fig. 1.5). Para completar la compensación

eléctrica de la superficie otros iones positivos adicionales, sensibles a la agitación

térmica, son atraídos más débilmente por la superficie negativa dando lugar a un

equilibrio dinámico que culmina con la formación de una segunda capa, también

conocida como capa difusa o capa externa de la doble capa eléctrica. La concentración

de iones en esta capa disminuye gradualmente con la distancia, hasta que se logra un

equilibrio con los contraiones en el seno de la disolución. Precisamente, la mayor o

menor extensión de esta doble capa depende de la concentración de iones, o fuerza

iónica del medio. Un esquema de la distribución iónica se representa en la Fig. 1.5.

Fig. 1.5. Esquema de la doble capa eléctrica: Capa interna y difusa. Plano de cizalladura

(localización aproximada) donde se define el potencial zeta.

La superficie negativa y su atmósfera cargada positivamente dan lugar a un potencial

eléctrico superficial relativo a la disolución. Este tiene un valor máximo en la superficie

y disminuye gradualmente con la distancia, anulándose fuera de la capa difusa. Desde el

punto de vista experimental, este potencial no es accesible en la superficie del sólido, ya

que los iones de la capa de Stern están unidos solidariamente a ella. Sin embargo,

mediante métodos electrocinéticos sí es posible determinar su valor en la superficie de

+-----------

+++++++

+

+

+

+

+

+

-- -

--

- -

-

-

-

-++

Sóli

do

Capa interna Capa difusa

Plano de cizalladura

Page 25: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

19

separación entre las capas interna y difusa, lo que comúnmente se conoce como plano o

superficie de cizalladura. El potencial eléctrico en esa superficie es conocido como

potencial zeta (ζ) y es la propiedad física más accesible experimentalmente en base a la

cual se suelen caracterizar las interacciones eléctricas entre superficies.

1.3.1.4. Caracterización electroquímica de la superficie

Una parte del trabajo de esta tesis ha estado dedicado a conocer las consecuencias sobre

las propiedades superficiales de la aleación Ti6Al4V al ser irradiada con UV-C. El

modo en que afecta este tipo de tratamiento a la aleación está relacionado con el

carácter semiconductor del dióxido de titanio, principal componente de su capa pasiva,

cuya energía de activación está en esas longitudes de onda del UV-C. Una vez que el

proceso de irradiación finaliza, las recombinaciones electrón-hueco del semiconductor

originan la aparición de pequeñas corrientes superficiales que pueden tener un papel

relevante en las propiedades de esta aleación. Por ello se va a abordar su estudio

empleando métodos de caracterización electroquímica que son habituales en los

estudios de corrosión.

La conductividad eléctrica superficial es una propiedad del material que puede afectar a

su comportamiento interfacial y en particular a los microorganismos que puedan entrar

en contacto con el material. Diversos estudios [47, 48] han demostrado la existencia de

un efecto bactericida en las superficies sometidas a pequeñas corrientes eléctricas,

debido a una reducción de la función celular de la coenzima CoA, que conduce a la

inhibición de la respiración celular y a la muerte bacteriana.

Los biomateriales metálicos en contacto con una solución fisiológica, están compuestos

por electrodos en cortocircuito a través del cuerpo del propio metal. Las impurezas del

mismo, constituyen los electrodos que darán lugar al trasiego electrónico que provocan

las reacciones químicas anódicas y catódicas que generan un proceso electroquímico

corrosivo. El número de electrones que intervienen en dicho proceso, generará una

mayor o menor corriente de corrosión. La Fig. 1.6 representa a modo de ejemplo las

reacciones químicas de un proceso de corrosión de un biomaterial de titanio implantado

en condiciones fisiológicas.

Page 26: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

20

Fig. 1.6. Reacciones durante la corrosión de un biomaterial metálico en condiciones

fisiológicas [49].

Una forma de evaluar la corriente de corrosión (Icorr) que circula por la película pasiva

generada en un biomaterial de aleación de titanio como el estudiado en este trabajo, es

mediante la determinación de curvas de polarización potenciodinámicas, que

básicamente consisten en el registro de la intensidad que circula a través del sistema

electroquímico de trabajo cuando se impone sobre él un barrido de potenciales, que

comienza en un potencial inferior al de corrosión. Es un ensayo destructivo que nos

permite sacar al sistema de su estado de equilibrio, polarizándolo y comparando las

diferentes respuestas en corriente conseguidas al aplicar potenciales iguales. También

resulta interesante la determinación de propiedades de la interfase película pasiva y

solución fisiológica, como la resistencia de transferencia de carga o resistencia de

polarización (RP) y la capacidad de la película pasiva (C) generada. Propiedades que nos

permiten evaluar características dieléctricas, espesores, defectos o picaduras, etc, de la

película pasiva formada. Para ello se emplea la técnica no destructiva de espectroscopia

de impedancia electroquímica, que básicamente consiste en la aplicación al sistema de

una onda sinusoidal de potencial (a distintas frecuencias) y del registro de la respuesta

de intensidad de dicho sistema, permitiendo obtener la impedancia del sistema a través

de su cociente.

Estas técnicas, aunque están enfocadas a estudios de fenómenos de corrosión, permiten

llevar a cabo un análisis en profundidad de las propiedades electroquímicas de la

película pasiva y semiconductora generada de forma espontánea en la superficie de la

Transporte

productos

Iones metálicos

Ti2+

Transporte

reactivos

Agente oxidante

O2 + H2O

BIO

MA

TE

RIA

L

TIT

AN

IO

Reacción

catódica

Reacción

anódica

Doble capa

Capa difusa Capa rígida

Transferencia

carga

Transferencia

carga

Oxidación

biomaterial

Reducción

biomaterial

e-

Transporte

productos

Reducción productos

OH-

Page 27: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

21

aleación de titanio y constituyen además una poderosa herramienta para el estudio de

los procesos de transferencia de carga, habiendo sido aplicadas anteriormente con éxito

en el estudio de procesos de recombinación eléctrica en la interfase de la película de

óxido generada y el electrolito [50, 51].

El dispositivo experimental empleado para el estudio de los parámetros de corrosión

consiste en una celda electroquímica con configuración de tres electrodos (electrodo de

trabajo, la muestra objeto de estudio, un contraelectrodo de platino (Pt) y un electrodo

de referencia de Ag/AgCl saturado en una solución de Cloruro de Potasio (KCl)) y un

potenciostato equipado con módulo analizador de frecuencia.

La finalidad de esta tesis doctoral no es el estudio de las propiedades anticorrosivas de

la aleación Ti6Al4V, ya que existen multitud de trabajos anteriores que dan buena

cuenta de ello, sino el uso de técnicas electroquímicas propias del estudio de la

corrosión para la obtención de datos experimentales que nos permitan el entendimiento

de las modificaciones superficiales que están teniendo lugar en la superficie de la

aleación, después de ser expuesta a luz UV-C.

1.3.1.4.1. Polarización Lineal

La polarización lineal es una técnica experimental que se emplea para determinar

parámetros tan importantes de corrosión como las corrientes y velocidades de corrosión

que tienen lugar en un metal, lo que permitirá caracterizar de una manera general el

comportamiento electroquímico del material.

Tal y como hemos dicho anteriormente, las curvas de polarización consisten en el

registro de la intensidad que circula a través del sistema electroquímico de trabajo (entre

el electrodo de trabajo y un electrodo auxiliar) cuando se impone sobre él (entre el

electrodo de trabajo y un electrodo de referencia) un barrido de potenciales que empieza

en un potencial inferior al de corrosión y avanza en sentido anódico, aplicando un

"sobrepotencial" positivo para la reacción anódica y un "sobrepotencial" negativo para

la reacción catódica. La velocidad del barrido de potencial ha de ser lo suficientemente

lenta como para permitir el intercambio de cargas que se produce en la interfase del

biomaterial.

Page 28: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

22

Al representar la corriente (I) frente al potencial (E) se obtiene el diagrama de la Fig.

1.7. La pendiente del tramo lineal en las zonas anódicas y catódicas es conocida como

pendiente de Tafel anódica, ba y catódica, bc, respectivamente.

Fig. 1.7. Curva de polarización para la estimación de parámetros de corrosión de un metal.

De acuerdo con la terminología expuesta en la norma ASTM G15 (Standard

Terminology to Corrosion and Corrosion Testing) [52], se indican las siguientes

definiciones de interés en relación a este apartado:

Potencial de Corrosión (Ecorr) y Corriente de Corrosión (Icorr): El potencial de

corrosión es el potencial de equilibrio de un metal o aleación en un electrolito

respecto de un electrodo de referencia. La corriente de corrosión es la corriente

que circula al potencial de corrosión, entre un metal o aleación y el electrodo

auxiliar.

Densidad de corriente de Corrosión (icorr): La densidad de corriente

(intensidad/superficie) que circula a través de una pila electroquímica al

potencial de corrosión es la densidad de corriente de corrosión.

Corriente de pasivación (ip): Valor de la intensidad de corriente que permanece

estable para un intervalo de potenciales (conocido como zona de pasivación), y

que se alcanza debido a la formación de una capa pasiva.

Los parámetros Ecorr e Icorr han sido obtenidos a partir de las curvas potenciodinámicas

aplicando el “Método de las Pendientes de Tafel” que equivale a interpolar la

(ba)

(bc)

Potencial (E)

Inte

nsi

dad

de

corr

ien

te (

I)

Ecorr

ip Icorr

Page 29: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

23

intersección de las pendientes de tafel en el eje del potencial (E) e intesidad de corriente

(I).

Una vez obtenida Icorr, mediante la ecuación desarrollada por Stern y Geary [53] es

posible establecer una relación entre la densidad de corriente de corrosión (icorr) y la

resistencia a la polarización (Rp).

(1.8)

donde B se obtiene combinando las pendientes anódicas y catódicas de Tafel (ba, bc) a

través de la siguiente expresión:

(1.9)

1.3.1.4.2. Espectroscopía de Impedancia Electroquímica (EIS)

La EIS es una de las técnicas más recomendables para obtener información acerca de la

evolución del proceso de corrosión en la interfase del material y el medio acuoso. Para

ello, con la ayuda de un potenciostato, se aplica al sistema una perturbación sinusoidal a

diferentes frecuencias ( y se obtiene la respuesta en corriente (

θ , permitiendo obtener la impedancia (Z) del sistema a través de su

cociente. Donde E0 e I0 son, respectivamente, el potencial y la corriente; es la

frecuencia angular de la señal ( =2πf, siendo f la frecuencia) y θ es el ángulo de desfase

entre el potencial de perturbación y la respuesta en corriente. [54].

En muchos materiales y sistemas electroquímicos la impedancia varía con la frecuencia

del potencial aplicado debido a sus propiedades intrínsecas (su estructura física), a los

procesos electroquímicos que tengan lugar, o a una combinación de ambos. Por

consiguiente, si se hace una medida de impedancias en un rango de frecuencias

adecuado y se representan los datos obtenidos, es posible relacionar los resultados

obtenidos con las propiedades físicas y químicas de dichos materiales y sistemas.

Page 30: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

24

Fig. 1.8. Representación de las señales de perturbación (E) y respuesta (I) en función del

tiempo, en un estudio de impedancia. Las medidas del desfase y de la amplitud de la respuesta,

proporcionan la impedancia asociada a la transferencia electroquímica del material estudiado.

Como número complejo, la impedancia (Z = Zreal + Zimg) se puede representar tanto en

coordenadas cartesianas como polares (Fig. 1.9).

Fig. 1.9. Representación de la impedancia como un número complejo

Donde,

(1.10)

(1.11)

De la parte real Zreal se puede calcular la conductancia G y de la parte imaginaria Zimg la

capacitancia C en base a la siguiente expresión,

(1.12)

Para obtener una información más precisa de la evolución electroquímica de la interfase

metal/líquido, se utilizan diferentes representaciones gráficas del espectro de

impedancia. En el análisis realizado en este trabajo se han utilizado los diagramas de

Zreal

Zimg

|Z|

θ

Page 31: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

25

Nyquist y de Bode. Dichas representaciones permiten a su vez interpretar el sistema

objeto de estudio a través de un circuito eléctrico equivalente como veremos a

continuación.

Diagrama de Nyquist

En un diagrama de Nyquist se representan los valores de las partes real e imaginaria de

la impedancia para cada valor de frecuencia, un ejemplo típico se muestra en la Fig.

1.10.

Fig. 1.10. Diagrama de Nyquist, gráfica de las magnitudes de impedancia imaginaria (Zimg) e

impedancia real (Zreal), a diferentes frecuencias.

El valor negativo de la parte imaginaria de la impedancia se asocia a la presencia de

procesos capacitivos que ocurren en la interfase metal/líquido, mientras que la parte real

está relacionada con fenómenos resistivos en dicha interfase.

Diagrama de Bode

Existen dos tipos de diagramas de Bode, el primero relaciona el valor del módulo |Z|

frente a la frecuencia (f); mientras que el segundo relaciona el valor del ángulo de fase

(θ) frente a la frecuencia. Ambos valores, |Z| y θ, se obtienen a partir de la información

del diagrama de Nyquist.

Ejemplos típicos de ambos diagramas se encuentran recogidos en la Fig. 1.11.

1000 2000 3000 4000 5000 6000 7000

-6000

-5000

-4000

-3000

-2000

-1000

0

Z'

Z''

par_rc.zFitResult

1·103 2·10

3 3·10

3 4·10

3 5·10

3 6·10

3

7·103

-6·103

-5·103

-4·103

-3·103

-2·103

-1·103

0

Zreal (Ω)

Zim

g (

Ω)

Page 32: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

26

Fig. 1.11. Diagrama de Bode para el módulo de la impedancia, |Z|, frente a la frecuencia, f y

ángulo de desfase, θ, frente a la frecuencia, f.

Dependiendo del comportamiento del ángulo de fase y del módulo de la impedancia, se

tendrá un comportamiento resistivo o capacitivo. En el proceso resistivo, la señal del

potencial (E) y la respuesta de corriente (I) están en fase, es decir el ángulo de desfase

es igual a cero y el valor de Zreal es igual a la magnitud del resistor; en el proceso

capacitivo puro, se tiene un ángulo de desfase de 90° a diferentes valores de frecuencia.

Los procesos resistivos, están asociados a procesos de conducción y ejemplo de ello es

la conductividad en el electrolito y/o a una transferencia de electrones a través de la

interfase metal-electrolito. En el proceso capacitivo, el desfase que se produce entre el

potencial aplicado y la corriente medida está relacionado con fenómenos de generación

de campos eléctricos en el sistema, asociados a la presencia de procesos electroquímicos

que conllevan polarización o separación de carga.

1.3.1.4.2.1. Interpretación del sistema en base a un circuito eléctrico equivalente

Los procesos capacitivos y/o resistivos que ocurren en el sistema electroquímico

comúnmente se representan mediante un circuito eléctrico equivalente que permite

modelar los fenómenos que tienen lugar en la interfase metal-electrolito a través de la

10-2 10-1 100 101 102 103 104 105103

104

Frequency (Hz)

|Z|

par_rc.zFitResult

10-2 10-1 100 101 102 103 104 105

-40

-30

-20

-10

0

Frequency (Hz)

the

ta10-2 10-1 100 101 102 103 104 105

103

104

Frequency (Hz)|Z

|

par_rc.zFitResult

10-2 10-1 100 101 102 103 104 105

-40

-30

-20

-10

0

Frequency (Hz)

the

ta

(º)

f (Hz)

|Z| (Ω

)

10-2

10-1

100 10

1 10

2 10

3 10

4 10

5

f (Hz)

103

104

-40

-30

-20

-10

0 10

-2 10

-1 10

0 10

1 10

2 10

3 10

4 10

5

Page 33: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

27

respuesta en impedancia observada y expresada a través de los diagramas de Nyquist y

Bode.

Puede haber varios circuitos que representen el mismo espectro de impedancia, por lo

que no basta únicamente con que el circuito equivalente se ajuste a la curva, sino que,

además, debe cumplir con la característica fundamental de tener un significado físico-

químico aceptable [55,56].

El circuito equivalente representado en la Fig. 1.12 es uno de los más sencillos al que es

posible ajustar los datos experimentales. En este caso la impedancia se representa

mediante una combinación en paralelo de una resistencia Rp y una capacitancia Cp,

ambas en serie con otra resistencia Rs.

(1.13)

RS representa la resistencia del electrolito, cuyo valor se puede calcular realizando un

barrido a altas frecuencias, RP es el término de la resistencia de polarización o

resistencia de transferencia de carga y CP representa la capacidad de la doble capa

electroquímica o capa de Helmholtz, relacionada con las interacciones que tienen lugar

en la interfase electrodo/electrolito.

Fig. 1.12. Circuito equivalente eléctrico sencillo.

Partiendo de una representación de Nyquist en la que se muestra el valor absoluto de la

parte imaginaria de la impedancia frente a la real, se pueden obtener los parámetros del

circuito equivalente (Fig. 1.13).

RS

RP

CP

Page 34: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

28

Fig. 1.13. Diagrama de Nyquist de un circuito eléctrico sencillo.

A partir de los cortes con el eje real se puede obtener el valor de la resistencia de

transferencia de carga o resistencia de polarización (Rp) y la resistencia eléctrica del

electrolito de trabajo (Rs). Asimismo, partiendo del valor de la frecuencia en el punto

máximo se puede calcular el valor de la capacitancia de la doble capa electroquímica

(Cp).

De forma similar, el diagrama de Bode puede ser utilizado para obtener los mismos

parámetros, como se observa en la Fig. 1.14.

Fig. 1.14. Diagrama de Bode de un circuito eléctrico sencillo.

1000 2000 3000 4000 5000 6000 7000

-6000

-5000

-4000

-3000

-2000

-1000

0

Z'

Z''

par_rc.zFitResult

10-2 10-1 100 101 102 103 104 105103

104

Frequency (Hz)

|Z|

par_rc.zFitResult

10-2 10-1 100 101 102 103 104 105

-40

-30

-20

-10

0

Frequency (Hz)

the

ta

10-2 10-1 100 101 102 103 104 105103

104

Frequency (Hz)

|Z|

par_rc.zFitResult

10-2 10-1 100 101 102 103 104 105

-40

-30

-20

-10

0

Frequency (Hz)

the

ta

RS + RP RS

CP = (ω RP)-1

(RS + RP)/2

f

Zimg(max)

Zimg(max)

1·103 2·10

3 3·10

3 4·10

3 5·10

3 6·10

3

7·103

-6·103

-5·103

-4·103

-3·103

-2·103

-1·103

0

Zreal (Ω)

Zim

g (

Ω)

CP=(2πf1 (RS+RP))-1

f2 f1

RS + RP

RS

CP=(2πf2RS)-1

Pendiente -1

|Z| (Ω

)

10-2

10-1

100 10

1 10

2 10

3 10

4 10

5

f (Hz)

103

104

(

º)

f (Hz)

-40

-30

-20

-10

0 10

-2 10

-1 10

0 10

1 10

2 10

3 10

4 10

5

fθmax

Page 35: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

29

En la curva del módulo de la impedancia frente a la frecuencia es posible detectar dos

regiones, una dominada por elementos resistivos tales como Rs (resistencia de la

disolución) y Rp (resistencia de polarización), con una pendiente cero, y otra dominada

por los elementos capacitivos, caracterizada por una pendiente de valor -1.

1.3.1.4.3. Propiedades electrónicas de las vacantes anódicas y catódicas. Ensayos

Mott-Schottky

Desde el punto de vista del intercambio de electrones, las vacantes catódicas pueden ser

consideradas como aceptores de electrones y las vacantes anódicas como donadores

[57], de forma análoga a la interpretación del dopaje en los semiconductores. Para

explicar esta relación, se considera que la ausencia de un átomo de metal, en la red del

óxido, provoca una vacante catódica en la región de la imperfección. Los oxígenos

(muy electronegativos) alrededor de la vacante metálica, pueden servir de trampas de

electrones (deslocalizados) de la red del óxido; de esta forma una vacante catódica actúa

como un sitio aceptor. Por otro lado, una vacante de oxígeno, tiene a su alrededor,

cationes metálicos; sin embargo, estos cationes (poco electronegativos), no conservan

los electrones y pueden perderlos más fácilmente, por lo que las vacantes de oxígeno

actúan como donadores [58]. Con estas consideraciones sobre las vacantes metálicas y

de oxígeno, las películas de TiO2 originadas en la superficie de la aleación Ti6Al4V,

pueden ser caracterizadas mediante técnicas convencionales utilizadas en los

semiconductores, tales como las curvas Mott-Schottky, con el fin de determinar el tipo

de comportamiento semiconductor de la película pasiva, ya sea tipo n ó tipo p y las

características de sus portadores de carga [59].

Los ensayos Mott-Schottky se llevan a cabo para evaluar el comportamiento de la

capacidad interfacial de película semiconductoras (TiO2) en función del potencial en

corriente continua (potencial DC de polarización) [58].

El modelo Mott-Schottky, predice que si la película de óxido que se forma en la

superficie de un metal se comporta como un semiconductor, existirá una relación entre

la capacitancia de la región de carga espacial del film y el potencial aplicado, de

acuerdo con las ecuaciones (1.14) y (1.15) establecidas para semiconductores tipo n y

tipo p, respectivamente:

Page 36: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

30

(1.14)

(1.15)

donde CSC es la capacitancia de la región de carga espacial, q la carga eléctrica de los

portadores, ND y NA el número de portadores de carga donadores y aceptores

respectivamente, permitividad relativa del film, 0 permitividad del vacío, V el

potencial sobreimpuesto, VFB el potencial de banda plana del semiconductor, k la

constante de Boltzman y T la temperatura [60].

De acuerdo con la aproximación Mott- Schottky, cuando se representa 1/C2

SC frente a

V, la pendiente del tramo lineal de la gráfica será 2/ 0qND. Si el signo de la pendiente

de la recta es positiva, indica el decrecimiento de la capacidad cuando se incrementa el

potencial anódico por encima del potencial de banda plana, informando de que el film

generado en la superficie del semiconductor es de tipo n, en caso contrario será tipo p.

Además, cuando kT/q es insignificante, el potencial de banda plana puede ser obtenido

por extrapolación de la parte lineal del gráfico hasta 1/C2

SC = 0. Así pues, calcular con

precisión el valor ND dependerá en gran medida de la determinación de la correcta

relación entre CSC y V [60].

1.4. MÉTODOS DE EVALUACIÓN DE LA ADHESIÓN MICROBIANA

1.4.1. Modelos teóricos de adhesión microbiana

Como ya se ha indicado con anterioridad, el proceso infeccioso que puede tener lugar en

la superficie de un biomaterial comienza con la adhesión de microorganismos a la

superficie de éste. Además, está ampliamente reconocido que este proceso adhesivo se

inicia con interacciones de tipo no-específico entre las superficies del biomaterial y del

microorganismo donde las propiedades físico-químicas de ambos son decisivas para la

aproximación y posterior anclaje.

Existen tres teorías, que se basan en los cambios de la energía de Gibbs interfacial (ΔG),

para describir las interacciones iniciales microorganismo-substrato [61]. La primera de

ellas, en orden cronológico, es la aproximación termodinámica [62,63]. En ella se

considera que si dos superficies se ponen en contacto físico en condiciones de

Page 37: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

31

equilibrio, la intensidad de su interacción depende de los valores de la energía

superficial de Gibbs de las fases interactuantes.

La segunda de ellas se conoce como la teoría clásica de la estabilidad coloidal DLVO

(Derjaguin, Landau, Verwey y Overbeek) [64-67]. Esta teoría considera que la adhesión

de partículas cargadas a una superficie es el efecto de la unión de las fuerzas de largo

alcance de tipo Lifshitz-Van der Waals (LW) y las electrostáticas (EL) las cuales varían

en función de la distancia de separación partícula-superficie. Las fuerzas LW son

generalmente atractivas y tienen su origen en las interacciones polares entre las

moléculas que componen la superficie de las partículas coloidales y del substrato en el

medio de suspensión. Las fuerzas EL son el resultado del solapamiento entre las dobles

capas eléctricas que se forman en torno a las células y al substrato, como consecuencia

de la distribución, alrededor de su superficie, de los iones presentes en la disolución en

la que se encuentran inmersas. Según esta interpretación, la energía de interacción de

Gibbs (ΔGTOTAL

) entre dos superficies es la suma de la energía de interacción tipo

Lifshitz-Van der Waals (ΔGLW

) y la energía de interacción eléctrica (ΔGEL

).

(1.16)

Ambas aproximaciones han demostrado que son válidas para describir la adhesión

microbiana en un cierto número de casos, sin embargo, no han conseguido una

descripción generalizada válida para todos y cada uno de los sistemas microbianos [69].

El tercer modelo considerado fue propuesto por Van Oss y cols. [68,69] y se denomina

teoría DLVO extendida (XDLVO). Este modelo considera que la energía de interacción

de Gibbs (ΔGTOTAL

) es la suma de cuatro términos independientes: uno debido a

interacciones de tipo Lifshitz-Van der Waals (ΔGLW

), otro debido a fuerzas de tipo

eléctrico (ΔGEL

), otro debido al movimiento de agitación térmica de las partículas o

superficies interactuantes (movimientos browniano) (ΔGBR

) y otro debido a fuerzas de

corto alcance de tipo ácido-base (ΔGAB

).

(1.17)

Las fuerzas de tipo ácido-base tienen su origen en las interacciones entre las zonas de

carácter electrón-aceptor y electrón-donador de las moléculas polares que forman parte

de las superficies [70,71].

Page 38: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

32

A pesar de que las tres teorías son consecutivas en el tiempo, ninguna ha sustituido, en

el estricto sentido de la palabra, a las anteriores. Existen estudios en los que se

comprueba cómo cada una de ellas es capaz de describir casos concretos de bioadhesión

[72-75].

También hay que señalar que en otras ocasiones no se encuentra una relación directa

entre el proceso de adhesión in vitro y las predicciones teóricas de cualquiera de estas

tres aproximaciones de origen físico-químico. Dichas limitaciones se basan en la

diversidad de estructuras macromoleculares heterogéneas existentes en la superficie de

las células, las cuales hacen que una teoría, desarrollada para partículas coloidales,

supuestas esféricas y con distribución homogénea de carga, no refleje ciertos

mecanismos de adhesión más complejos que pueden surgir entre la superficie de un

microorganismo y la de un determinado substrato. Algunos de estos aspectos

específicos de la adhesión microbiana son:

El concepto de distancia de separación requiere una distinción exacta entre la

superficie de la partícula y el medio; sin embargo, en el caso de los

microorganismos elegir un punto de referencia para calcular la distancia de

separación, no resulta tan fácil. En algunas ocasiones los polímeros superficiales

suponen una dificultad para llegar al mínimo de energía primario ya que la

aproximación de las células a la superficie requiere su compresión [76].

Las expresiones que se utilizan para calcular las interacciones de tipo físico-

químico en función de la distancia de separación asumen que para toda distancia

de separación las interacciones células-substrato se llevan a cabo en equilibrio

termodinámico. Sin embargo, a medida que el microorganismo se aproxima a la

superficie, se requiere un cierto tiempo para que las macromoléculas de la

interfase se reorganicen y acondicionen a las configuraciones de menor energía

[77].

Las contribuciones por factores estéricos de las macromoléculas en la interfase

que pueden llegar a ser más decisivas que las fuerzas de origen físico-químico

[78].

Page 39: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

33

Los parámetros requeridos para la determinación de las fuerzas LW, AB y EL

pueden ser difíciles de estimar y en todo caso reflejan una propiedad promedio

de la superficie celular, mientras que las macromoléculas involucradas en el

contacto inicial pueden tener propiedades o fuerzas de interacción diferentes a

ese promedio [79].

Por estas razones no es sorprendente que el estudio físico-químico de la adhesión

proporcione resultados variados. En ningún caso se puede hablar de predicciones

cuantitativas de la adhesión microbiana, sino que nos debemos referir exclusivamente a

predicciones cualitativas de la misma [80,81].

1.4.1.1. Determinación de la energía de Gibbs de interacción.

A partir de los valores de la energía de Gibbs superficial de los microorganismos y

substratos, la determinación de las energías de interacción Lifshitz-Van der Waals,

ácido-base y eléctrica se basa en la aplicación de las ecuaciones descritas en la física de

coloides y que forman parte de la teoría de la estabilidad DLVO extendida. Por

consiguiente, los valores de ΔGLW, ΔG

AB y ΔG

EL se calculan a partir de las siguientes

expresiones:

(1.18)

Siendo A la constante de Hamaker,

a el radio del microorganismo,

d la distancia de separación microorganismo-sustrato y la energía de interacción a

la mímina distancia de separación, d0, calculada a través de las energías de Gibbs

superficiales,

(1.19)

Indicando los subíndices B, S, L, bacteria, sustrato y líquido de suspensión,

respectivamente.

Para la componente ácido-base:

(1.20)

Page 40: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

34

Siendo la energía de interacción AB a la distancia mínima de separación,

calculada a través de las energías de Gibbs superficiales,

2L B S L L B S L

AB

do

B B B B

G

(1.21)

Y para la componente eléctrica,

2 2

0 2 2

2 1 exp( )( ) ( ) ln ln(1 exp( 2 ))

1 exp( )

EL B Sr B S

B S

kdG d a kd

kd

(1.22)

siendo 0 y r las constantes dieléctricas del vacío y la relativa del medio, ζ el potential

zeta y k la constante de Boltzman.

1.4.2. Metodología empírica: Adhesión estática y dinámica

El estudio de la adhesión de microorganismos a diferentes substratos se realiza a través

de varias técnicas experimentales. La elección se basa en las ventajas que pueda aportar

una frente a otra cuando se trata de estudiar un aspecto concreto del proceso de

adhesión. Atendiendo a las características que presente su metodología, se pueden hacer

dos grandes grupos, los sistemas estáticos de adhesión y los de flujo o dinámicos. Los

primeros generalmente son sistemas cerrados en los cuales la suspensión que está en

contacto con el substrato permanece estacionaria o en agitación suave, permitiendo la

adhesión y, en ocasiones, el crecimiento de los microorganismos con pocas

fluctuaciones mecánicas y térmicas [82,83]. Los segundos [84,85] ofrecen la posibilidad

de controlar las condiciones hidrodinámicas en función de parámetros que determinan

los mecanismos de transporte de masa. En este segundo grupo, se contempla la

monitorización del proceso de adhesión además de la posibilidad de estudiar el

crecimiento de biocapas usando un flujo rico en nutrientes [86]. Esta técnica, también

ofrece la posibilidad de poder evaluar la fuerza de adhesión bacteriana al sustrato en el

que se adhiere, relacionándolo con el paso de interfases líquido-aire, una vez finalizado

el experimento de adhesión [87]. Son varios los sistemas de flujo que se emplean para el

estudio de la adhesión [88-90], desde el uso de cámaras de flujo (Fig 1.15) que albergan

Page 41: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

35

Fig 1.15. Cámara de flujo laminar con posibilidad de un único sustrato.

un único sustrato con el fin de poder visualizar mediante microscopía la cinética de

adhesión de las bacterias, hasta el uso de dispositivos de Robbins (Fig 1.16), capaces de

estudiar simultáneamente la afinidad bacteriana a distintos biomateriales que hayan sido

sometidos a diferentes tratamientos superficiales.

Fig 1.16. Dispositivo de Robbin con posibilidad de hasta 9 sustratos.

En los sustratos que presentan unas propiedades adecuadas para poder observar con

microscopia óptica las bacterias adheridas, la cuantificación de la adhesión bacteriana se

realiza por conteo sobre las imágenes obtenidas. Sin embargo este método está limitado

por las características del material. En aquellos casos en que no es posible el uso de esta

técnica directa, se emplean métodos bioquímicos o de recuento en placa de cultivo

bacteriano que tienen el inconveniente de que precisan una manipulación importante

Page 42: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

36

sobre la muestra, provocando que se infraevalúe la adhesión debido a que en el proceso

las bacterias más débilmente adheridas se despeguen del sustrato.

Los métodos de tinción o colorimétricos más estándares incluyen la tinción de Gram,

empleando cristal violeta o safranina si la cepa es Gram positiva o Gram negativa,

respectivamente. Este método no es aplicable si la adhesión está producida por cepas

productoras de biocapa, dado que el colorante no es capaz de penetrar en el interior de

la biocapa quedando sin teñir las bacterias embebidas. En estos casos se emplean

métodos de bioluminiscencia, que permite estimar el número de bacterias presentes en

función del ATP producido. Las bacterias que producen CO2 como producto de su

metabolismo pueden ser cuantificadas por radiometría, que es una técnica relativamente

rápida.

Entre los métodos de tinción, es interesante destacar aquellos que además de informar

sobre el número de bacterias adheridas, permiten conocer la viabilidad de las células

tras el experimento. Estos incluyen el uso de dos moléculas con fluoróforos que tienen

diferente respuesta frente a las bacterias, por ejemplo, una de las moléculas penetra las

células independientemente de cómo se encuentra su pared, marcándolas con una

tonalidad verdosa, sin embargo el otro es capaz de penetrar solo en células cuya pared

esté suficientemente dañada marcándolas con una tonalidad anaranjada-rojiza,

reduciendo el otro fluoróforo que previamente ha sido penetrado.

También es posible cuantificar las bacterias adheridas a un sustrato extrayéndolas de la

superficie sonicando la muestra adecuadamente. Para realizar el recuento de las

bacterias viables extraídas, se utiliza el método de recuento en placas de cultivo por

diluciones seriadas, que consiste en transferir a un tubo de ensayo, al que previamente

se ha añadido un volumen concreto de solución fisiológica, un cierto volumen de la

suspensión sonicada, consiguiendo la primera dilución 10-1

, a continuación se repite el

proceso extrayendo de este tubo de ensayo un cierto volumen a otro tubo de ensayo al

que previamente se ha añadido un volumen concreto de solución fisiológica,

consiguiendo así la segunda dilución 10-2

, repitiendo el proceso tantas veces hasta

conseguir el orden de dilución deseado. A continuación, se transfiere de cada uno de los

tubos de ensayo una pequeña cantidad a placas de agar y se esparce con una espátula de

Driglasky estéril. Finalmente, después del periodo de incubación es posible observar las

Page 43: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

37

colonias bacterianas sobre la superficie del agar en forma de unidades formadoras de

colonias (UFC). Usualmente una UFC se corresponde con una célula viable [91].

Hay que destacar, que aunque el investigador opte por una técnica u otra en base a las

características de su experimento, en algunas ocasiones una combinación de

metodologías permite entender mejor el sistema de estudio.

1.5. OBJETIVO

Esta tesis se presenta con dos objetivos fundamentales. El primero de ellos es la

caracterización de la superficie del biomaterial Ti6Al4V a través de su hidrofobicidad,

energía libre de Gibbs, potential zeta y propiedades electroquímicas tanto en su estado

original al recibirse del suministrador, como tras ser modificada mediante dos técnicas,

implantación iónica e irradiación UV, evaluándose los cambios que aportan tales

alteraciones.

El segundo objetivo analizará los beneficios que dichas modificaciones introducen en

diferentes procesos de adhesión bacteriana, con cepas de las familias Staphylococcus

epidermidis y Staphylococcus aureus, responsables de un alto porcentaje de infecciones

nosocomiales en implantes metálicos. Para ello se emplearán distintos tests de adhesión,

tanto estáticos como dinámicos, y se realizará un enfoque que englobe la interacción

bacteria-sustrato y la capacidad bactericida de las superficies modificadas.

1.6. BIBLIOGRAFÍA

[1] Costerton JW, Stoodley P, Shirtliff ME, Pasmore M, Cook G, in Ratner BD,

Hoffman AS, Schoen FJ, Lemons JE (Eds.), Biomaterials Science, Elsevier Academic

Press, San Diego, USA, 2004.

[2] Williams, DF, Definitions in Biomaterials. Proceedings of a Consensus Conference

of the European Society for Biomaterials, Chester, England, March 3–5, Vol. 4,

Elsevier, New York,1986.

[3] Vila J, Soriano A, Mensa J. Bases moleculares de la adherencia microbiana sobre los

materiales protésicos. Papel de las biocapas en las infecciones asociadas a los materiales

protésicos. Enfer. Infecc. Microbiol. Clin. 2008;26(1):48-55.

Page 44: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

38

[4] Savage DC, Fletcher M, Bacterial adhesion. Mechanisms and physiological

significance, Plenum Press, New York, NY, USA, 1985.

[5] Nikolaev YA, Plakunov VK. Biofilm—“City of Microbes” or an Analogue of

Multicellular Organisms? Microbiology 2007;76:125–138

[6] Watnick P, Kolter R. Biofilm, city of microbes. J. Bacteriol. 2000;182:2675–2679

[7] Parsek MR, Fuqua C. Biofilms 2003: emerging themes and challenges in studies of

surface-associated microbial life. J. Bacteriol. 2004;186:4427-4440.

[8] Lasa I, Del Pozo JL, Penadés JR, Leiva J. Bacterial biofilms and Infection. An. Sist.

Sanit. Navar. 2005;28:163-175

[9] Jiang X, Pace JL, Microbial biofilms, in Pace JL, Rupp ME, Finch RG (Eds.),

Biofilms, Infection and Antimicrobial Therapy, Taylor and Francis, Boca Raton FL,

USA, 2006.

[10] Gristina AG, Naylor PT, Webb LX. Molecular mechanisms in musculoskeletal

sepsis: the race for the surface. Instr. Course Lect. 1990;39:471-482.

[11] Kasemo B, Gold J. Implant surfaces and interface processes. Adv. Dent. Res.

1999;13:8-20.

[12] Kasemo B, Lausmaa J. Biomaterial and implant surfaces: A surface science

approach. Int. J. Oral Maxillofac. Implants 1988;3:247-259.

[13] Rodil SE. Modificación superficial de biomateriales metálicos. Revista

Latinoamericana de metalurgia y materiales 2009;29(2):67-83

[14] Leonard EF, Vroman LJ. Is the Vroman effect of importance in the interaction of

blood with artificial materials? Biomater. Sci. Polym. Ed. 1991;3(1): 95-107.

[15] Van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ. Influence of interfaces on

microbial activity. Microbiol. Mol. Biol. R. 1990;54(1):75- 87.

[16] Arciola CR, Bustanji Y, Conti M, Campoccia D, Baldassarri L, Samorì B,

Montanaro L. Staphylococcus epidermidis-fibronectin binding and its inhibition by

heparin. Biomaterials 2003;24:3013-3019.

Page 45: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

39

[17] Kanzaki H, Arata J. Role of fibronectin in the adherence of Staphylococcus aureus

to dermal tissues. J. Dermatol. Sci. 1992;4:87-94.

[18] Monroe D, Looking for Chinks in the Armor of Bacterial Biofilms. PLoS Biol,

2007:5,307-311.

[19] Miller MB, Bassler BL. Quorum sensing in bacteria. Annu. Rev. Microbiol.

2001;55:165-199.

[20] Voung C, Gerke C, Somerville GA, Fischer ER, Otto M. Quorum-sensing control

of biofilm factors in Staphylococcus epidermidis. J. Infect. Dis. 2003;188(5):706-718.

[21] Black J, Hastings G, Handbook of Biomaterial properties, in Black J, Hastings G

(Eds.), Titanium and titanium alloys, Chapman & Hall, London, UK, 1998, p. 179-200.

[22] Oldani CR, Domínguez AA. Simulación del comportamiento mecánico de un

implante de cadera. XV Congreso argentino de Bioingeniería, Universidad Nacional de

Córdoba, Argentina, 2005.

[23] Welsh G, Boyer R, Collins EW, Material properties Handbook: Titanium alloys,

ASM Ohio, USA, 1994.

[24] Rossetti F, Can atomically flat titanium oxide surfaces be prepared by the template

stripping method? [PhD Thesis], Laboratory of Surface Science and Technology, ETH

Zürich, Switzerland, 2001.

[25] Kasemo B, Gold J. Implant surfaces and interface processes. Adv. Dent. Res.

1999;13:8-20.

[26] Jäger M, Zilkens C, Zanger K, Krauspe R. Significance of nano- and

microtopography for cell-surface interactions in orthopaedic implants. J. Biomed.

Biotechnol. 2007;2007:69036-69055.

[27] Andersson AS, Backhed F, von Euler A, Richter-Dahlfors A, Sutherland D,

Kasemo B. Nanoscale features influence epithelial cell morphology and cytokine

production. Biomaterials 2003;24:3427-3436.

Page 46: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

40

[28] Bigerelle M, Anselme K, Noel B, Ruderman I, Hardouin P, Iost A. Improvement

in the morphology of Ti-based surfaces: a new process to increase in vitro human

osteoblast response. Biomaterials 2002;23:1563-1577.

[29] Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD. Requirement for Both

Micron and Submicron Scale Structure for Synergistic Responses of Osteoblasts to

Substrate Surface Energy and Topography. Biomaterials 2007;28:2821-2829.

[30] Lim JY, Dreiss AD, Zhou Z, Hansen JC, Siedlecki CA, Hengstebeck RW, Cheng J,

Winograd N, Donahue HJ. The regulation of integrin-mediated osteoblast focal

adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials

2007;28:1787-1797.

[31] Katsikogianni M, Missirlis YF, Katsikogianni M, Missirlis YF. Concise review of

mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating

bacteria-material interactions. European Cells and Materials 2004;8:37-57.

[32] Terada A, Yuasa A, Tsuneda S, Hirata A, Katakai A, Tamada M. Elucidation of

dominant effect on initial bacterial adhesion onto polymer surfaces prepared by

radiation-induced graft polymerization. Colloids Surf.B: Biointerfaces 2005;43:99–107.

[33] Lao LL, Venkatraman SS. Adjustable paclitaxel release kinetics and its efficacy to

inhibit smooth muscle cells proliferation. J. Control. Release 2008;130:9-14.

[34] Kathuria YP. Some aspects of drug eluting stents. Int. J. Cardiol. 2007;119:380-

383.

[35] Wykrzykowska JJ, Onuma Y, Serruys PW. Advances in stent drug delivery: the

future is in bioabsorbable stents. Expert. Opin. Drug Deliv. 2009;6:113-126.

[36] Diaz C, Lutz J, Mandl S, Garcia JA, Martinez R, Rodriguez RJ. Rodríguez,

Improved tribocorrosion of biomedical alloys by Ion implantation techniques. Nucl.

Instrum. Meth. B 2009;267:1630-1633.

[37] Variola F, Vetrone F, Richert L, Jedrzejowski P, Yi JH, Zalzal S, Clair S,

Sarkissian A, Perepichka DF, Wuest JD, Rosei F, Nanci A. Improving biocompatibility

of implantable metals by nanoscale modification of surfaces: an overview of strategies,

fabrication methods, and challenges. Small 2009;5:996-1006.

Page 47: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

41

[38] Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA. Nanotechnology in

regenerative medicine: The material side. Trends Biotechnol. 2008;26:39-47.

[39] Denkbas EB, Vaseashta A. Nanotechnology in Medicine and Health Sciences.

Nano 2008;3:263-269.

[40] Israelachvili J, Intermolecular and surface forces, Academic Press Limited,

London, UK, 1992.

[41] Van Oss CJ, Gillman CF, Newmann AW. The hydrophobic effect: essentially a

Van der Waals interaction. Colloid. Polym. Sci. 1980;258:424-427.

[42] Duncan-Hewitt WC, Nature of the hydrophobic effect, in Doyle RJ, Rosenberg M

(Eds.), Microbial cell surface hydrophobicity. ASM Publications, Washington DC,

USA, 1990, p 39-73.

[43] Ducker WA, Xu Z, Israelachvili JN. Measurements of hydrophobic and DLVO

forces in bubble-surface interactions in aqueous solutions. Langmuir 1994;10: 3279-

3289.

[44] Wood J, Sharma R. How long is the long-range hydrophobic attraction? Langmuir

1994;11: 4797-3289.

[45] Van Oss CJ, Interfacial forces in aqueous media, Marcel Dekker, New York, NY,

USA, 1994.

[46] Donoso MG. Energía libre superficial de biomateriales metálicos: Diferentes

aproximaciones a partir de la goniometría de ángulo de contacto [Master Degree].

Departamento de Física. Universidad de Extremadura, Badajoz, Spain, 2004.

[47] Wai-Kin Liu. Mechanisms of the bactericidal activity of low amperaje electric

current (DC). Journal of Antimicrobial Chemotherapy 1997;39:687-695.

[48] Liu, W-K. The effects of electric current on bacteria colonising intravenous

catheters. Journal of Infection 1993;27:261–269.

[49] Landolt, D. Corrosion and surface chemistry of metals, EPFL Press, Lausanne,

Switzerland, 2007.

Page 48: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

42

[50] Pedraza Avella JA, Acevedo Peña P, Pedraza Rosas JE. Photocatalytic oxidation of

cyanide on TiO2: An electrochemical approach. Catal. Today 2008;133-135:611-618;

[51] Leng WH, Zhang Z, Zhang JQ, Cao CN. Investigation of the kinetics of a TiO2

photoelectrocatalytic reaction involving charge transfer and recombination through

surface states by electrochemical impedance spectroscopy. J Phys. Chem. B

2005;109:15008-15023.

[52] ASTM G-15, Standard Terminology Relating to Corrosion and Corrosion Testing,

2004.

[53] Stern M, Geary AL. Electrochemical Polarization: I. A theoretical analysis of the

shape of polarization curves. J. Electrochem. Soc. 1957;104(1):56-53.

[54] Macdonald JR, Johnson WB, Fundamentals of impedance spectroscopy.

Barsoukov E, Macdonald JR (Eds.), Impedance Spectroscopy. Theory, experiment and

applications (2nd

Edition), John Wiley & Sons Inc., New Jersey, USA, 2005, pp. 1-26

[55] Boukamp BA. A package for impedance/admittance analysis. Solid State Ionics

1986;18:136-140.

[56] Macdonald JR, Potter LD. A flexible procedure for analyzing impedance

spectroscopy results: Description and illustrations. Solid State Ionics 1987;24:61-79.

[57] Sikora E, Sikora J, Macdonald DD. A new method for estimating the diffusivities

of vacancies in passive films. Electrochim. Acta, 1996:41;783-789.

[58] Morrison SR, Electrochemistry at semiconductor and oxidized metal electrodes,

Plenum Press, New York, USA, 1980.

[59] Vázquez Huerta G, Caracterización de películas de óxidos crecidos

potenciostáticamente sobre superficies de Nb, Ta y W en medio ácido y alcalino [PhD

Thesis], Departamento de Química, Área de Electroquímica, México DF, México, 2008.

[60] Harrington SP, Devine TM. Analysis of electrodes displaying frequency dispersion

in Mott-Schottky tests. J. Electrochem. Soc. 2008;155(8):381-386.

Page 49: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

43

[61] Bos R, Van der Mei HC, Busscher HJ. Physico-chemistryof inicial microbial

adhesive interactions – its mechanisms and mhetods fot study. FEMS Microbiol. Rev.

1990;23:179-230.

[62] Absolom DR, Lamberti FV, Policova Z, Sing W, Van Oss CJ, Neumann AW.

Surface thermodynamics of bacterial adhesion. Appl. Environ. Microb. 1983;46:90-97.

[63] Busscher HJ, Weerkamp AH, Van der Mei HC, Van Pelt AWJ, de Jong HP,

Arends J. Measurement of the surface free energy of bacterial cell surfaces and its

relevance for adhesion. Appl. Environ. Microb. 1984:48:980-983.

[64] Derjaguin BV, Landau LD. Theory of the stability of strongly charged lyophobic

sols and the adhesion of strongly charged particle in solutions of electrolytes. Acta

Phys. Chim. USRR 1941;14:633-662.

[65] Verwey EJW, Overbeek GTG, Theory of stability of lyophobic colloids, Elsevier,

Amsterdam, Holland, 1948.

[66] Rutter PR, Vincent B, The adhesion of micro-organisms to surfaces: physico-

chemical aspects, in Berkeley RCW, Lynch JM, Melling J, Rutter PR, Vincent B (Eds.),

Microbial adhesion to surfaces, Ellis Horwood Limited, London, UK, 1980.

[67] Tadros ThF. Particle-surface adhesion, in Berkeley RCW, Lynch JM, Melling J,

Rutter PR, Vincent B (Eds.), Microbial adhesion to surfaces, Ellis Horwood Limited,

London, UK, 1980.

[68] Van Oss CJ, Good RJ, Chaudhury MK. Additive and nonadditive surface tensions

components and the interpretation of contact angles. Langmuir 1988;4:884-891.

[69] Van Oss CJ, Good RJ, Chaudhury MK. The role of Van der Waals forces an

hydrogen bonds in hydrophobic interactions between biopolymers and low energy

surfaces. J Colloid Interf. Sci. 1986;111:378-390.

[70] Wood J, Sharma R. How long is the long-range hydrophobic attraction? Langmuir

1995;11:4797-4802.

[71] Elimelech M. Indirect evidence for hydratation forces in the deposition of

polystyrene latex colloids on glass surfaces. J. Chem. Soc. Faraday T. 1990;86:1623-

1624.

Page 50: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

44

[72] Briandet R, Herry HM, Bellon-Fontaine MN. Determination of the Van der Waals,

electron donor and electron acceptor surface tension components of static gram-positive

microbial biofilms. Colloid Surface B 2001;21:299-310.

[73] Millsap KW, Bos R, Busscher HJ, Van der Mei HC. Surface aggregation of

Candida albicans on glass in the absence and presence of adhering Streptococcus

gordonii in a parallel-plate flow chamber: a surface thermodynamical analysis based on

acid-base interactions. J. Colloid Interf. Sci 1999;212:495-502.

[74] Poortinga AT, Bos R, Busscher HJ. Electrostatic interactions in the adhesion of an

ionpenetrable and an ion-impenetrable bacterial strains to glass. Colloid Surface B

2001;20:105-117.

[75] Hayashi H, Tsuneda S, Hirata A, Saaki H. Soft particle analysis of bacterial cells

and its interpretation of cell adhesión behaviours in terms of DLVO theory. Colloid

Surface B 2001;22:149-157.

[76] Jucker BA, Zehnder AJB, Harms H. Quantification of polymer interactions in

bacterial adhesion. Environ. Sci. Technol. 1998;32:2909-2915.

[77] Klein J, Luckham P. Forces between two adsorbed polyethylene oxide layers

immersed in a good aqueous solvent. Nature 1982;300:429-421.

[78] de Gennes PG. Model polymers at interfaces, in Bongrad P. (Ed.), Physical basis of

cell-cell adhesion, CRC Press, Boca Raton, FL, USA, 1988.

[79] Dickinson RB, Nagel JA, McDevitt D, Foster TJ, Proctor RA, Cooper SL.

Qualitative comparision of clumping factor and coagulase-mediated Staphylococcus

aureus adhesion to surface-bound fibrinogen under flow. Infect. Immun. 1995;63:3143-

3150.

[80] Gallardo-Moreno AM, Méndez-Vilas A, González-Martín ML, Nuevo MJ, Bruque

JM, Garduño E, Pérez-Giraldo C. Comparative study of the hydrophobicity of Candida

parapsiolis 294 through macroscopic and microscopic analysis. Langmuir

2002;18:3639-3644.

Page 51: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

45

[81] Van der Mei HC, Wwerkamp AH, Busscher HJ. A comparison of various methods

to determine hydrophobic properties of streptococcal cell curfaces. J. Microbiol. Meth.

1987;6:277-287.

[82] Lyklema J, Norde W, Van Loosdrecht MCM, Zehnder AJB. Adhesion of bacteria

to polystyrene surfaces. Colloid Surface 1989;39:175-187.

[83] Reid G, Beg HS, Preston CAK, Hawthorn LA. Effect of bacterial, urine and

substratum surface tension properties on bacterial adhesion to biomaterials. Biofouling

1991;4:171-176.

[84] Rijnaarts HHM, Norde W, Bouwer EJ, Lyklema J, Zehnder AJB. Bacterial

adhesion under static and dynamic conditions. Appl. Environ. Microb. 1993;59: 3255-

3265.

[85] Yang J, Bos R, Belder GF, Engel J, Busscher HJ. Deposition of oral bacteria and

polystyrene particles to quartz and dental enamel in a parallel plate and stagnation point

flow chamber. J. Colloid Interf. Sci. 1999;220:410-418.

[86] Chavant P, Gaillard-Martinie B, Talon R, Hébraud M, Bernardi T. A new device

for rapid evaluation of biofilm formation potential by bacteria. J. Microbiol Meth.

2007;68:605-612.

[87] Gallardo Moreno AM, Pacha-Olivenza MA, Saldaña L, Pérez-Giraldo C, Bruque

JM, Vilaboa N, González-Martín ML. In vitro biocompatibility and bacterial adhesion

of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta

biomaterialia 2009;5:181-192.

[88] Bos R, de Jonge HH, Van de Belt-Gritter B, de Vries J, Busscher HJ. Interaction of

two oral streptococcal strains with physicochemical characterized fluorosilane diffusion

gradient surfaces. Langmuir 2000;16:2845- 2850.

[89] Duddridge JA, Kent CA, Laws JF. Effect of surface shear stress on the attachment

of Pseudomonas fluorescens to stainless steel under defined flow conditions.

Biotechnol. Bioeng. 1982;24:153-164.

Page 52: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

46

[90] Pedersen K, Holmström C, Olsson AK, Pedersen A. Statistic evaluation of the

influence of species variation, culture conditions, surface wettability and fluid shear on

attachment and biofilm development of marine bacteria. Arch. Microbiol. 1986;145:1-8.

[91] NCCLS, Methods for dilution antimicrobial susceptibility test for bacteria that

grow aerobically - Sixth edition: approved atandard M7-A6. NCCLS, Waune, PA,

USA, 2003.

Page 53: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

47

MODIFICACIÓN SUPERFICIAL BASADA EN

IMPLANTACIÓN CON SILICIO

Page 54: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

48

CAPÍTULO 2

Si+ ion implantation reduces the bacterial

accumulation on the Ti6Al4V surface

Este capítulo es una reproducción de la publicación: "A.M. Gallardo-Moreno, M.A.

Pacha Olivenza, J. Perera-Núñez, J.L. González-Carrasco, M.L. González-Martín.

Journal of Physics: Conference Series 2010;252:012017" realizada en colaboración con

el grupo del Dr. J.L. González-Carrasco del Centro Nacional de Investigaciones

Metalúrgicas, CENIM-CSIC (Madrid).

Page 55: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

49

ABSTRACT

Ti6Al4V is one of the most commonly used biomaterials in orthopedic applications due

to its interesting mechanical properties and reasonable biocompatibility. Nevertheless,

after the implantation, microbial adhesion to its surface can provoke severe health

problems associated to the development of biofilms and subsequent infectious

processes. This work shows a modification of the Ti6Al4V surface by Si+ ion

implantation which reduces the bacterial accumulation under shear forces. Results have

shown that the number of bacteria remaining on the surface at the end of the adhesion

experiments decreased for silicon-treated surface. In general, the new surface also

behaved as less adhesive under in vitro flow conditions. Since no changes are observed

in the electrical characteristics between the control and implanted samples, differences

are likely related to small changes observed in hydrophobicity.

2.1. INTRODUCTION

Bacteria prefer a community-based surface-bound, sedentary lifestyle to a nomadic

existence. There may be an obvious explanation for bacterial adhesion, because

nutrients in an aqueous environment tend to concentrate near a solid surface [1].

As an oversimplified rule of thumb, primary adhesion between bacteria and abiotic

surfaces is generally mediated by nonspecific interactions, whereas adhesion to living or

devitalized tissue is accomplished through specific molecular (lectin, ligand or

adhesion) docking mechanisms. Primary adhesion is reversible and defines the further

adhesion between the bacterial cell surface and the conditioned surface of interest. Once

the microorganisms reach critical proximity to the surface, the final determination of

adhesion depends on the net sum of attractive or repulsive forces generated between

both surfaces, including electrostatic and hydrophobic interactions [2].

The ability to control microbial adhesion is of enormous importance in healthcare,

particularly in modern surgery where postoperative implant-associated infections are

still an unresolved and serious complication. This challenge is compounded by the ever-

increasing problem of antibiotic resistant hospital and community acquired infections

[3, 4]. For this reason new strategies are focused on minimizing microbial surface

colonization by modifying the biomaterial surface and antibacterial coatings of Ti6Al4V

have been recently proposed by different research groups [5-7].

Page 56: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

50

In this line, this work shows a new modification of the Ti6Al4V surface by Si+ ion

implantation which reduces the bacterial accumulation under in vitro flow conditions.

Surface characterization is carried out by means of hydrophobicity and isoelectric point.

2.2. MATERIALS AND METHODS

2.2.1. Ti6Al4V surface modification

Ion implantation was carried out by using a F4Si precursor on the surface of 20 mm

diameter disks of Ti6Al4V kindly supplied by Surgival SA, Spain. Ti6Al4V without

implantation will be denoted as “control” and Ti6Al4V implanted will be denoted as

“implanted”.

2.2.2. Surface characterization

Hydrophobicity: It was quantified through the water contact angle (θW) on the sample

surface.

Surface Gibbs Energy: It was evaluated from the contact angles of water, formamide

(F) and diiodomethane (D) by applying the Young Equation [8] and Van Oss approach

[9]. The surface Gibbs energy (Total

) was the sum of the Lifshitz-van der Waals

component (LW

) and acid-base component (AB

) which, in turn, is the geometric mean

of the electron-donor (-) and electron-acceptor (

+) parameters.

Isoelectric point: zeta potential () was measured as pH function and isoelectric point

(IEP) was obtained as the pH at which was zero [10].

2.2.3. Bacterial strains

Three gram-positive strains with different EPS-production were used: Staphylococcus

aureus ATCC29213 (S. aureus), Staphylococcus epidermidis ATCC35984 (S.

epidermidis4), Staphylococcus epidermidis HAM892 (S. epidermidis2).

2.2.4. Adhesion experiments

Bacterial adhesion experiments were carried out at 37 ºC in a parallel plate flow

chamber and the results were analysed in terms of flow or static conditions by selecting

a constant flow rate or stopping the bacterial flow. Different protocols were followed:

Dynamic adhesion: the flow chamber was placed so that the alloy surface was on the

top side of the flow channel and the bacteria were allowed to attach while flowing at a

Page 57: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

51

constant rate for 20 min. The number of bacteria at the end the experiments dynamic

was denoted by ND-20min. It was also analysed the initial adhesion rate to the surface (jD).

Static adhesion: the sample was placed on the bottom side of the flow channel, the flow

was stopped and the bacteria were left to deposit on the surface for different time

interval periods. Static adhesion rates (jS) were obtained and compared to that of

dynamic.

Shear forces: At the end of the experiments two consecutive air-liquid interfaces were

passed through the flow channel and the number of bacteria remaining on the surface

were analysed in order to check the strength of the bacterial retention.

2.3. RESULTS AND DISCUSSION

Table 2.1 shows the surface characterization of both control and implanted samples.

There are small changes in contact angles but the implanted surface is slightly more

hydrophilic than the control. This also implies a higher polarity of the treated surface

since the polar liquids (W, F) present lower contact angles and AB

is higher. There is no

difference between samples in the IEP within experimental error.

Fig. 2.1 presents interesting information from the bacterial adhesion tests. It is observed

that initial adhesion rates to control and implanted are not statistically different (Fig.

2.1a). Only in the case of S. epidermidis2 a decrease in jD is observed in the implanted

sample respect to control. This strain also presents the highest decrease in the final

number of adhered bacteria after dynamic experiments (Fig. 2.1b). ND-20min also

diminishes for S. aureus in the implanted. Information provided by static experiments

are different to that of dynamic, as showed when comparing Figs 2.1a and 2.1c. jS is

always higher than jD, indicating that static adhesion is highly influenced by

sedimentation processes. Relationships between control and implanted in both

experiments are also different. In the case of static adhesion Si+ ion implantation never

reduces adhesion (Fig. 2.1c) on the contrary; it is increased for both strains of S.

epidermidis. An interesting observation is that after the passage of two air-liquid

interfaces the bacterial detachment is more effective in silicon-treated surface than in

control (Fig. 2.1d), which could enhance the applicability of this technique in those

orthopaedic applications in which shear forces are present.

Page 58: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

52

Table 2.1. Contact angles of water (θW), formamide (θF) and diiodomethane (θD), Lifshitz-Van

der Waals (LW) and acid-base (AB

) components as well as electron-acceptor (+) and electron-

donor (-) parameters and the total surface Gibbs energy (Total

) for control and implanted

samples. Isoelectric points (IEP) are also represented.

Contact Angle Surface Gibbs Energy IEP

W F D LW

AB

+

-

Total

Control 58.6

±1.8

48.7

±1.6

40.6

±1.4

32.4

±0.7

8.1

±1.7

0.7

±0.2

24

±3

40.5

±2.4

5.5

±0.9

Implanted 53.5

±0.7

42.5

±0.7

38.3

±0.7

33.1

±0.6

10.9

±0.8

1.14

±0.11

26.1

±1.1

44.0

±1.4

4.8

±0.8

Fig. 2.1. Bacterial adhesion experiments. jD: initial dynamic adhesion rate locating the sample

at the top of the flow channel (a). ND-20min: number of adhered bacteria at the end of the dynamic

adhesion experiment (b). jS: static adhesion rate locating the sample at the bottom of the flow

channel (c). Percentage of remaining bacteria after passing two air-liquid interfaces (d).

Relationships between physico-chemical surface parameters and bacterial adhesion have

been extensively studied [2, 7, 11]. However it is difficult to establish the exact

contribution of each magnitude to any particular adhesion process involving

microorganisms. Electrostatic interactions tend to favor repulsion, because most

bacteria and inert surfaces are negatively charged. Stenotrophomonas maltophilia is one

exception to this rule, and the overall positive surface charge of this organism, at

physiological pH can promote primary adhesion to negatively charged materials such as

0

2

4

6

8

10

12

1 2 3

ND

-20m

in (

ba

cte

ria

/cm

2)·

10

-4

control

implanted

S. aureus S. epidermidis2 S. epidermidis4

(b)

ND

.20

min

(b

acte

ria

/cm

2)x

10

-4

0

100

200

300

400

500

600

700

800

900

1000

1 2 3

j S (

ba

cte

ria

/cm

2 s

)

control

implanted

(c)

j S (

ba

cte

ria

/cm

2s)

S. aureus S. epidermidis2 S. epidermidis4

0

50

100

150

200

250

1 2 3

j D (

ba

cte

ria

/cm

2 s

)

control

implanted

j D (

bacte

ria

/cm

2s)

(a)

S. aureus S. epidermidis2 S. epidermidis4

0

20

40

60

80

100

120

1 2 3

Rem

ain

ing

bacte

ria a

fter

air

-liq

uid

sh

ear

forc

es (

%) control

implanted

(d)

Rem

ain

ing

bacte

ria

aft

er

Air

-liq

uid

sh

ear

force

s (%

)

S. aureus S. epidermidis2 S. epidermidis4

Page 59: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

53

Teflon [12]. In our case, the IEP obtained for both surfaces indicates that they are

negatively charged at physiological pH (about pH=7). As indicated by different research

groups, hydrophobic-hydrophilic interactions probably have greater influence on the

outcome of primary adhesion [7, 13, 14]. In the present research the small changes in

the hydrophobicity of the surface after implantation seems to be related to the lower

retention of the three strains (Fig. 2.1d). Silicon-treated surface become more

hydrophilic and this means a higher affinity for water under shear conditions, reducing

the final bacterial accumulation on the surface.

2.4. REFERENCES

[1] Dunne WMJr. Bacterial adhesion: seen any good biofilms lately?. Clin.

Microbiol. Rev. 2002;15:155-166.

[2] An Y H, Friedman R J (ed) Handbook of bacterial adhesion: principles, methods

and applications. Humana Press, Totowa, NJ, 2000.

[3] Gould IM. Costs of hospital-acquired methicillin-resistant Staphylococcus aureus

(MRSA) and its control. Int. J. Antimicrob. Ag. 2006;28:379-384.

[4] Moellering RCJr. The growing menace of community-acquired methicillin-

resistant Staphylococcus aureus. Ann. Intern. Med.2006;144:368-370.

[5] Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G,

Gollwitzer H. A novel antibacterial titania coating: metal ion toxicity and in vitro

surface colonization. J. Mater. Sci. 2005;16:883-888.

[6] Sarró MI, Moreno DA, Ranninger C, King E, Ruiz J. Influence of gas nitriding of

Ti6Al4V alloy at high temperature on the adhesion of Staphylococcus aureus.

Surf. Coat. Technol. 2006;201:2807-2812.

[7] Gallardo-Moreno AM, Pacha-Olivenza MA, Saldaña L, Pérez-Giraldo C, Bruque

JM, Vilaboa N, González-Martín ML. In vitro biocompatibility and bacterial

adhesion of physico-chemically modified Ti6Al4V surface by means of UV

irradiation. Acta Biomater. 2009;5:181-192.

[8] Young T. An essay on the cohesion of fluids. Philos. Trans. R. Soc. London

1805;95:65-87.

Page 60: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

54

[9] Van Oss CJ. Interfacial forces in aqueous media. Marcel Dekker, New York,1994.

[10] Shaw DJ. Introduction to colloid and surface chemistry. Butterworths,

London,1989.

[11] Bos R, Van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial

adhesive interactions – its mechanisms and methods for study. FEMS Microbiol.

Rev. 1999;23:179-230.

[12] Jucker BA, Harms H, Zehnder JB. Adhesion of the positively charged bacterium

Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J.

Bacteriol. 1996;178:5472-5479.

[13] De Morais LC, Bernardes-Filho R, Assais OBG. Wettability and bacteria

attachment evaluation of multilayer proteases biofilm for sensor application.

World J. Microb. Biot. 2009;25:123–129.

[14] Mazumder S, Falkinham JO, Dietrich AM, Puri IK. Role of hydrophobicity in

bacterial adherence to carbon nanostructures and biofilm formation. Biofouling

2010;26:333-339.

Page 61: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

55

MODIFICACIÓN SUPERFICIAL BASADA EN

IRRADIACIÓN CON LUZ UV-C

Page 62: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

56

CAPÍTULO 3

Effect of UV irradiation on the surface Gibbs

energy of Ti6Al4V and thermally oxidized

Ti6Al4V

Este capítulo es una reproducción de la publicación: "M.A. Pacha Olivenza, A.M.

Gallardo-Moreno, A. Méndez-Vilas, J.M. Bruque, J.L. González-Carrasco, M.L.

González-Martín. Journal of Colloid and Interface Science 2008;320:117-124",

realizada en colaboración con el grupo del Dr. J.L. González-Carrasco del Centro

Nacional de Investigaciones Metalúrgicas, CENIM-CSIC (Madrid).

Page 63: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

57

ABSTRACT

Thermal oxidation of Ti6Al4V increases thickness, modifies the structure, and changes

the amount of alloying elements of the surface titanium dioxide layer in respect to the

spontaneous passive layer of Ti6Al4V. The effect on the surface properties of Ti6Al4V

and thermally oxidized Ti6Al4V after different periods of UV irradiation have been

studied by the measurement of water, formamide and diiodomethane contact angles.

The rate of modification of the water contact angle with the irradiation time is

dependent on the surface treatment, but the water adhesion work, after an initial

energetic step, follows a similar trend for both. Application of Young equation together

with the van Oss approach allowed the evaluation of the surface Gibbs energy of the

alloys. Similarly to the water adhesion work, the surface Gibbs energy dependence with

the irradiation time follows a similar trend for both samples and it is due to the change

of the electron-donor parameter of the acid-base component. Also, a linear relationship

common for both samples have been obtained between the cosines of the water contact

angles and formamide or diiodomethane contact angle. These facts indicate that the

surface modification continuously produced by the UV irradiation is similar all along

the process and similar for both samples after an energetic threshold for the thermally

oxidized sample. It has been also tested that the hydrophilic-hydrophobic conversion is

reversible for Ti6Al4V and Ti6Al4V thermally treated.

3.1. INTRODUCTION

Ti6Al4V is the most frequently used Ti alloy for medical purposes due to its interesting

mechanical properties and biocompatibility. It is an α/β titanium alloy and, as cp Ti,

once exposed to the atmosphere, a passive layer is formed on its surface, whose

thickness can reach up to 6 nm after one year of exposure to normal ambient

temperatures [1]. Weakness of this alloy is that adherence of the passive film is rather

poor, and it may be disrupted at very low shear stresses, even rubbing against soft

tissues [2]. This feature may account for the accumulation of released ions in the tissues

around the implant [3]. Different treatments on this alloy have been proposed to

overcome this shortage. Among them, it has been probed that heating the Ti6Al4V alloy

above 450 ºC changes the thickness of the passivated layer up to several tens of

nanometres [4]. Also, corrosion resistance is improved whereas the good

citobiocompatibility is not affected [5,6] and a decrease in the ion release has been

observed in vitro [7].

Page 64: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

58

TiO2, the main component of the passive layer, [8] is a photoactive n-type

semiconductor oxide [9,10] which modifies temporarily its hydrophilicity after being

exposed to UV radiation. Depending on the procedure followed to prepare the passive

layer, titanium dioxide can be found as amorphous or as microcrystalline rutile or

anatase. Each crystalline form of TiO2 has different properties; in particular, the band

gap is 3.2 eV for anatase and 3.0 eV for rutile [9]. Also, the rate of surface photo-

dependent modifications and the evolution after UV irradiation are dependent on the

crystalline TiO2 structure and on the crystal face exposed [11].

Nevertheless, the passive layer of Ti6Al4V is composed not only by titanium oxides,

but the alloying elements are also present in a proportion which is dependent on the

previous treatment of the alloy. Different authors have found about a two- to three-fold

increase of the Al concentration in the oxide film in comparison to the corresponding

value in the bulk metal, with a tendency to be more strongly enriched at the outermost

surface [10]. The presence of Al as been found as Al3+

, suggesting that it exists either in

the form Al2O3 in the naturally passivated layer. In the natural oxide film V is in a

concentration below to that in the bulk material (aprox. 0.3 to 1 wt%). On the other

hand, thermal treatments, particularly at temperatures above 450 ºC, change the

proportion of alloying elements, as well as the microstructural properties of the oxide

film that becomes formed mainly of microcrystalline rutile [10].

Surface properties of a biomaterial dominate its interaction with the surrounding fluids,

cells, microorganisms, etc. in this sense wettability and, more generally, surface Gibbs

energy are the basic information needed to predict the adhesion and adsorptive

behaviour of a material. Its knowledge is also interesting because some authors have

suggested that it modulates bone cell maturation and differentiation [12]. It has been

reported that UV radiation affects wettability of titanium dioxide [11], however, there is

a lack in detailed studies either on the effect of progressive UV radiation on the surface

Gibbs energy of Ti6Al4V or after thermal treatment. On this basis, the purpose of this

research has been to characterize the effect of different exposure times to UV radiation

on the wettability and surface Gibbs energy of the Ti6Al4V alloy, and the Ti6Al4V

alloy thermally oxidized at 475 ºC, as well as the evolution of these properties once the

irradiation is ceased.

Page 65: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

59

3.2. MATERIALS AND METHODS

3.2.1. Sample characterization

Discs of Ti6Al4V were cut from a single bar of 50 mm in diameter kindly supplied by

SURGIVAL S.A. (Valencia, Spain). It was a TIMETAL 6-4 ELI alloy processed as a

hot rolled annealed bar at 700ºC for 2h, then air cooled. Table 3.1 shows the chemical

composition supplied with the product certificate. Discs were abraded on successively

finer silicon carbide papers, mechanically polished with diamond paste, and finishing

with silica colloidal (denoted as TiAlV). After this preparation, some discs were

oxidized by heating at 475ºC for 1 hour in air (denoted as TiAlVOx).

Table 3.1. Chemical analysis (mass %) of Ti6Al4V alloy. Data supplied by the manufacturer

Ti V Al Fe C O

Bal. 4.10 - 4.15 6.07 - 6.09 0.17 0.005 - 0.01 0.12 - 0.13

For microstructural characterization some samples were etched with a solution

containing 2 ml HF, 3 ml HCl and 5 ml HNO3 in 90 ml H2O to reveal the -phase. The

analysis was performed by using a scanning electron microscope (SEM) equipped with

a field emission gun (FEG) emitter coupled with an energy dispersive X-ray (EDX)

system for chemical analysis. To minimize the uncertainties of the EDX measurements

several zones were analysed with measuring times of about 100 s.

Surface composition and oxide-layer thickness of samples have been analyzed by XPS,

with a K-Alpha (Thermo, UK), using an Al K monochromatic X-ray source, with spot

size of 400 m. Profiling was done using a 3kV Ar+ ion beam which generates a beam

current of 1.5 A.mm-2

at the surface. The atomic percentages of elements were

calculated using software and atomic sensitivity factors included with the instrument

data system.

Surface roughness was evaluated with an Autoprobe CP atomic force microscope (Park

Scientific Instrument, Geneva, Switzerland, now a part of Veeco), equipped with a

scanner of maximum ranges of 100 μm in the x and y directions and 7 μm in the z

direction. The images were acquired by using silicon nitride cantilevers with a nominal

probe curvature radius of 10 nm, as supplied by the manufacturer. Images were acquired

at a resolution of 512 x 512 pixels, and were subjected to first-order flattening.

Page 66: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

60

3.2.2. Experimental procedures

Before each experimental run, samples were carefully cleaned with distilled water at

60ºC, vigorously rubbed with a smooth cotton cloth, then rinsed repeatedly, first with

distilled water and finally with distilled and deionized water (MiliQ system); immersed

in a beaker with distilled and deioniezed water and sonicated for 10 min, rinsed again

with distilled and deionized water, dried in an oven at 40ºC for 1h and stored in a

disiccator for no more than 24 h. This cleaning procedure was also followed to study the

recovery of the samples after UV irradiation. By this reason it has not been used any

chemical compound during the procedure to avoid any possible interference of them on

the surface energy modifications studied.

TUV TL-D 15W SLV lamps, kindly provided by Philips (Philips Ibérica, SAU, Madrid,

Spain), emitting predominantly at a wavelength of 257,7 nm were used for UV

irradiation of samples. Glass of lamp has filtering to avoid the production of ozone,

which is produced by wavelengths lower than 200 nm. Discs were positioned exactly

centred 10 cm below the lamp, receiving an intensity of 2,6 mW cm-2

, during fixed time

intervals. The whole irradiation installation was inside an opaque wood chamber to

avoid interferences from room or day light and any damage to users.

Table 3.2. Surface tension, , Lifshitz-van der Waals, LW, and acid-base, AB

, components,

electron-acceptor, +, and electron-donor, -

, parameters of the test liquids used for contact

angle measurements, in mJ.m-2

.

LW AB + - Ref.

Water 72.8 21.8 51.0 25.5 25.5 [13]

Formamide 58 39 19 2.28 39.6 [13]

Diiodomethane 50.8 50.8 0 0.72 0 [14]

Water (distilled and deionized from a Milli-Q Plus system), formamide (puriss > 99.0%,

Fluka, Switzerland) and diiodomethane (purum > 98%, Fluka, Switzerland) contact

angles on discs were measured using the sessile drop technique with the aid of a G20

goniometer (Krüss, Germany). Drops were placed on the central part of the surface of

discs. Surface tension and its components and parameters [13,14] are listed in Table 3.2

The results presented are averaged values of at least three independent runs.

Page 67: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

61

3.3. RESULTS AND DISCUSSION

Fig. 3.1 shows a representative secondary electron image (SEI) of the sample, where it

can be seen the expected biphasic microstructure of the alloy, consisting of phase

(dark zones), Al richer, and phase (bright zones), V richer, arranged in a cellular way.

The relative composition of Ti, Al and V elements in the passive and thermally oxidized

layers obtained from XPS analysis are summarized in Table 3.3, as well as the relative

composition of the bulk material obtained from the analysis certificate supplied by the

manufacturer. Vanadium has a lower presence in the passive layer (sample TiAlV) than

in the bulk. However, the presence of both alloying elements is higher in relation to Ti

in the oxide layer of TiAlVOx sample than in TiAlV and than in the bulk material, but

V is depleted in relation to Al in both passive layers. These results are in the same line

than those obtained by MacDonald et al [4], despite these authors obtained higher

concentrations of Al and V in relation to Ti on Ti6Al4V heated at 600º C.

Fig. 3.1. SEI image of the alloy obtained on polished and etched specimens. Dark zones

correspond to alpha phase and bright zones to beta phase.

The higher oxidation temperature with regards to that of the present study (475 ºC)

would likely yield higher diffusion of the alloying elements to the passive layer.

Analysis of the XPS spectra obtained (not shown) indicates that in both samples Al and

V are present in the passive layers in the form of oxides, although, for sample TiAlV

some metallic V and Ti were detected, probably due to the thin passive layer of this

sample (less than 4 nm, against the value of ca. 90 nm obtained for sample TiAlVOx),

in accordance with other authors results [10, 15-17].

Page 68: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

62

Table 3.3. Relative atomic composition of the samples surface, and bulk material

(Reproducibility better than ±10%).

Al/Ti V/Ti V/Al

TiAlV 0.12 0.014 0.12

TiAlVOx 0.70 0.16 0.23

Bulk 0.12 0.044 0.36

Fig. 3.2 shows the AFM topographical images of both samples, TiAlV and TiAlVOx.

TiAlV sample has a topographically homogeneous surface, in contrast with the terraced

surface shown after the oxidation treatment (sample TiAlVOx). Two roughness

parameters have been used to characterize the topography of the samples at different

scales, from 1 to 50 m: the root mean square (Rrms) surface roughness and the average

roughness (Ra), described elsewhere [18]. Table 3.4, that lists the results obtained for

both samples, indicates that sample TiAlVOx has a roughness slightly higher than

TiAlV for scanning lengths of 1, 5 and 10 microns.

Fig. 3.2. AFM topographical images of TiAlV and TiAlVOx samples.

Wettability and surface Gibbs energy evaluations used to be done through the

measurement of the equilibrium contact angle of liquid drops on the solid. This

equilibrium contact angle needs to be determined on perfectly smooth surfaces, but

most of the real surfaces do not fit this requirement. Wenzel´s equation [19], cos obs = r

cos s, relates the observed contact angle on a real surface, obs, with the contact angle

that would be measured on a perfectly smooth surface of the same material, s, r being

the Wenzel’s roughness factor, which gives the relation between the real surface area to

the projected area below the drop, and whose value is higher than 1. In order to evaluate

Page 69: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

63

the possible influence of the samples roughness on the measured contact angles, r has

been directly derived from AFM measurements, and listed in Table 3.4. The Wenzel’s

factor indicates that the thermally oxidized surface always displays a roughness-

developed area (with respect to the projected area) larger than that of TiAlV, at all

scales, following the same general tendency than Rrms and Ra. The values obtained are

in accordance with other studies using TiAlV [20], and they are much lower than values

reported for other materials as, for example polymer surfaces [21]. The extremely low

absolute values of the computed Wenzel´s factor for both surfaces at all scales indicate

that surface roughness has not any relevant effect on the contact angles. In consequence,

differences between obs and s calculated by Wenzel´s equation are well below the

experimental uncertainty in contact angles measurement, so no correction for roughness

will be made.

Table 3.4. Root mean square roughness, Rrms, average roughness, Ra, and Wenzel roughness

factor, r, of samples determined from AFM measurements, at different dimensional scales.

Dimensional

scale

(m)

Rrms

(nm)

Ra

(nm)

r

TiAlV TiAlVOx TiAlV TiAlVOx TiAlV TiAlVOx

50 6±1 7±2 4.2±0.7 5±1 1.0002±2 10-4

1.0008±1 10-4

25 4±2 6.0±0.9 3±1 4.3±0.5 1.0002±2 10-4

1.0014±7 10-4

10 2±2 5.4±0.4 1.3±0.8 4.0±0.3 1.0002±1 10-4

1.0028±5 10-4

5 1±1 5.3±0.4 0.8±0.6 4.0±0.4 1.0004±1 10-4

1.0038±5 10-4

1 0.5±0.4 3±1 0.3±0.2 2.0±0.9 1.004±2 10-3

1.012±4 10-3

Fig. 3.3 depicts the water contact angle on TiAlV and TiAlVOx samples after different

irradiation dosages. Before irradiation (t=0) both samples have a very markedly

hydrophobic character as their water contact angle indicates. It must be highlighted that

values of water contact angle found in bibliography on different metallic oxides,

including titanium, range from nearly 90º down to 0º. However, these large differences

are related to procedures followed in the preparation (liquids and protocols of cleaning,

passivation, sterilization process, etc) and the roughness (Rrms and Ra) of the sample

[4, 17, 22, 23]. Nevertheless, the high contact angle values obtained on samples are also

related to the presence of hydrocarbon contamination from atmosphere [10]. It should

be expected that a perfectly clean surface must be composed by atoms of titanium,

oxygen and eventually alloying elements, with a very high surface energy. However,

Page 70: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

64

such kind of “clean” surface is not likely to be found in a medical implant in surgery or

in laboratory because it takes a few seconds to 1 min in atmosphere before this high

energy surface becomes contaminated by a layer of hydrocarbons and inorganic

impurities, modifying its chemical surface composition and hydrophilicity [12].

Fig. 3.3. Water contact angle on TiAlV () and TiAlVOx () against the exposure time to UV

irradiation.

As UV irradiation time increases, the surfaces of both samples change from

hydrophobic to hydrophilic, but at different rates. The decrease of the water contact

angle on TiAlV is very much sharper than on TiAlVOx until the irradiation time was 50

min. Nevertheless a further decrease down to 11±5º was measured for an exposure time

of 900 min for both samples. This behaviour is readily related to the presence of TiO2 in

the passive layer of the alloy. UV radiation on TiO2 provokes the creation of pairs hole-

electron. Electrons tend to reduce Ti4+

surface sites to Ti3+

while the generate holes

reacts with the oxygen resulting in oxygen vacancies [11]. Water adsorption on different

faces of rutile have been extensively studied, despite it continues to be controversial. On

rutile (100) it is expected that water adsorbs both dissociatively and molecularly,

independently of steps, point defects and the Ti3+

sites presents, followed by molecular

adsorption at higher coverage. Experimentally rutile (110) does not seem to dissociate

water, except at defect sites, despite of theoretical studies that predict dissociative

adsorption. On (110) and (100) surfaces there are two kinds of oxygen, threefold –as in

the bulk– and twofold coordinated, this last protruding from the crystal surface is called

bridging site oxygen and it is more reactive than the threefold coordinated. However,

bridging sites do not exist on (001) surfaces. On the other hand, for the less studied

anatase, it is suggested that water adsorbs molecularly on anatase (101), but theoretical

0

15

30

45

60

75

90

0 60 120 180 240

t (min)

W

(º)

900

//

Page 71: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

65

calculations predict dissociative adsorption on the anatase (001). Extensive revisions on

the present knowledge on water adsorption on TiO2 can be found in the works of

Diebold [9] and Henderson [24] and references herein.

The influence of alloying elements, impurity constituents or the interaction with the

environment lead to a probably more defective passive layers on both TiAlV and

TiAlVOx samples [25], that also increased their oxygen defective vacancies after UV

radiation, being healed by water molecules to give hydroxyl groups adsorbed.

The passive layer on TiAlV is essentially amorphous, but it is likely a certain degree of

short-range order in the nanometer scale, which allows assuming, in first order

approximation, this passive layer as a rutile (110) surface [10]. On the other hand the

oxide layer of the TiAlVOx sample has shown to be composed by microcrystalline

rutile without specific orientation, so then exposing different crystallographic rutile

surfaces [10].

Studies on the effect of UV irradiation on pure TiO2 rutile have proved that the duration

of UV illumination required to get the (001) plane fully hydrophilized was three times

longer than for the (110) plane [11]. In consequence the observed differences in the rate

of the wettability change with the irradiation time in our samples can be related to the

differences in the crystalline state of the passive layer, probably due to the presence of

rutile microcrystallites with the (001) plane exposed in the thermally oxidized alloy, or

to the different ratio of alloying elements respect to Ti shown in the passive layer of

both samples.

Despite water contact angle gives a straightforward measure of the water wettability of

a given surface, when changes in this property comes from water adsorption on the

surface, adhesion work of water provides a more clear information of the modification

of the surface layer. Adhesion work measures the Gibbs energy change needed to create

a unit of interfacial area between the solid and the liquid [26]. It is given by the

expression

adh L LW (1 cos ) (3.1)

γL and θL being the surface tension of the liquid and its contact angle on the solid,

respectively. Fig. 3.4 presents the water adhesion work as a function of the UV

Page 72: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

66

irradiation time for both samples (left axis reads for TiAlV sample and the right one for

TiAlVOx sample).

Fig. 3.4. Water adhesion work on TiAlV () and TiAlVOx () against the exposure time to UV

irradiation.

As it can be expected from the measured dependence of water contact angles, the

general trend of the adhesion work for both samples differ each other, moreover as θW

approaches zero, Wadh tends to 145.6 mJ m-2

, the water cohesion work, for both.

Nevertheless, after the 20 first minutes of UV irradiation, the rate of variation of Wadh

presents a similar dependence for both TiAlV and TiAlVOx, up to values close to 140

mJ m-2

. This dependence suggests that the amorphous layer on TiAlV sample can be

treated as composed by at least two different kinds of patches. One kind of patches

should expose easily accessible oxygen positions, so that the amount of energy given

during the first twenty minutes of irradiation is enough to activate them and then being

hydroxyl groups or water adsorbed. This confers to TiAlV a Wadh value of 116 mJ m-2

after 20 min irradiation, larger than the value of 83 mJ m-2

for TiAlVOx after the same

time. A second kind of patches on the amorphous layer on TiAlV should behave as

microcrystalline rutile does, as the trend of Wadh for irradiation times longer than 20 min

is similar to the TiAlVOx sample, that is, it is needed a similar amount of energy for

both samples to get a given increase in their oxygen activation as the amount of

adsorbed water shows. Of course, once Wadh approaches closely to the cohesion work of

water the behaviour of TiAlV differs from that of TiAlVOx at the same irradiation time,

probably because of the completion of a layer of physisorbed water on it.

105

140

175

0 60 120 180 240

t (min)

Wad

h(m

J m

-2)

70

Wad

h (mJ m

-2)140

//

105

900

Page 73: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

67

Taking into account the acute effect that different UV irradiation times induce on the

water wettability of these samples, it is important to elucidate how their surface Gibbs

energy is modified along this process, because it is expected that these changes alters

the interaction that these materials can have with proteins, bacteria or cells.

Young equation together with the van Oss approach allows evaluating the surface Gibbs

energy, and provides information about the contribution of van der Waals and acid-base

interactions to the total surface Gibbs energy of the solid, as it is expressed in Eq (2.2).

1 2 1 2 1 2

LW LW

L L S L S L S Lcos 1 2 2 2 (3.2)

where γLW

is the Lifshitz-van der Waals component, γ+ is the electron-acceptor and γ

- is

the electron-donor part of the acid-base component, 1 2

AB 2 , of the total surface

Gibbs energy LW AB . To solve Eq. (3.2) for the solid components it is needed the

measured contact angle of drops of three liquids deposited on the solid. Water,

formamide and diiodomethane are commonly utilized to this purpose, and the results

obtained with them on the alloys after different irradiation times are shown in Table 3.5.

Table 3.5. Contact angles of water (θW), formamide (θF) and diiodomethane (θD) on TiAlV and

TiAlVOx alloys, as a function of the exposure time to the UV radiation.

Samples t

(min)

W

(º)

F

(º)

D

(º)

TiAlV

0 83±2 68±2 54±2

20 54±3 38±3 41±2

40 24±3 22±3 37±2

60 18±4 11±4 36±2

TiAlVOx

0 84±2 73±2 54±2

20 82±2 67±3 52±2

40 64±2 58±3 47±2

60 52±2 39±4 43±2

The decrease that exposure to UV radiation induces on the water contact angle is also

reflected on the formamide and diiodomethane contact angles, despite on a lesser

extension for the apolar than for the polar liquids, but in a similar way for both samples.

This particular behaviour suggests checking if there is any relationship between the

Page 74: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

68

changes of the contact angles of the liquids and the time that samples were under UV

exposure. Fig. 3.5 shows the plot of cos θF and cos θD against cos θW for both samples at

the different irradiation times. This plot indicates a good correlation, within the

experimental error, between the changes in cos θW with those of cos θF and cos θD, no

matter the sample selected. Linear minimum square fits of data were:

cos θF = 0,26 + 0,76 cos θW (r2 = 0,97)

cos θD = 0,57 + 0,26 cos θW (r2 = 0,97) (3.3)

These straight lines have been also plotted in Fig. 3.5. The existence of such

relationships indicates again that the kind of modification that UV radiation induces is

the same independently on how long the exposure to the UV irradiation last and the

kind of sample; however, as it has been stated, the extension of this modification

depends on the exposure time in a different way for TiAlV and for TiAlVOx.

Fig. 3.5. Relationship between water-formamide contact angles (continue line, filled symbols)

and water-diiodomethane (doted line, open symbols), for TiAlV (round symbols) and TiAlVOx

(square symbols).

As a further consequence, the linear relationships found allow evaluating the surface

Gibbs energy using the van Oss model from the single information of the water contact

angle. Fig. 3.6 shows the dependence of T, LW

, AB

, and the parameters - and

+ with

the water contact angle. Points in this figure were obtained solving the three equation

system that corresponds to the application of Eq. (3.2) to the water, formamide and

diiodomethane contact angles measured after each irradiation time, and lines (except the

0,00

0,20

0,40

0,60

0,80

1,00

0,00 0,20 0,40 0,60 0,80 1,00

cos W

cos F

, co

s D

Page 75: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

69

straight line on T) correspond to the values obtained using water contact angle and the

relationships given in Eq. (3.3). As it can be expected from the existence of these

relations, lines in this figure approximate accurately the calculated points.

It is clear that the total surface Gibbs energy of any of both samples increases when UV

irradiation increases its duration (indicated by the change in the water contact angle),

due to the change in the electron-donor parameter of the acid-base component of the

surface Gibbs energy. Changes in + and

LW are not so important in the studied range.

This behaviour is in accordance with a progressive surface coverage with hydroxyl

groups or chemisorbed water in a preferential orientation [9,24]. Despite the change of

the total surface Gibbs energy with water contact angle seems to follow a linear

dependence in the whole range of water contact angles (straight line in Fig. 3.6), the

results obtained show some deviations at the extreme values of the water contact angle.

Fig. 3.6. Total surface Gibbs energy (T, ), Lifshitz-van der Waals (LW, ) and acid-base (AB

,

) components and electron-donor (-, ) and electron-aceptor (+

, ◊) parameters dependence

on the water contact angle. Lines were calculated using Eq. 3 for the contact angles of

formamide and diiodomethane. Extrapolation of the linear part of the total surface Gibbs

energy has been plotted as (- - -).

However, it can not be discarded, at the highest contact angles, the influence of some

unavoidable hydrocarbons contamination coming from the ambient that are adsorbed on

the surface. Deviation observed at the lowest water contact angle corresponds to surface

states highly hydrated, probably being covered with a layer of physisorbed water. In

such a case, it could be expected that the surface pressure could be not negligible.

0

20

40

60

80

0 20 40 60 80 100

W (º)

(

mJ

m-2

)

T

+

LW

AB

-

Page 76: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

70

However it is not clear any different behaviour of formamide and diiodomethane

contact angle in respect to the water contact angle in such range.

Although TiO2 has been assumed that does not suffer from photocorrosion in

comparison to other photocalysts, it is needed to know if the presence of the alloying

elements in the passive layer of our samples could modify this behaviour. To this

purpose, the samples, after 60 min of UV exposure, were recovered following the same

procedure as the cleaning procedure described in the experimental section, and

subsequently, the contact angle of the three liquids were measured. It is noted that the

procedure followed did not involve the use of any chemical compound, but only the use

of hot water (60 ºC). This process (recovering-contact angle measurement) was repeated

for four times, and the results for water contact angles have been plotted in Fig. 3.7.

Fig. 3.7. Water contact angle measured on TiAlV () and TiAlVOx () after 60 min UV

irradiation, as a function of the number of recovery cycles.

This Figure shows that samples recover the water contact angle previous to the UV

irradiation after the fourth cycle. Also, after the first recovery cycle both samples

behave similarly. Miyauchi et al. [27] studied the recovery after UV irradiation of TiO2

samples by irradiation with VIS-IR light (above 430 nm), which can not be absorbed by

TiO2, for a fixed time, without photoexcitation. That process accelerates the elimination

of surface hydroxyl groups, resulting in a quickly conversion of the hydrophilic surfaces

to hydrophobic. They concluded that the hydrophobic conversion without an inter-band

transition is caused by the elimination of surface hydroxyl groups by the thermal

process, but the structure below the outermost layer, where most of the electron-hole

pairs are generated, remains stable free from changes in chemical conditions. In our

0

15

30

45

60

75

90

0 1 2 3 4

number of recovery cycles

w

(º)

Page 77: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

71

case, it can be expected that the first recovery cycle was able to remove the hydroxyl

groups adsorbed on surface, and also it helps to reconvert part of the structure below of

our samples.

The similar behaviour of both samples on recovery can be seen on Fig. 3.8 where cos F

and cos D have been plotted against cos W for each of the recovery cycles. Also, it has

been found that cos F and cos D change linearly with cos W accordingly to

cos θF = 0,33 + 0,72 cos θW (r2 = 0,97)

cos θD = 0,58 + 0,25 cos θW (r2 = 0,87) (3.4)

These linear relationships (also plotted in Fig. 3.8) are very similar to those found for

the contact angles measured during the UV irradiation, but with a lower slope in the

case of formamide and a bigger dispersion of the contact angles in the case of

diiodomethane. However these differences can not be related to physical changes on the

evolution of the samples surfaces, or to differences between samples, including

differences in Ra as Miyauchi et al. [27] found differences in the hydrophobic

conversion depending on the roughness Ra of the samples. In consequence, from the

results obtained it can be stated that the hydrophobic-hydrophilic modifications are

reversible for these samples, without any evidence of photocorrosion, within the

experimental errors.

Fig. 3.8. Relationship between water-formamide contact angles (continue line, filled symbols)

and water-diiodomethane (doted line, open symbols), for TiAlV (round symbols) and TiAlVOx

(square symbols) in the recovery cycles.

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

cos W

co

s

F, co

s

D

Page 78: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

72

3.4. CONCLUSIONS

Passive layers formed spontaneously and after thermal treatments, suffer different

modifications of their hydrophilicity and surface Gibbs energy for a given UV

irradiation time. This behaviour could be related to the different structure of the titanium

dioxide and/or to the different amount of alloying elements present in the passive layer.

Nevertheless the modification of the surface Gibbs energy for a given change of the

hydrophilicity of the surface (estimated through the water contact angle) is the same for

both samples, which suggests that the mechanisms by which surfaces became

hydrophilic are reversible and the same for both kinds of samples. This result implies a

less probable influence of the different amount of alloying elements on the UV effect on

these samples.

Interestingly, common linear relationships between the cosines of formamide and

diiodomethane, and water contact angles have been found for both samples. It indicates

that the mechanisms for increasing the hydrophilic character of the surface is the same

in the range studied. Modifications of the surface Gibbs energy comes from the -

parameter of the acid-base component, which is related to the progressive coverage of

the surface with hydroxyl groups and oriented water on the surface.

3.5. REFERENCES

[1] Sitting C, Textor M, Spencer ND, Wieland M, Vallotton PH. Surface

characterization of implant materials c.p. Ti, Ti–6Al–7Nb and Ti–6Al–4V with different

pretreatments. J. Mater. Sci. Mater. M. 1999;10:35-46.

[2] Lilley PA, Walker PS, Blunn GW. Wear of titanium by soft tissue. Transaction of

the 4th Word Biomaterials Congress, Berlin, 1992, p. 227.

[3] Mu Y, Kobayashi T, Sumita M, Yamamoto A, Hanawa T. Metal ion release from

titanium with active oxygen species generated by rat macrophages in vitro. J. Biomed.

Mater. Res. 2000;49:238-243.

[4] MacDonald DE, Rapuano BE, Deo N, Stranick M, Somasundaran P, Boskey AL.

Thermal and chemical modification of titanium-aluminum-vanadium implant materials:

effects on surface properties, glycoprotein adsorption, and MG63 cell attachment.

Biomaterials 2004;25:3135-3146.

Page 79: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

73

[5] Saldaña L, Vilaboa N, Vallés G, González-Cabrero G, Munuera L. Osteoblast

response to thermally oxidized Ti6Al4V alloy. J. Biomed. Mater. Res A 2005;73:97-

107.

[6] García-Alonso MC, Saldaña L, Vallés G, González-Carrasco JL, González-Cabrero

J, Martinez ME, Gil-Garay E, Munuera L. In vitro corrosion behaviour and osteoblast

response of thermally oxidised Ti6Al4V alloy. Biomaterials 2003;24:19-26.

[7] Saldaña L, Barranco V, Garcia-Alonso MC, Valles G, Escudero ML, Munuera L,

Vilaboa N. Concentration-dependent effects of titanium and aluminium ions released

from thermally oxidized Ti6Al4V alloy on human osteoblasts. J. Biomed. Mater. Res. A

2006;77:220-229.

[8] Vörös J, Wieland N, Ruiz-Taylor L, Textor M, Brunette DM, in Brunette DM,

Tengvall P, Textor M, Thomsen P (Eds.), Springer-Verlag, Berlin, 2001, p. 87.

[9] U. Diebold. The surface science of titanium dioxide. Surf. Sci. Rep. 2003;48:53-229.

[10] Textor M, Sittig C, Frauchiger V, Tosatti S, Brunette DM, in Brunette DM,

Tengvall P, Textor M, Thomsen P (Eds.), Springer-Verlag, Berlin, 2001, p. 172-224.

[11] Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fusjishima A,

Hasimoto K. Photocatalytic activity and photoinduced hydrophilicity of titanium

dioxide coated glass. Thin Solid Films 1999;351:260-263.

[12] Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan

BD. High surface energy enhances cell response to titanium substrate microstructure. J.

Biomed. Mater. Res. A 2005;74:49-58.

[13] van Oss CJ, Good RJ, Busscher HJ. Estimation of the polar surface tension

parameters of glycerol and formamide, for use in contact angle measurements on polar

solids. J. Disper. Sci. Technol. 1990;11:75-81.

[14] Jańczuk B., Kerkeb M.L., Białopiotrowicz T., González-Caballero F. Surface free

energy of cholesterol and bile salts from contact angles. J. Colloid Interf. Sci.

1992;151:333-342.

[15] Ask M, Lausmaa J, Kasemo B. A surface spectroscopic study of nitrogen-

implanted Ti and Ti6Al4V wear against UHMWPE. Appl. Surf. Sci. 1989;35:283-336.

Page 80: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

74

[16] Hernández de Gatica NL, Jones GL, Gardella Jr. JA. Surface characterization of

titanium alloys sterilized for biomedical applications. Appl. Surf. Sci. 1993;68:107-120.

[17] Roessler S, Zimmermann R, Scharnweber D, Werner C, Worch H. Characterization

of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current

measurements. Colloid Surface B 2002;26:387-395.

[18] Méndez-Vilas A, Bruque JM, González-Martín ML. Sensitivity of surface

roughness parameters to changes in the density scanning points in multi-scale afm

studies. Aplication to a biomaterial surface. Ultramicroscopy 2007;107:617-625.

[19] Wenzel RN. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem.

Fund. 1936;28:988-994.

[20] Bren L, English L, Fogarty J, Policor R, Zsidi A, Vance J, Drelich J, Istephanous

N, Rohly K. Hydrophilic∕electron-acceptor surface properties of metallic biomaterials

and their effect on osteoblast cell activity. J. Adhes. Sci. Technol. 2004;18:1711-1722.

[21] Kamusewitz H, Possart W. Wetting and scanning force microscopy on rough

polymer surfaces: Wenzel`s roughness factor and the thermodynamic contact angle.

Appl. Phys. A 2003;76:899-902.

[22] Kern T, Yang Y, Glover R, Ong JL. Effect of heat-treated titanium surfaces on

protein adsorption and osteoblast precursor cell initial attachment. Implant Dent.

2005;14:70-76.

[23] Jańczuk B, Bruque JM, González-Martín ML, Moreno del Pozo J. Determination

of Components of Cassiterite Surface Free Energy from Contact Angle Measurements.

J. Colloid Interf. Sci. 1993;161:209-222.

[24] Henderson MA. The interaction of water with solid surfaces: fundamental aspects

revisited. Surf. Sci. Rep. 2002;46:1-308.

[25] Xiao S-J, Kenausis G, Textor M, in Brunette DM, Tengvall T, Textor M, Thomsen

P (Eds.), Springer-Verlag, Berlin, 2001, p. 417.

[26] Adamson AW, Gastz AP, Physical Chemistry of Surfaces, Wiley-Interscience,

New York, 1997.

Page 81: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

75

[27] Miyauchi M, Kieda N, Hishita S, Mitsuhashi T, Nakajima A, Watanabe T,

Hashimoto K. Reversible wettability control of TiO2 surface by light irradiation. Surf.

Sci. 2002;511:401-407.

Page 82: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

76

CAPÍTULO 4

Influence of slight microstructural gradients

on the surface properties of Ti6Al4V

irradiated by UV

Este capítulo es una reproducción de la publicación: "A.M. Gallardo-Moreno, M.

Multigner, M.A. Pacha Olivenza, M. Lieblich, J.A. Jiménez, J.L. González-Carrasco,

M.L. González-Martín. Journal of Colloid and Interface Science 2008;320:117-124",

realizada en colaboración con el grupo del Dr. J.L. González-Carrasco del Centro

Nacional de Investigaciones Metalúrgicas, CENIM-CSIC (Madrid).

Page 83: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

77

ABSTRACT

Ti6Al4V alloy is one of the most widely used materials for biomedical implants.

Among its properties, it is remarkable the photoactivity displayed by its passive layer,

which is mainly composed by titanium dioxide. However, variations in the processing

conditions may yield to differences in the microstructure which can be reflected on the

surface properties of the machined product. From contact angle measurements on

different zones of discs cut from a commercial bar of Ti6Al4V, it has been shown that

the modifications of the surface Gibbs energy suffered by the alloy under UV irradiation

have a radial dependence. This behaviour is related to slight microstructural changes of

the alloy, particularly with an increase in the volume fraction of the β-phase when

moving to the interior of the specimen, altering the composition and/or microstructure

of the passive layer along the radius of the discs. This study shows that gradients in the

microstructure and physical properties are sample size dependent and are likely related

to thermal gradients during processing.

4.1. INTRODUCTION

Ti6Al4V ELI (Extra-Low Interstitial) is commonly used as biomaterial, particularly for

implantable components, due to the combination of good mechanical properties with a

reasonable biocompatibility. This alloy is a high purity version of the Ti6Al4V

originally developed for aerospace applications. The lower specified limits for iron and

the interstitial elements C and O confers to the alloy superior damage tolerance (fracture

toughness and fatigue crack growth rate) and better mechanical properties at cryogenic

temperatures. An additional advantage is that it is easy to process and machine, thus a

wide range of products (bars, plates, tubes, sheets,..) are available with a reasonable

cost. Processing route and dimensions of Ti6Al4V ELI wrought products are obviously

selected considering factors like shape and size of the components. Variations in the

processing conditions (temperature, annealing time, cooling rate) may yield differences

in the microstructure that are also manifested in the mechanical properties of the bulk

[1]. Therefore, properties can vary from one product to other and often mechanical

properties are only valid for a certain range of products and dimensions.

In absence of compositional variations, changes in the microstructure should not

influence the biological performance since it is controlled by the surface properties.

However, recent studies performed with ultrafine grained Commercially Pure (CP) Ti

Page 84: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

78

[2] and Ti6Al4V [3] have shown an enhanced osteoblast adhesion, compared to a

regular grained counterpart. The advantages of an ultrafine grained microstructure in Ti

alloys have been also pointed out in terms of corrosion resistance [4]. More recently, it

has been reported that the presence of a predominant crystallographic orientation of the

substrate, i.e. texture, may affect the pre-osteoblast response of pure Ti [5] and the

Ti6Al4V alloy [6].

Surface of Ti6Al4V alloy, as other Ti-base materials, is covered by a passive layer of

amorphous TiO2 that it is responsible for most of the alloy surface properties. Especially

relevant is that TiO2 is a semiconductor whose band gap can be overcome under UV

radiation. In a previous study we showed that the extension of wettability and surface

Gibbs energy modification on the Ti6Al4V surface is depending on the exposure time to

UV irradiation, until a complete wettability is reached [7]. For a given irradiation time,

the wettability was different depending on the thermal oxidation process applied to the

surface, which affects the microcrystalline structure of the titanium dioxide layer. This

behaviour was related to the fact that the electronic gap of titanium dioxide is slightly

different depending on the crystalline form of the oxide, that is, rutile, anatase or

brookite. Relevance of this finding for the biomaterials field is that an increased surface

wettability or hydrophilicity would enhance protein adsorption [8] and cell response [9-

11]. In a recent work of the group it has been demonstrated that UV irradiation of

Ti6Al4V decreases the bacterial adhesion strength without compromise the

biocompatibility in vitro, which enhances the potential of this technique as a part of the

production process prior for instance to the implantation event [12].

The effect of UV on the wettability was confirmed in small discs (20 mm in diameter)

and large discs (50 mm in diameter). However, only in the latter case, for a given

irradiation time, wettability variations were observed from one place to other of the

same sample. This feature triggered off a systematic study of the physical surface

properties in the radial direction of large discs. The aim of this study is to correlate

changes in wettability and surface Gibbs energy with the microstructure and

microhardness of the underlying substrate. A deeper knowledge of this issue should be

obviously relevant when considering performance of relative large components.

Page 85: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

79

4.2. MATERIALS AND METHODS

4.2.1. Material

Hot rolled and annealed bar of Ti6Al4V ELI used for medical applications was kindly

delivered by SURGIVAL S.A. (Valencia, Spain). According to the product certificate,

the billet of 50 mm in diameter and 3800 mm long was annealed at 700 ºC for 2 h, and

then air cooled. The chemical composition supplied with the product certificate is

shown in Table 4.1. The scatter of the values observed in these tables was related to

differences found between samples taken from the top or bottom of the bar.

Table 4.1. Heat chemical analysis (mass %). Data supplied by the alloy manufacturer.

Ti V Al Fe C O

Bal. 4.10 - 4.15 6.07 - 6.09 0.17 0.005 - 0.01 0.12 - 0.13

4.2.2. Microstructural characterization

Slices of Ti6Al4V bar were cut, grinded and polished down to a mirror like finished by

using a final step with silice colloidal. Some samples were also etched with a solution

containing 2 ml FH, 3 ml ClH and 5 ml NO3H in 90 ml H2O to reveal the -phase.

Microstructural characterization was performed by using a scanning electron

microscope (SEM) equipped with a field emission gun (FEG) emitter coupled with an

energy dispersive X-ray (EDX) system for chemical analysis. To minimize the

uncertainties of the EDX measurements several zones were analysed with acquisition

times of about 100 s. Depending on the analysis, secondary (SEI) or backscattered

electron images (BEI) were selected.

Volume fraction of the -phase was determined by using the image analysis software

image-Pro Plus. BEI images were obtained at a magnification of X3000 on longitudinal

sections of specimens in the as-polished condition. Etched samples were not suitable for

this evaluation because they lead to overestimation of -phase, as they protrude above

the α-matrix. Five random pictures from both positions, the centre and close to the

border of the bar, were digitally treated to remove noise and to get a black and white

contrast.

Samples for X-Ray Diffraction (XRD) studies were cut perpendicular to the

longitudinal bar direction. These samples were grinded and fine mechanically polished

with 1 micron diamond paste and colloidal silica (400 nm) to remove the deformed

Page 86: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

80

layer. In order to evaluate changes in texture XRD measurements were performed at the

centre and near the edge of the bar. The X-ray diffractometer was equipped with a

single Goebel mirror and an incident beam collimator of 1 mm diameter. The sample

alignment and area selection for the measurements was performed with the help of a

video microscope and a focussed laser. For evaluation of the phases present, the

measurements were performed under a conventional /2 scanning using a point

scintillation detector. In this study, we have used the version 4.0 of Rietveld analysis

program TOPAS (Bruker AXS) for the XRD data refinement. Refinement analyses

were carried out using space groups and crystallographic information from the ICDD

database of the phases previously identified. The refinement protocol included also the

background, the scale factors, and the global-instrumental, lattice, profile and texture

parameters.

Texture measurements were performed in the back-reflected mode using a HI-STAR

two dimensional multiwire proportional counter (General Area Detector Diffraction

System, Bruker AXS). A Cu-tube operating at 40 kV and 30 mA was used. The detector

was centred at 2 = 37.60º and 61.80º, with the centre of the detector position

coupled with the beam’s incident angle . At each 2 position enough planar frames

were collected for covering the entire pole sphere. From the normalized and corrected

X-ray data, the (100), (002), (101), (102), (110) and (103) pole figures were

reconstructed. The sample reference system was fibre, corresponding to the symmetry

imposed by the extrusion process. The incomplete pole figures were smoothed, and it

was recalculated the whole pole figures using the harmonic series expansion method (l

max = 22) and ghost correction.

Mechanical properties were evaluated by Vicker hardness tests performed on polished

surfaces. Indentations were made with 1-kg load and 15-seconds dwell time.

4.2.3. Surface wettability characterization

Wettability and surface Gibbs energy of the samples were evaluated from contact angle

measurements of sessile drops of water (W), distilled and deionized from a Milli-Q Plus

system, formamide (F), puriss > 99.0%, Fluka, Switzerland and diiodomethane (D),

purum > 98%, Fluka, Switzerland, with the aid of a G20 goniometer (Krüss, Germany).

Surface Gibbs energy and its components and parameters of these liquids are listed in

Table 4.2. [13,14] To study the possible dependence of the liquid contact angles on the

Page 87: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

81

microestructural characteristics of the sample, drops of each one of the three liquids

were placed on three different concentric zones of the disc. Zone A, a circle of radius

0.8 cm, refers to the most inner area; zone B, an annulus of radius 0.8 and 1.6 cm,

corresponds to the intermediate area of the disc and zone C, an annulus of radius 1.6 cm

and 2.3 cm, matches the external area of the disc. To avoid edge effects on the contact

angle measurements, the outermost annulus of radius 2.3 cm and 2.5 cm was not tested.

Results of contact angle are averaged values of at least 30 symmetrical drops measured

on at least three different discs.

Table 4.2. Surface tension, , Lifshitz-van der Waals, LW, and acid-base, AB

, components,

electron-acceptor, +, and electron-donor, -

, parameters of the test liquids used for contact

angle measurements, in mJ.m-2

.

LW

AB

+

- Ref.

Water 72.8 21.8 51.0 25.5 25.5 [13]

Formamide 58 39 19 2.28 39.6 [13]

Diiodomethane 50.8 50.8 0 0.72 0 [14]

Before each experimental run, samples were carefully cleaned with distilled water at

60ºC, vigorously rubbed with a smooth cotton cloth, then rinsed repeatedly, first with

distilled water and finally with distilled and deionized water; immersed in a beaker with

distilled and deionized water and sonicated for 10 min, rinsed again with distilled and

deionized water, dried in an oven at 40ºC for 1h and stored in a desiccator for no more

than 24 h. [7]

Ultraviolet irradiation was carried out with UV lamps kindly provided by Philips (TUV

TL-D 15W SLV), emitting predominantly at a wavelength of 257.7 nm. Glass of the

lamp has a filter that avoids the production of ozone, which is produced by wavelengths

lower than 200 nm. For irradiation the discs were centred 10 cm below the lamp,

receiving an intensity of 2.6 mW cm-2

. The whole irradiation installation was inside an

opaque wood chamber to avoid interferences from room or day light and any damage to

users. Depending on the experiment, Ti6Al4V discs were irradiated for 20 min, 40 min

or 60 min.

Page 88: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

82

4.3. RESULTS AND DISCUSSION

Wettability was measured on the three zones of the disc previously described. Before

UV irradiation contact angles of the three liquids did not show any dependence on the

zone of the disc tested (Fig. 4.1); for water they were comprised between 82±2º and

84±2º, corresponding to a hydrophobic surface, for formamide between 68±2º and

69±2º, and for diiodomethane between 53±2º and 54±2º. After exposition to UV

radiation (Fig. 4.1), water contact angle decreases in a way depending on the length of

the exposure time and on the zone of the disc tested, being this diminution greater on

the inner than the outer zones of the discs. A similar behaviour was observed for

formamide and diiodomethane contact angles, although the radial dependence was weak

for diiodomethane. The lowest differences between the inner and the outer zones were

observed after being the samples under UV irradiation during the longest period studied.

Fig. 4.1. Contact angle of water (θW), formamide (θF), and diiodomethane (θD), measured on

the three areas of the disc before UV radiation (♦) and after 20 min (), 40 min () and 60 min

() exposure to UV radiation.

Despite wettability modifications are relevant, surface Gibbs energy allows a deeper

knowledge of the capability of the surface to interact with its surrounding. These

interactions are mediated by van der Waals and short range forces, as those coming

from acid-base interactions. The van Oss approach [13, 15-19] considers total surface

Gibbs energy, γ, as the addition of two independent contributions coming from

noncovalent long-range Lifshitz-van der Waals interactions, γLW

, and from Lewis acid-

base interactions, γAB

,

0

30

60

90

-0,5 0,5 1,5 2,5

W

(º)

A B C

zone zone zone

0

30

60

90

-0,5 0,5 1,5 2,5

F

(º)

A B C

zone zone zone

30

40

50

60

-0,5 0,5 1,5 2,5

D

(º)

A B C

zone zone zone

Page 89: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

83

LW AB (4.1)

and it assumes that the γAB

component can be expressed as a function of the geometric

mean of an electron-acceptor, γ+, and an electron-donor, γ

-, parameters

1 2

AB + -γ = 2 γ γ (4.2)

Then, on the frame of the van Oss approach, the interfacial solid-liquid Gibbs energy is

given by

1 2 1 2 1 2

LW LW + - - +

SL S L S L S L S Lγ = γ + γ -2 γ γ - 2 γ γ - 2 γ γ (4.3)

From Eq (4.3) and Young’s equation, it is possible to evaluate the surface Gibbs energy,

and get insight on the contribution of each of these interactions to the total surface

Gibbs energy of the solid, as it is expressed in Eq (4.4).

1 2 1 2 1 2

LW LW + - - +

L L L S L S L S Lγ cosθ +1 +Πe = 2 γ γ +2 γ γ +2 γ γ (4.4)

If the surface pressure, ΠeL, value is known, it is possible to determine from Eq. (4.4)

the Gibbs surface energy components of a solid from the measurement of the contact

angles θL of three different liquids of known surface tension components and

parameters, by solving a three equations system in the unknowns γLW

, γ+ and γ

-.

Commonly it is assumed that if θL>0 the ΠeL value can be neglected [13, 15-19].

Applying Eq. (4.4) to water, formamide and diiodomethane, the following equations

system is obtained

1/2 1/2 1/2

LW LW

W W S W S W S Wcos 1 2 2 2

1/2 1/2 1/2

LW LW

F F S F S F S Fcos 1 2 2 2

1/2 1/2

LW LW

D D S D S Dcos 1 2 2 (4.5)

From Eqs. (4.1), (4.2) and (4.5) the total solid surface Gibbs energy and its Lifshitz-van

der Waals and acid-base components, and its electron-donor and electron-aceptor

parameters have been determined and plotted in Fig. 4.2 for each zone of the disc after

Page 90: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

84

each period of UV irradiation. This figure clearly shows that the modification of the

surface Gibbs energy by the UV irradiation is consequence of the changes of the acid-

base component, being the long-range, Lifshtiz-van der Waals forces, nearly unaffected

by irradiation.

Fig. 4.2. Surface Gibbs energy (γ), Lifshitz-van der Waals component (γLW

, open symbols), acid-

base component (γAB

, closed symbols) and its parameters electron-acceptor (γ+, open symbols),

and electron-donor (γ-, closed symbols) of the three areas of the disc before UV radiation (♦)

and after 20 min (), 40 min () and 60 min () exposure to UV radiation.

20

40

60

-0,5 0,5 1,5 2,5

(m

J m

-2)

A B C

zone zone zone

0

10

20

30

40

-0,5 0,5 1,5 2,5

L

W,

AB(m

J m

-2)

A B C

zone zone zone

0

20

40

60

-0,5 0,5 1,5 2,5

+

,

- (m

J m

-2)

A B C

zone zone zone

Page 91: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

85

On the other hand, the acid-base component modification is a consequence of the

change of the electron-donor parameter, since the electron-acceptor parameter is nearly

unaffected by the UV irradiation. This behaviour is in accordance with a progressive

surface coverage with hydroxyl groups or chemisorbed water in a preferential

orientation [20, 21].

These results show that before to UV irradiation, the alloy surface presents a low and

uniform energetic value, ca. 30 mJm-2

, probably due to the unavoidable organic

contamination from the surrounding. UV treatment activates the surface considerably,

turning it into a high energetic surface after 60 min of irradiation, with surface Gibbs

energy values near to 60 mJm-2

for any of the measured zones, within experimental

error. However, for shorter irradiation times, it is interesting to note that zone A gets a

more energetic state than zone B or zone C. After 20 min irradiation, the most internal

zone (A) reaches a value of 46±3 mJm-2

but the intermediate and external zones (B and

C) get both the same value of 40±3 mJm-2

. After 40 min irradiation, surface Gibbs

energy in zone A increases up to 54±3 mJm-2

, in zone B up to 50±4 mJm-2

but in the

most external zone C it is not possible to detect variations in its surface Gibbs energy in

respect to its value after 20 min of UV irradiation.

Variation of the physical surface properties with UV irradiation is obviously related to

the photocatalytic activity of titanium dioxide forming the passive layer. However, a

question still arises about the microstructural reasons behind the change in the physical

surface properties along the radial direction. First evidence of microstructural gradients

within the samples was provided by the hardness experiments. Fig. 4.3 shows the

hardness variation as a function of depth in the radial direction. Data for smaller discs of

20 mm in diameter are also included for comparative purposes. As it can be seen,

hardness of the 50 mm discs decreases when moving to the interior, being differences at

the centre out of the scatter band of results. However, the tests on the smaller discs

failed to show any significant variation in hardness, which denotes that variation in

hardness on large discs is a size sensitive effect. The observed trend in the large discs

was confirmed by employing different discs of the same diameter coming from different

positions of the same bar, which discards the influence of any artefact introduced during

the preparation of the discs for these determinations.

Page 92: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

86

0 5 10 15 20 25220

240

260

280

300

320

R=10 mm

R=25 mm

Vic

ker

s H

ard

nes

s (H

V1

)

radious(mm)

Fig. 4.3. Hardness Vickers as a function of depth for Ti6Al4V discs removed from bars of

different diameters.

Interpretation of the decrease in hardness in the centre of the specimen is complex since

several causes for softening are possible. Ti6Al4V is a biphasic alloy, therefore, in

addition to the effect of grain size and crystallographic texture, factors related to the

discontinuous -phase (size, volume fraction, and dispersion) should be considered.

Fig. 4.4 shows representative SEM images of both cross and longitudinal sections. As it

can be seen, the alloy exhibits the expected biphasic microstructure, consisting of

(dark zones) and (bright zones) phases arranged in a cellular way. Cross sectional

views at the border and centre of the specimens reveals a quite uniform equiaxial

microstructure with a similar values for the equivalent grain size of about 10 m (Fig.

4.4a and 4.4b). However, longitudinal sections (Fig. 4.4c and 4.4d) evidence clear

differences in the -phase distribution and size between areas located at the centre of the

bar (Fig. 4.4c) and close to the border (Fig. 4.4d). In the later zone, the -phase areas

are more elongated and the i particles smaller.

Recent nanoindentation experiments performed by Rack and Qazi in an ultrafine

grained Ti-6Al-4V alloy have shown that hardness of the phase is lower than that of

the phase (up to about 25% less), irrespective of the annealing temperature [22].

Therefore, an initial possible explanation for the gradient in hardness concerns the

variation in the radial direction of the volume fraction of phase. To assess this

consideration, a quantitative metallographic analysis was performed on both cross and

Page 93: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

87

longitudinal views, but only results corresponding to the longitudinal sections will be

presented (Fig. 4.5).

Fig. 4.4. SEI (a,b) and BEI (c,d) images corresponding to the centre (a,c) and border (b,d) of

selected cross (a,b) and longitudinal (c,d) sections. SEI images (a,b) were obtained on polished

and etched specimens.

0 2 4 6 8 10 12 14 16 18 20 220

10

20

30

40

50

60

70

80

90

100

% P

art

icle

s

Particle size (m2)

CENTRE

0 2 4 6 8 10 12 14 16 18 20 220

10

20

30

40

50

60

70

80

90

100

% P

arti

cles

Particle size (m2)

BORDER

Fig. 4.5. Distribution and size of the -particles at the centre and border of the discs.

(a)

=

(b)

=

(c)

=

(d)

=

Page 94: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

88

As it can be seen, the distribution and size of the particles slightly differs from the

centre to the border of the bar. Determination of the volume fraction of the -phase in a

radial direction revealed moderated higher values at the centre, 9.5 ± 1.8%, than in areas

close to the border, 7.8 ± 0.8%. Both values are in the range predicted by the

equilibrium diagram, and in good agreement with the values determined by the Rietveld

refinement of the X ray diffraction patterns obtained from the centre and near the bar

edge. Fig. 4.6 shows that in both zones the material mainly consists of -Ti and a small

amount of -Ti. The intensity of the (110) -Ti peak is lower in the pattern obtained

close to the edge, and would indicate a lower volume fraction of this phase. However,

again only a slight difference of -Ti volume fraction was determined from these

patterns by the Rietveld refinement (10.5% and 9.5% at the centre and close to the

border, respectively).

Fig. 4.6. X-ray diffraction patterns of a slice of Ti6Al4V bar recorded near the border and in the

centre.

This difference in the volume fraction of phase along the radial direction could result

from segregations in the chemical composition. Consequently microanalysis was

performed on several small areas of about 600 µm2

placed close to the border (5 mm

far) and around the centre of the specimen. Additionally, point microanalysis was

performed on selected zones where size was large enough (> 1µm) to minimize

contribution of the matrix ( phase). Average values are presented in Table 4.3. As it

can be seen, chemical composition obtained by microanalysis fits with the nominal

values for the bulk alloy. With regards to the composition of the phase, vanadium

content is well above that of the nominal composition, as expected. Differences in the

Page 95: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

89

vanadium content (stabilizer element) are slightly higher in the centre of the

specimen, which is counterbalanced by a moderated decrease in the Ti content.

However, due to the scatter band this result cannot be conclusive. The high scattering

may result from the relative small size of the phase, which makes difficult to avoid the

contribution of the matrix (phase).

Table 4.3. Chemical composition (wt%) determined by EDS

Another factor that could be responsible for variations in the Vickers hardness across

the diameter is a difference in crystallographic texture. The phase pole figures

measured at the centre and near the bar edge show that the texture component is the

same in both cases, but slightly stronger in intensity near the edge, as observed in Fig.

4.7. This figure shows a well-defined fiber texture with the plane normal direction (1 0

0) aligned with the longitudinal axis.

From the above analyses if follows that the observed variation in hardness in the radial

direction can be mostly related to the slight increase in the volume fraction of the -

phase and the bigger size of the Ti particles in the disc interior. Significant changes

in the chemical composition of the phase were not observed and, therefore, changes

in the volume fraction associated to a microchemical segregation cannot be invoked. In

consequence the different behaviour of the surface Gibbs energy of each of the three

studied zones against UV irradiation suggests that the passive layer changes its

composition and/or microstructure along the radius of the disc. It is known that the

presence of alloying elements can modify the surface properties of the passive layer in

respect to cp Ti. It can be considered the possibility that differences in α and β phases,

[23] and then the Al and V concentration differences can affect the surface properties as

these elements can be displaced to the passive layer.

Zone microanalysis - phase

Ti Al V Ti Al V

Border 90.20 ± 0.08 6.10 ± 0.11 3.71 ± 0.16 82.43 ± 0.62 3.80 ± 0.14 13.77± 0.73

Centre 89.94 ± 0.08 6.07 ± 0.08 3.9 ± 0.11 82.89 ± 1.10 3.92 ± 0.13 13.19 ±1.20

Page 96: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

90

Fig. 4.7. Recalculated (100) pole figure of a slice of Ti6Al4V bar (a) near the border and (b) in

the centre.

Microstructural gradients can be associated to the processing history, although single

valued functions remain unclear. Optimization of the mechanical properties relies on an

appropriated control of the microstructure, particularly the grain size, the alpha/beta

volume fraction and morphology. Overall, varying the solution annealing temperature,

duration, cooling rate and final aging temperature a lamellar, equiaxed or bimodal

Page 97: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

91

microstructure can be developed. Advantages of each microstructure in terms of

strength, ductility and fracture toughness have been recently summarized by Rack and

Qazi. [22] It is well known that cooling method may affect tensile strength after

annealing and aging [1] giving rise to complex phase transformation in Ti-based alloys.

Here it is worth to remark that all thermal treatments involve an stage around the

transus (970-980ºC) and a further stage around 700ºC for relative short exposure times.

It is very well known that thermal conductivity of Ti6Al4V is rather low. Therefore, a

different thermal cycling can be experienced at the centre of the specimens. The absence

of such radial dependence in a disc of smaller (20 mm) diameter having a similar

microstructure indicates that the observed effect is size dependent.

4.4. CONCLUSIONS

Thermal gradients during processing of wide bars of Ti6Al4V are likely responsible of

the slight gradients found in its microstructure, particularly of an increase in the volume

fraction of the -phase (V-rich) when moving to the interior of the specimen. This

feature has been found to affect the photoactivity of the titanium dioxide passive layer

on the surface of discs cut from wide bars. In consequence, the rate at which wettability

and surface Gibbs energy of discs change after being exposed to UV radiation, mainly

due to the modification suffered by the acid-base component of the surface Gibbs

energy, is dependent on the distance to the centre of the disc. However, if the exposure

time of the samples to the UV radiation is longer enough, the observed differences in

wettability and surface Gibbs energy along the radius of discs tend to be softened.

4.5. REFERENCES

[1] da Rocha SS, Adabo GL, Vaz LG, Henriques GE. Effect of thermal treatments on

tensile strength of commercially cast pure titanium and Ti-6Al-4V alloys. J. Mater. Sci.

Mater. M. 2005;16:759-766.

[2] Faghhi S, Zhilyaev AP, Szpunar JA, Azari F, Vali H, Tabrizian M. Nanostructuring

of a Titanium Material by High-Pressure Torsion Improves Pre-Osteoblast Attachment.

Adv. Mater. Res. 2007;19:1069-1073.

Page 98: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

92

[3] Yao C, Qazi JL, Rack HJ, Slamovich EB, Webster TJ. Improved bone cell adhesion

on ultrafine grained titanium and Ti6Al4V. Ceramic Nanomaterials and Nanotecnology

III, 106th Acers Transactions, USA, 2004, p. 159.

[4] Balyanov A, Kutnyakova J, Amirkhanova NA, Stolyarov VV, Valiev RZ, Liao XZ,

Zhao YH, Jiang YB, Xu HF, Lowe TC, Zhu YT. Corrosion Resistance of Ultrafine

Grained Ti. Scripta Mater. 2004;51:225-229.

[5] Faghihi S, Azari F, Bateni MR, Szpunar JA, Vali H, Tabrizian M. A prospective

study to improve osseointegration of Cp-titanium considering its crystallographic

textura. Thirtieth annual meeting and exposition of Society of Biomaterials (SFB),

Menphis, TN, USA, 2005.

[6] Faghihi S, Azari F, Li H, Bateni MR, Szpunar JA, Vali H, Tabrizian M. The

significance of crystallographic texture of titanium alloy substrates on pre-osteoblast

responses. Biomaterials 2006;27:3532-3539.

[7] Pacha-Olivenza MA, Gallardo-Moreno AM, Mendez-Vilas A, Bruque JM,

González-Carrasco JL, González-Martín ML. Effect of UV irradiation on the surface

Gibbs energy of Ti6Al4V and thermally oxidized Ti6Al4V. J. Colloid Interf. Sci.

2008;320:117-124.

[8] Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate

enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res.

2000;51:475-483.

[9] Altankov G, Grinnell F, Groth T. Studies on the biocompatibility of materials:

fibroblast reorganization of substratum-bound fibronectin on surfaces varying in

wettability. J. Biomed. Mater. Res. 1996;30:385-391.

[10] Schakenraad JM, Busscher HJ, Wildevuur CR, Arends J. The influence of

substratum surface free energy on growth and spreading of human fibroblasts in the

presence and absence of serum proteins. J. Biomed. Mater. Res. 1986;20:773784.

[11] Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J,Cochran DL, Boyan

BD. High surface energy enhances cell response to titanium substrate microstructure. J.

Biomed. Mater. Res. A 2005;74:49-58.

Page 99: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

93

[12] Gallardo-Moreno AM, Pacha-Olivenza MA, Saldaña L, Pérez-Giraldo C, Bruque

JM, Vilaboa N, González-Martín ML. In vitro biocompatibility and bacterial adhesion

of physicochemically modified Ti6Al4V surface by means of UV irradiation. Acta

Biomater. 2009:5:181-192.

[13] van Oss CJ, Good RJ, BusscherH. Estimation on the polar surface tension

parameters of glycerol and formamide, for use in contact angle measurements on polar

solids. J. Disper. Sci. Technol. 1990;11:75-81.

[14] Jańczuk B., Kerkeb M.L., Białopiotrowicz T., González-Caballero F. Surface free

energy of cholesterol and bile salts from contact angles. J. Colloid Interf. Sci.

1992;151:333-342.

[15] van Oss CJ, Good RJ, Chaudhury ML. Mechanism of DNA (southern) and Protein

(western) Blotting on Cellulose Nitrate and Other Membranes. J. Chromatogr.

1987;391:53-65.

[16] van Oss CJ, Chaudhury MK, Good RJ. Interfacial Lifshitz-van der Waals and polar

interactions in macroscopic systems. Chem. Rev. 1988;88:927-941.

[17] van Oss CJ, Good RJ. On the mechanism of “hydrophobic” interactions. J. Disper.

Sci. Technol. 1988;9:355-362.

[18] van Oss CJ, Ju L, Chaudhury MK, Good RJ. Estimation of the Polar Parameters of

the Surface Tensions of Water by Contact Angle Measurements on Gels. J. Colloid

Interf. Sci. 1989;128:313-319.

[19] Good RJ, Chaudhury MK, van Oss CJ in: Lee LH (Ed.), Plenum, New York, 1991,

p. 153.

[20] U. Diebold. The surface science of titanium dioxide. Surf. Sci. Rep. 2003;48:53-

229.

[21] Henderson MA. The interaction of water with solid surfaces: Fundamental aspects

revisited. Surf. Sci. Rep. 2002;46:1-8.

[22] Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater. Sci. Eng. C

2006;26:1269-1277.

Page 100: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

94

[23] Sittig C, Hähner G, Marti A, Textor M, Spencer ND, Hauert R. The Implant

Material, Ti6Al7Nb: Surface Microstructure, Composition and Properties. J. Mater. Sci.

Mater. M. 1999;10:191-198.

Page 101: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

95

CAPÍTULO 5

In vitro biocompatibility and bacterial

adhesion of physico-chemically modified

Ti6Al4V surface by means of UV irradiation

Este capítulo es una reproducción de la publicación: "A.M. Gallardo-Moreno, M.A.

Pacha Olivenza, L. Saldaña, C. Pérez-Giraldo, J.M. Bruque, N. Vilaboa, M.L.

González-Martín. Acta Biomaterialia 2009;5(1):181-192", realizada en colaboración

con el grupo del Dr. J.L. González-Carrasco del Centro Nacional de Investigaciones

Metalúrgicas, CENIM-CSIC (Madrid) y el grupo de la Dra. N. Vilaboa del Hospital

Universitario La Paz, FIB-HULP (Madrid).

Page 102: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

96

ABSTRACT

UV irradiation leads to a “spontaneous” wettability increase of the Ti6Al4V surface

while preserving bulk properties of the alloy that are crucial for its performance as an

orthopaedic and dental implant. We hypothesized that UV treatment of Ti6Al4V may

impair bacterial adhesion without compromising the good response of human bone-

forming cells to this alloy. The in vitro biocompatibility of the Ti6Al4V surface, before

and after UV irradiation, was analyzed by using human cells related to the osteoblastic

phenotype. The adhesion processes of bacterial strains related to clinical orthopaedic

infections, i.e. S. aureus and S. epidermidis, were studied theoretically and in vitro,

under dynamic and static conditions as well as in the presence or absence of shear

forces. While human cell adhesion was not altered by UV irradiation of Ti6Al4V alloy,

this treatment reduced not only initial bacterial adhesion rates but also bacterial

adhesion strength to the surface. The analysis of G as a function of the interaction

distance explained the bacterial adhesion-retention processes to the surfaces. Secondary

adhesion minima were responsible for the landing of bacteria onto UV treated or

untreated surfaces. Primary adhesion minima, present in non-irradiated surfaces,

promote a firmer anchorage of bacterial cells, while energy barriers, present in

irradiated surfaces, are responsible for loose adhesion. This study proposes the use of

UV treatment prior to implantation protocols as an easy, economic and effective way of

reducing bacterial adhesion on the Ti6Al4V surface without compromising its excellent

biocompatibility.

5.1. INTRODUCTION

Microbial infection is one of the most destructive complications related to orthopaedic

implants because antimicrobial therapy usually lacks efficacy at the point when the

infection process is detected [1,2]. Controlled antibiotic release from the biomaterial

and antibiotic loading on the biomaterial surface are strategies employed to overcome

this problem, but there is concern about the increased microbial resistance to antibiotics

that these procedures may induce. An alternative approach in the fight against bacterial

adhesion focuses on the modification of physico-chemical surface properties of the

biomaterial, such as hydrophobicity, surface tension and electrical surface potential,

because they are crucial in the initial approach and further retention of bacterial cells to

various surfaces [3-5]. On the other hand, adequate adhesion of osteoblasts and their

progenitors to the implant surface ultimately influences their capacity to proliferate and

Page 103: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

97

perform their specific functions. Surface characteristics of materials, such as chemistry

and surface energy, play an essential role in cell adhesion to biomaterials. Thus, any

modification of the surface characteristics introduced in order to diminish adhesion of

microorganisms to a biomaterial should not compromise bone-forming cell adhesion.

The Ti6Al4V alloy is widely used in orthopaedic and dental applications due to its low

density, excellent mechanical and anti-corrosive properties, and good biocompatibility

[6,7]. The spontaneous passivation of this alloy forms a thin outer layer, predominantly

composed of amorphous or poorly recrystallised TiO2. We have recently shown that the

presence of TiO2 changes the physico-chemical surface properties of Ti6Al4V after UV

irradiation [8]. Interestingly, titanium, TiO2 surfaces and anodized titanium alloy with a

thin film of anatase show anti-bacterial properties under UV treatment [9-11]. However,

to date there is no information available on the affinity of human cells and bacteria for

physico-chemically modified Ti6Al4V surfaces after UV treatment. We hypothesized

that UV treatment of Ti6Al4V may impair bacterial adhesion without compromising the

behaviour of human bone-forming cells on this alloy. The present study reports on the

in vitro biocompatibility of the Ti6Al4V surface after UV irradiation by evaluating the

behaviour of three types of human cells related to the osteoblastic phenotype, including

the osteoblastic Saos-2 cell line, mesenchymal cells from bone marrow (hMSC) and

primary osteoblasts (hOB). We address the in vitro initial adhesion behaviour and

further retention of three staphylococci strains directly involved in implant-related

infections, i.e., S. aureus ATCC29213, S. epidermidis ATCC35984 (producer of an

extracellular polysaccharide substance, EPS) and S. epidermidis HAM892 (mutant of S.

epidermidis ATCC35984, non-producer of EPS) [12-14]. The behaviours of human

cells and bacterial strains on the titanium alloy surface after irradiation are extensively

discussed in relation to UV-induced physico-chemical changes on the surface.

5.2. MATERIALS AND METHODS

5.2.1. Ti6Al4V

Discs of Ti6Al4V were cut from bars of 25 mm or 20 mm in diameter kindly supplied

by SURGIVAL S.A. (Valencia, Spain). A TIMETAL 6-4 ELI alloy was processed as a

hot rolled annealed bar at 700ºC for 2 h, then air cooled. The discs were abraded on

successively finer silicon carbide papers, mechanically polished with diamond paste,

and finished with silica colloidal.

Page 104: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

98

Prior to their use, the Ti6Al4V discs were carefully cleaned with distilled water at 60ºC,

vigorously rubbed with a smooth cotton cloth, then rinsed repeatedly, first with distilled

water and finally with distilled and deionised water (MilliQ system); they were then

immersed in a beaker with distilled and deionized water and sonicated for 10 min,

rinsed again with distilled and deionized water, dried in an oven at 40ºC for 1 h and

stored in a desiccator for no longer than 24 h. Samples used as controls were not

subjected to further treatment. A second set of samples was exposed to an UV source

for 15 h. This period was sufficient to guarantee a complete hydrophilization of the

surface, as we have recently shown [8]. G15-T8 UV lamps were kindly provided by

Philips (Philips Iberica, Spain). The lamps emitted predominantly at a wavelength of

257.7 nm and the lamp glass avoided the production of ozone, which is produced by

wavelengths lower than 200 nm. The discs were positioned at 10 cm from the light

source and centred, receiving an intensity of 2.6 mW/cm2. The irradiation installation

was inside an opaque wood chamber to prevent interference from the room or daylight,

or damage to the users.

5.2.2. Cell culture

Human osteosarcoma Saos-2 cells (ECACC, Salisbury, Wiltshire, UK) were grown in

DMEM medium supplemented with 10% (v/v) heat-inactivated foetal bovine serum

(FBS), 500 UI/ml of penicillin and 0.1 mg/ml of streptomycin. Human mesenchymal

stem cells from bone marrow (hMSC) were purchased from Cambrex Bio Science

(Verviers, Belgium) and maintained in growth medium (Cambrex). Primary bone cells

(hOB) were obtained from human bone specimens aseptically collected during

orthopaedic knee surgery and were cultured as has been described previously [15]. Bone

samples were obtained from 4 patients aged 725 years old. Each bone sample was

processed in a separated primary culture and experiments were performed using cultures

obtained from independent patients. Patients enrolled in this research signed Informed

Consent and all procedures using human tissue designated "surgical waste" were

approved by the Human Research Committee of Hospital La Paz (Date of Approval: 02-

14-2007). hOB were cultured in DMEM containing 15% (v/v) FBS, 500 UI/ml of

penicillin and 0.1 mg/ml of streptomycin. Cells were maintained at 37°C under 5% CO2

and 95% air in a humidified incubator.

For cell culture, Ti6Al4V discs of 20 mm in diameter were used. Ti6Al4V samples

were routinely sterilised under UV light in a laminar flow hood for 15 min on each side

Page 105: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

99

and stored until use. Immediately before use in cell culture experiments, parallel sets of

samples were left untreated or treated with UV light as described above.

5.2.3. Cell spreading assays

Cells were seeded on Ti6Al4V samples treated or untreated with UV light in 12-well

plates (1.5×105 Saos-2 cells/well, 6×10

4 hMSC/well and 6×10

4 hOB/well) as described

above and cultured for 3 or 24 h. Attached cells were fixed with 4% formaldehyde in

PBS and permeabilized with 0.1% Triton X-100 in PBS. The cells were then stained

with PBS containing 410-7

M phalloidine-TRITC (Sigma) to visualize filamentous

actin and with PBS containing 310-6

M 4,6-diamidino-2-phenylindole (DAPI, Sigma)

for nuclear DNA. Cells were examined using a fluorescence microscope (Leica

AF6000, Wetzlar, Germany). High resolution fluorescence images from representative

fields of each sample were captured and digitally deconvolved using Huygens software

(Scientific Volume Imaging, Hilversum, The Netherlands). A total of 30 cells randomly

selected from 5 representative images per sample were manually outlined, and cell areas

were measured using ImageJ v1.34 image analysis software.

5.2.4. Bacterial strains and culture

S. aureus ATCC29213 (S. aureus), S. epidermidis ATCC35984 (S. epidermidis4) and S.

epidermidis HAM892 (S. epidermidis2) were stored at –80 ºC in porous beads

(Microbank, Pro-Lab Diagnostics, Austin, Texas, USA). S. epidermidis HAM892 is a

negative extracellular polysaccharide substance producer (EPS-negative) mutant

derived by acriflavin mutagenesis from S. epidermidis ATCC35984 (EPS-positive) and

it was kindly provided by L. Baldassarri from the Laboratorio di Ultrastrutture, Istituto

Superiore di Sanita, Rome, Italy. From the frozen stock, blood agar plates were

inoculated and incubated at 37 ºC to obtain cultures. From these cultures, tubes of 4 ml

of Trypticase Soy Broth (TSB) (BBL, Becton Dickinson, Cockeysville, Maryland,

USA) were inoculated for 10 h at 37 ºC and then 25 l of this pre-culture was used

again to inoculate 50 ml of TSB at 37 ºC for 14 h. This amount of time was sufficient to

guarantee that all strains were at the stationary phase of growing (previously checked

with the growing curves for the three strains).

The bacteria were then harvested by centrifugation for 5 min at 1000g (Sorvall TC6,

Dulont, Newtown, Pennsylvania, USA) and washed three times with PBS conditioned

at 37ºC. Then the bacteria were re-suspended in PBS at a concentration of 3108

Page 106: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

100

bacteria/ml for flow experiments and contact angle assays, and of approximately 107

bacteria/ml for zeta potential tests.

5.2.5. Bacterial adhesion-retention experiments

Flow experiments were carried out at 37 ºC in a parallel plate flow chamber previously

described in detail [16] by using an inverted metallographic microscope (Olympus

GX51, Barcelona, Spain). Ti6Al4V disks of 25 mm were fixed in the centre of one of

the plates of the chamber to ensure laminar conditions for the liquid flow. The adhesion

process was analyzed by using two different experimental settings. In order to study the

dynamic adhesion of bacteria on Ti6Al4V, the flow chamber was placed so that the

alloy surface was on the top side of the flow channel and the bacteria were allowed to

attach while flowing at a constant rate of 2 ml/min for 20 min. Live adhesion was

followed as time passed by recording the images with a video camera connected to a

computer. Initial adhesion rates (j0) were given as bacteria adhered per square

centimetre and second after counting the adhered bacteria in each image. To evaluate

whether progression of adhesion was modified in static conditions, the alloy sample was

placed on the bottom side of the flow channel, the flow was stopped and the bacteria

were left to deposit on the surface for 2 min. Then the parallel plate flow chamber was

turned upside down in order to take images of the adhered bacteria in different areas of

the sample and to count them. This last procedure was repeated until 20 minutes of

adhesion was reached. At the end of each static adhesion period and after taking images

of the adhered bacteria, the flow was slowly opened in order to homogenize the

bacterial concentration inside the flow channel, and then stopped again. Previous

experiments showed that adhered bacteria were not detached during this process. We

will refer to this last experimental setting as static-time-function. Static-time adhesion

rates (j) were given as bacteria adhered per square centimetre and second.

Once the adhesion process was finished, and with a final number of bacteria nf on the

titanium alloy surface, the surface was exposed to the passing of two liquid-air

interfaces in order to check the strength of the adhesion (bacterial retention). After the

first and second liquid-air interfaces the number of remaining bacteria on the surface

was counted and denoted as nI-1 and nI-2, respectively.

Page 107: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

101

5.2.6. Physico-chemical surface characterization

5.2.6.1. Contact angle measurements

For the surface tension evaluation, the contact angles of water (W) (Milli-Q Plus),

formamide (F) (puriss>99.0%, Fluka, Switzerland) and diiodomethane (D)

(purum>98%, Fluka, Switzerland) were determined on the Ti6Al4V surface and on

bacterial lawns using the sessile drop technique.

Bacterial lawns were prepared by filtering a bacterial suspension though 0.45 m pore

size filters (Millipore, Molsheim, France) using negative pressure [17]. Filters were left

to air dry at 37 ºC for 60 min for S. aureus, and 30 min for S. epidermidis4 and S.

epidermidis2. The time for drying was the time at which residual PBS disappeared

between the cells and the “plateau contact angles” () were obtained. This time was

checked for the three strains prior to the experiments [17]. Then the filters were

introduced into an environmental chamber G211 (Krüss, Hamburg, Germany),

connected to a thermostat to maintain the temperature at 37 ºC. Before measuring the

contact angle with a probe liquid, the chamber was allowed to become saturated with

the vapour of the liquid employed. Subsequently, the contact angles were obtained by

analysing the images captured with a computer.

5.2.6.2. Zeta potential measurements

For the electrical surface potential characterization, the zeta potentials () of bacteria

suspended in PBS were measured at 37 ºC with a Laser Doppler Velocimeter Coulter

DELSA 440 (Langley Ford Instruments, Amherst, USA), which uses scattering of

incident laser light to provide the bacterial electrophoretic mobility (e) from the

velocity of the particles inside an electric field [18]. were related to e through the

Helmholtz-Smoluchowski equation

e

4

(5.1)

where and are the medium viscosity and permittivity, respectively.

The zeta potential of Ti6Al4V was obtained from the streaming potential [18] by using

an electrokinetic Analyzer (EKA, Anton Paar, Austria). The measurements were made

with the electrolyte 0.001 M KCl setting a ramp pressure of 600 mb. The pressure

gradient (P) between both ends of the clamping cell provoked movement of the

Page 108: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

102

electrolyte inside the electrokinetic channel, which, in turn, was reflected in a potential

difference between both ends (V). Both magnitudes were related to provide the value

of ,

001.0

M1.0M1.0

R··P

R···V

(5.2)

with R0.001M being the resistivity of the 0.001 M KCl electrolytic solution and 0.1M and

R0,1M the electrical conductivity and resistivity of a 0.1 M solution of KCl needed for

correcting the surface conductivity of the sample.

5.2.7. X-DLVO analysis

The surface tension components, LW

(Lifshitz-van der Waals), 2AB (acid-

base, with - the electron-donor and

+ the electron-acceptor parameters) were calculated

from the contact angles by applying the Young-Dupré equation to each probe liquid (L):

LL

LW

L

LW

L 222)1(cos (5.3)

where ABL

LWLL is the surface tension of the probe liquid [19].

At 37 ºC these values were the following: for water LW

=20.3 mJ/m2,

-=25.0 mJ/m

2,

+=25.0 mJ/m

2,

AB=50.0 mJ/m

2; for formamide

LW=36.7 mJ/m

2,

-=38.3 mJ/m

2,

+=2.2

mJ/m2,

AB=18.4 mJ/m

2 for diiodomethane

LW=48.1 mJ/m

2,

-=0.0 mJ/m

2,

+=0.7

mJ/m2,

AB=0.0 mJ/m

2. [19,20]

The total interaction free energy, G, between microorganisms and substrata through

water (W) as a function of the separation distance (d) was calculated by the sum of the

Lifshitz-van der Waals (LW), the acid-base (AB) and the electrical interaction free

energies (GLW

, GAB

and GEL

, respectively) as proposed by the extended DLVO

theory (X-DLVO) and calculated as follows:

a2d

dln

a2d

a

d

a

6

A)d(GLW (5.4)

A is the Hamaker constant, LW

d

2

0 0Gd12A , a is the microorganisms radius, d0 the

distance of the closest approach between two surfaces and LW

d0G was obtained through

Page 109: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

103

the Lifshitz-van der Waals surface free energy as follows,

2LW

PBS

LW

S

2LW

PBS

LW

B

2LW

S

LW

B

LW

d0G (5.5)

subscripts B and S being bacterium and substratum, respectively, and the surface free

energy of the suspending liquid, PBS, is considered nearly equal to that of water.

0

0AB

d0

AB

d

)dd(expGad2G

0

(5.6)

where,

SBSB

PBSSBPBSPBSSBPBSAB

d 2G0

(5.7)

and finally,

))d2exp(1ln(

)dexp(1

)dexp(1ln

2)(a)d(G

2

S

2

B

SB2

S

2

Br0

EL (5.8)

0 is the dielectric constant of the vacuum and r the relative dielectric constant of the

suspending liquid. B and S are the zeta potentials of bacteria and substrata,

respectively.

Interaction free energies predict favourable adhesion when they are negative and

absence of adhesion when they are positive.

5.2.8. Statistical analysis

The statistical analysis of the samples was undertaken using a one-tail unpaired t-test

and one-way ANOVAs. All data reported are mean S.D. of at least three independent

experiments. The confidential range selected was 95%, which gives statistical

differences when P-values<0.05

5.3. RESULTS AND DISCUSSION

The changes observed in the Ti6Al4V surface after UV irradiation have already been

discussed in a recent study by our group [8]. Table 4.1 exhibits those important changes

in W and F, the polar liquids, before and after irradiation (P<0.05). Taking into

account that W can be considered a quantitative indicator of hydrophobicity, the control

surface behaves as hydrophobic, while the UV treated surface is presented as highly

Page 110: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

104

hydrophilic. The excitation of the semiconductor TiO2 present on the surface of

Ti6Al4V generates electron-hole pairs, which are responsible for the changes observed.

The subsequent well-described chemical reactions lead to the substitution of oxygen

atoms of the TiO2 lattice for OH- groups, making the surface hydrophilic [21-23]. Such

hydrophilicity is also detected in the values of the surface tension, mainly in the acid-

base component and the parameters - and

+. As we have shown, the increment in the

electron-donor capacity is related to the presence of hydroxyl ions on the surface [8].

Table 5.1. Physico-chemical surface characterization of the Ti6Al4V surface before (control)

and after 15 h of UV light treatment (UV) and for the three bacteria studied. Contact angles of

water, formamide and diiodomethane (W, F, D) and Lifshitz-van der Waals (LW), acid base

(AB) and total () surface free energy and electron-donor (-

) and electron-acceptor (+)

parameters for all the samples.

W

(º)

F

(º)

D

(º)

(mV)

LW

(mJ/m2)

-

(mJ/m2)

+

(mJ/m2)

AB

(mJ/m2)

(mJ/m2)

control 883 662 491 312 32.3 3.2 0.2 1.5 33.8

UV 91 3.90.2 421 302 28.2 51.6 4.9 31.7 59.9

aureus 723 582 441 -82 30.4 13.8 0.3 3.9 34.3

epidermidis4 742 602 491 -62 28.2 12.6 0.4 4.4 32.6

epidermidis2 582 652 491 102 24.8 40.0 0.01 0.7 25.5

5.3.1. Effect of UV treatment on cell behaviour

Among other surface characteristics, wettability is thought to play a pivotal role in cell

response to materials. In this sense, self-assembling monolayers (SAMs) of alkanethiols

or alkylsilanes have provided suitable model surfaces to study the influence of

wettability and surface functional groups on cell attachment. While it has been generally

assumed that increased hydrophilicity favours cell adhesion to surfaces [24], available

data on mammalian cells adhesion to SAMs are far from conclusive [25-28]. The very

diverse cell types employed to assess the influence of wettability on SAMs attachment

could explain the lack of uniformity of the data, as cells from different origins may

respond differently to materials.

In order to study whether UV-induced changes of Ti6Al4V surface affect the ability of

human bone-forming cells to adhere to the alloy, we examined the behaviour of three

Page 111: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

105

types of cells related to the osteoblastic phenotype (Saos-2, hMSC and hOB).

Examination of microphotographs from cells incubated for 3 h on the surfaces revealed

that UV treatment had no significant effect on the adhesion ability of any tested cell

type (Fig. 5.1a). Quantification of cells attached to the surfaces by means of a standard

MTT assay confirmed these observations (data not shown). Information on the

influence of wettability on cell behaviour on titanium-based surfaces is quite limited,

mainly due to the fact that reported treatments which modify surface hydrophilicity also

lead to subtle changes in roughness. For example, heating or treatment of Ti6Al4V alloy

with peroxide results in highly hydrophilic surfaces, with increased roughness, which

does not modify the rate of attachment of human osteoblastic MG-63 cells [29].

However, rabbit osteoblasts preferentially attached to heated Ti surfaces with an

increased number of hydroxyl groups and roughness, as compared to untreated samples

[30]. Roughness of the surface was not affected after UV treatment (data not shown),

and according to our data early attachment of several culture models of human

osteoblasts is not affected by UV-induced changes in the wettability of Ti6Al4V alloy

surfaces.

Fibroblasts attachment equalled rates on hydrophobic or hydrophilic SAMs but cell

spreading was sensitive to wettability, as it was impaired on highly hydrophilic surfaces

[26]. Therefore, we considered it of interest to study whether changes in the alloy

surface after UV treatment of Ti6Al4V samples modified spreading patterns of Saos-2

cells, hMSC or hOB in the short culture period of 3 h. To this end, we quantified the

area of cells cultured on the surfaces and examined the ability of cells to form actin

stress fibers. The average cell areas of both hMSC and hOB were higher than those

measured in Saos-2 cells (Fig. 5.1a). The quantified areas of cells cultured on UV-

treated surfaces were similar to those measured on surfaces without treatment,

regardless of the cell type. Microscopic examination of actin-stained cells revealed a

higher organization of actin cyoskeleton in both hMSC and hOB than in Saos-2 cells

(Fig. 5.1a). While hMSC and hOB exhibited radially positioned bundles of actin

filaments, no defined-stress fibers appeared in Saos-2 cells. Interestingly, the pattern of

actin distribution was unaffected by UV treatment in any of the cell types. Examination

of microphotographs revealed that cells have markedly different shapes at 24 h (Fig.

5.1b).

Page 112: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

106

Fig. 5.1. Cell behaviour on Ti6Al4V surfaces. Cells were cultured on Ti6Al4V before

irradiation (control) and after irradiation (UV) for 3h (a) or 24h (b). Actin cytoskeleton and

nuclei staining of cells cultured on Ti6Al4V surfaces. Representative images of three

independent experiments with similar results. Bars = 50 m. The graphics show the cell area

measured on Ti6Al4V surfaces and results represent the mean SD of three independent

experiments. * P<0.05 compared to hMSC and hOB.

While Saos-2 cells had a typical polygonal morphology with well-formed actin

filaments, hMSC and hOB expanded to an elongated shape in which actin filaments

organized in well-defined stress fibers mostly oriented in a parallel direction following

the main cellular axis. Actin network organization was unaffected by UV treatment on

Ti6Al4V samples. Rapid initial cell spreading detected in either hMSC or hOB was not

Sao

s-2

h

MSC

h

OB

(a) Control UV Control UV

Sao

s-2

h

MSC

h

OB

(b)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2

Saos

hMSC

hOB

Control UV

Cel

l are

a (µ

m2)

* *

hOB

Saos-2 hMSC

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2

Saos

hMSC

hOB

* *

Control UV

Cel

l are

a (µ

m2)

hOB

Saos-2 hMSC

Page 113: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

107

significantly modified after culturing cells for 24 h (Fig. 5.1b). However, the average

area of Saos-2 cells increased greatly when the culture period was extended. At 24 h,

changes induced on Ti6Al4V samples by UV treatment did not modify the spreading of

any cell type.

Interestingly, visualization of Saos-2 cells, hMSC and hOB adhered to Ti6Al4V alloy

after 24 h indicated that cell viability was not affected by UV-induced changes of the

surface. A recently described modified sand blasted and acid etched titanium surface

(modSLA) with an extremely hydrophilic character resulted in a reduction of viability

of MG-63 cells, as compared to unmodified SLA [31]. ModSLA and SLA exhibit

similar roughness, suggesting that cell colonization of blasted surfaces could be

inversely related to surface hydrophilicity. However, under our experimental conditions

we did not detect that osteoblastic viability is impaired on polished, highly hydrophilic

UV-treated Ti6Al4V alloy. In summary, UV treatment of Ti6Al4V does not impair its

good in vitro biocompatibility.

5.3.2. Effect of UV treatment on bacterial adhesion

Fig. 5.2 displays the values of the adhesion rates for the two processes, i.e., dynamic or

j0 and static-time-function or j, respectively, before (control) and after UV irradiation

(UV). Initial adhesion rates (j0), calculated from the adhesion at the top of the surface,

are lower than the adhesion rates (j), calculated from the adhesion at the bottom,

regardless of the presence or absence of UV irradiation (P<0.05).

These data suggest that bacterial adhesion strongly depends on the relative position of

the surface and the flow conditions of the surrounding media: static adhesion, mainly

mediated by deposition of bacteria, is higher than dynamic adhesion, which avoids

deposition. Measured differences between j and j0 can be as high as fifteen-fold as

detected for S. epidermidis2 after irradiation. Some experiments were also carried out in

flow-dynamic conditions with the surface placed at the bottom plate in order to check

the contribution of the flow conditions to the observed adhesion differences.

Page 114: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

108

Fig. 5.2. Initial adhesion rates of the three bacterial strains to the Ti6Al4V surface located at

the top of the parallel plate flow chamber, j0, (a) and adhesion rates when the sample is located

at the bottom, j, (b), before irradiation (control) or after 15 h of irradiation (UV). * P<0.05

specific comparisons inside the text.

The results (not shown) demonstrated that the final state of the substratum in flow

conditions was the same as in static-time-function conditions, which implies that only

the position of the surface, relative to the bacterial suspension, plays an important role

in adhesion tendency. This behaviour was also observed in similar experiments dealing

with glass surfaces [32], which means that deposition of bacteria plays an important role

in promoting adhesion.

Comparisons among the three strains show that the highest adhesion was detected for S.

aureus, followed by S. epidermidis4, while the lowest adhesion was for the mutant

strain S. epidermidis2. Differences were, without exception, statistically significant

0

50

100

150

200

250

300

1 2

S. aureus

S. epidermidis 4

S. epidermidis 2

(a)

UV control

j 0 (

bac

teri

a/cm

2s)

*

*

*

*

*

S. aureus

S. epidermidis 4

S. epidermidis 2

0

200

400

600

800

1000

1200

1 2

S. aureus

S. epidermidis 4

S. epidermidis 2

UV control

j (b

acte

ria/

cm2s)

(b)

* * *

*

S. aureus

S. epidermidis 4

S. epidermidis 2

Page 115: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

109

(P<0.05). The results obtained could be in agreement with multiple data which show

that S. aureus is the dominant organism associated with infected metallic implants while

S. epidermidis is more frequently isolated from non-metallic devices [13,33,34]. The

differences observed between both S. epidermidis strains could be related to their

different EPS production. In the case of S. epidermidis2 the suppression of its EPS

production capacity makes it less adherent because EPS promotes not only adhesion to

different surfaces but also co-adhesion between bacteria [35,36]. Fig. 5.3 presents some

representative images of the final state of the Ti6Al4V surface when it is located at the

top (a) and at the bottom (b). Image analysis of each experiment suggests that bacterial

co-adhesion is the main reason for the differences between both S. epidermidis strains at

the end of the experiment. Despite sonication of all bacterial suspensions prior to flow

experiments, the number of bacteria counted in the case of S. epidermidis4 was always

increased by the large cumulus of bacterial cells in the images, while the density of

single attached bacteria seemed to be similar for S. epidermidis4 and S. epidermidis2

(Fig. 5.3b). Nevertheless, initial adhesion of S. epidermidis4 always took place with

single bacterial cells (Fig. 5.3a). The differences observed for j0 between both S

epidermidis strains were around 60% before irradiation, and 70% after irradiation (Fig

5.2a), which means that EPS production may also contribute to the higher adhesion of S.

epidermidis4 to host surfaces.

The differences between Figs 5.2a and 5.2b reveal that UV irradiation changes the

adhesion rates of the bacteria strains studied. With the exception of j for S.

epidermidis2, the adhesion of bacteria decreased on the irradiated surface compared to

the control sample regardless of the type of adhesion test carried out. However,

adhesion changes were more evident when deposition was avoided (Fig. 5.2a). Thus, j0

diminished by 16% for S. aureus, by 28% for S. epidermidis4 and by 45% for S.

epidermidis2. In an attempt to find a relationship between adhesion rates before and

after irradiation, we plotted j0 and j before UV against j0 and j after UV. As shown in

Fig. 5.4, a very good linear relationship with the slope of 1 and R2=0.9929 was found.

This means that after irradiation both j0 and j decrease by about 33 cells per square

centimetre and second (independent term of the linear fitting) as compared to their

corresponding values for the non-irradiated alloy. Although it is difficult, at present, to

account for a specific empirical relationship, it could be speculated that whatever the

properties or particular characteristics of the bacterial strain, bacteria “sense” a similar

Page 116: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

110

Ti6Al4V surface change induced by UV irradiation.

Fig. 5.3. Representative images of the bacterial coverage state at the end of the dynamic flow

experiment at top (a) and at the end of the static-time-function adhesion experiment at bottom

(b).

(a) (b) S.aureus

S. epidermidis4

S. epidermidis2

Page 117: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

111

Fig. 5.4. Relationship between the initial adhesion rates at top (j0, squares) and the adhesion

rates at bottom (j, rhomboids) before (control) and after 15 h of irradiation (UV). White

symbols: S. epidermidis2, grey symbols: S. epidermidis4, black symbols: S. aureus.

5.3.3. Effect of ultra-violet treatment on bacterial retention

At the end of the adhesion experiments, two consecutive liquid-air interfaces were

passed through the channel of the parallel plate flow chamber and the strength of the

adhesion, or retention, was evaluated by counting the number of bacteria that remained

on the surface. This procedure allowed us to investigate whether bacteria were firmly or

loosely attached [37,38]. The results are summarized in Fig. 5.5. With the exception of

S. epidermidis4-nI-2-UV, the number of adhered bacteria followed the same behaviour

as the adhesion rates, the highest being for S. aureus and the lowest for S. epidermidis2,

regardless of the surface characteristics of the sample (compare Figs 5.5a, 5.5b and

5.5c) (P<0.05). Although j showed small variations for control and UV-light irradiated

Ti6Al4V, nf was similar in both cases for the three strains. Interestingly, after passing

liquid-air interfaces, the coverage state of the Ti6Al4V showed important differences

between the control and the UV surfaces. The adhered bacteria were firmly attached to

the untreated alloy surface, as they could not be removed from the surface. Only S.

epidermidis4-nI-2 decreased slightly in relation to nf, probably due to the presence of the

bacterial cumulus (P<0.05). On the other hand, the UV plots showed that the irradiated

surface is not able to retain the adhered bacteria. After the passage of the second liquid-

air interface the detachment of bacteria became highly important: 76% for S. aureus,

43% for S. epidermidis4, and 93% for S. epidermidis2. EPS production may be the

reason for the highest retention observed in S. epidermidis4.

y = 1.0072x - 32.944

R2 = 0.9929

0

100

200

300

400

500

600

700

800

900

0 200 400 600 800

j0 , j (control)

(bacteria/cm2s)

j 0 ,

j (

UV

)

(ba

cte

ria

/cm

2s)

Page 118: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

112

Fig. 5.5. Number of the final bacteria (nf) adhered to the Ti6Al4V surface at the end of the

experiment (bottom) and number of the remaining bacteria after the passing of the first liquid-

air interface (nI-1) and after the second liquid-air interface (nI-2) without irradiation (control) or

after 15 h of irradiation (UV) for S. aureus (a), S. epidermidis4 (b) and S. epidermidis2 (c). *

P<0.05 specific comparisons inside the text.

0

20

40

60

80

100

120

140

1 2

nf

nI-1

nI-2nI-2

nf

nI-1

S. aureus

n (

bac

teri

a/cm

2)

10-4

UV control

(a)

* * *

*

0

20

40

60

80

100

120

140

1 2

nf

nI-1

nI-2nI-2

nf

nI-1

n (

bac

teri

a/cm

2)

10-4

UV control

(b) S. epidermidis4

*

* *

*

0

20

40

60

80

100

120

140

1 2

nf

nI-1

nI-2nI-2

nf

nI-1

n (

bac

teri

a/cm

2)

10-4

UV control

(c)

*

*

S. epidermidis2

Page 119: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

113

In fact, suppression of EPS production in S. epidermidis2 gave the lowest retention. Fig.

5.6 presents an illustrative image of the state of the surface at the end of the experiment

and after the passing of the two liquid-air interfaces. In the case of S. epidermidis4

cumulus of bacteria appear even after the passing of the liquid-air interfaces.

Fig. 5.6. Representative images of the bacterial coverage state after UV irradiation, at the end

of the experiment, nf, (a), after the passing of the first liquid-air interface, nI-1, (b) and after the

passing of the second liquid-air interface, nI-2, (c).

(a) (c) (b)

S. epidermidis2

S. aureus

S. epidermidis4

Page 120: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

114

The novel results presented above suggest that despite unavoidable attachment of

bacterial cells to Ti6Al4V, irradiation of its surface with UV light prior to its use would

facilitate easy removal of most of the adhered bacteria by shear forces, which can be

present in target sites where the implants are placed.

5.3.4. Physico-chemical approach to bacterial adhesion and retention

Table 5.1 shows that W was similar for S. aureus and S. epidermidis4 (P>0.05), both of

which are hydrophobic, while W was lower for S. epidermidis2 (P<0.05). F, D and

values were very similar for all the strains. S. epidermidis2 had a very strong electron-

donor capacity compared to the other two strains. Nevertheless, due to its low + value,

AB

and were the lowest.

As a first and qualitative attempt to relate the physico-chemical parameters to in vitro

bacteria adhesion, hydrophobicity of the interacting surfaces can be taken as a predictor

of higher or lower adhesion. Although there is still some controversy about the role of

substratum hydrophobicity (or surface tension) in bacterial adhesion, [39,40] data from

the present study indicate that substratum hydrophobicity plays a crucial role in the

adhesion rates and detachment of bacteria. Regardless of the strain selected, hydrophilic

UV-irradiated Ti6Al4V presents lower adhesion rates as compared with hydrophobic

control surfaces (Fig. 5.3). In addition, the hydrophilic surface also shows a lesser

ability to retain bacterial cells, and liquid-air interfaces can remove more than three

quarters of the adhered bacteria. Working with yeast cells, we have also observed that

silicone hydrophobic surfaces have lower detachment rates compared with hydrophilic

glass surfaces [38].

Despite the shortage of X-DLVO in its application to the analysis of bacterial adhesion,

this model could give some indications on the behavior of the adhesion process. If we

consider bacteria as colloidal particles of approximately 900 nm in diameter, with

surface tension and zeta potential as evaluated from contact angle and electrophoretic

mobility measurements, interacting with a flat surface, the application of Eqs. (4.4)–

(4.8) gives the dependence of the interaction free energy with distance between particle

and surface. Fig. 5.7 presents DG, in kT units, as a function of the separation distance

for S. epidermidis4 before and after irradiation (Fig. 5.7a and 5.7b, respectively). The

other two strains had a similar pattern in the X-DLVO plots (data not shown). A

summary of the most relevant energetic information extracted from all the X-DLVO

Page 121: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

115

figures is given in Table 5.2.

Fig. 5.7. X-DLVO plots of the total interaction free energy (G) between epidermidis4 and the

Ti6Al4V surface before (a) and after 15 h of irradiation (b). Lifshitz-van der Waals (GLW

),

acid-base (GAB

) and electrical (GEL

) components of G.

The most important feature related to the data in Fig. 5.7 is the great change in the plot

pattern after UV. For control surfaces, DG showed two favourable adhesion minima, a

secondary minimum and a primary minimum related with a potential well. For the UV-

d (A)

0 10 20 30 40 50 60

G

(kT

)

-90

-75

-60

-45

-30

-15

0

15

30

45

GEL

GAB

GLW

G

(a)

d (Å)

d (A)

0 10 20 30 40 50 60

G

(k

T)

-90

-75

-60

-45

-30

-15

0

15

30

45

GEL

GAB

GLW

G

(b)

d (Å)

Page 122: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

116

irradiated sample, despite a secondary minimum still appearing, the primary minimum

was substituted by an energy barrier.

The assumption that bacteria are colloidal particles has the important shortcoming of

supposing that real bacteria are able to reach distances as close to the substratum surface

as 1.57 Å , which is the closest approach between two surfaces described by the

colloidal theory. For example, Li and Logan [41] have recently pointed out that

Escherichia coli bacteria approach host surfaces to a distance of within 50 Å (distance

roughly equal to the length of the core polysaccharide on Gram-negative bacteria),

while Sharma and Hanumantha assume that interaction distances should be located at

6.57 Å [42]. On this basis, the predictions of X-DLVO model at the minimal distance,

d0, seem unrealistic. Therefore, the secondary adhesion minimum has to play an

important role in the bacterial adhesion process. The favorable interaction, resulting in

adhesion to the Ti6Al4V surface, must take place when bacteria fall into the secondary

adhesion minimum at distances of 26.6 Å for S. aureus, 30.6 Å for S. epidermidis4 and

44.1 Å for S. epidermidis2, for which DG is negative in all cases, as shown in Table 5.2.

Table 5.2. Total interaction free energies (G) at the minimal separation distance (d0) and

energetic information of singular points observed in the X-DLVO graphics: presence or

absence of maxima, locations and energy of secondary minima and existence of primary

minima. Data are given for the interaction of the three bacterial strains with the Ti6Al4V

surface before irradiation (control) and after irradiation (UV).

d0 MÁX Secondary

minimum Primary

minimum G (mJ/m2)

G (kT)

d

(Å) G (kT)

d (Å)

G

(kT)

control

aureus -42.96 4504.94 16.1 -8.48 26.6 -9.92 yes

epidermidis4 -43.26 4532.99 15.1 -3.62 30.6 -7.32 yes

epidermidis2 -20.66 2084.21 10.6 28.55 44.1 -3.27 yes

UV

aureus 10.73 1065.11 no 33.1 -5.90 no

epidermidis4 9.76 961.92 no 36.1 -4.44 no

epidermidis2 28.21 2981.23 no 48.1 -2.06 no

The plot of the adhesion rates against G values of the secondary minimum in Fig. 5.8

shows a very good relationship for j0–G, whereas for j–G it is more difficult to define

such a clear tendency. This result can be related to the differences observed between

Page 123: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

117

both adhesion rates. Bacterial adhesion to the surface located at the top of the flux can

be a consequence only of the initial adhesion tendency of bacteria, quantified by G,

while the results on the surface located at the bottom also account for deposition.

Fig. 5.8. Relationships between the initial adhesion rates at the top (j0, circles) and the

adhesion rates at the bottom (j, triangles) against the interaction free energy (G) calculated at

the minimal separation distance d0 (a) and at the secondary energy minima (b). White symbols:

S. epidermidis2, grey symbols: S. epidermidis4, black symbols: S. aureus.

After this first initial adhesion step, bacteria would strengthen their linkage to the

control surfaces. In the case of the irradiated surface, differences in the surface

properties can prevent a firm retention to the surface, making the adhered cells

vulnerable to any shear force, as proved by the results obtained after the passage of two

air–liquid interfaces (Fig. 5.5).

5.4. CONCLUSIONS

UV irradiation of the Ti6Al4V surface does not compromise the excellent in vitro

biocompatibility of the alloy, as measured by culturing human Saos-2 cells, primary

osteoblasts and mesenchymal stem cells on treated surfaces. The physico-chemical

changes occurring on the surface induce a reduction not only in adhesion rates of S.

aureus ATCC29213, S. epidermidis ATCC35984 and S. epidermidis HAM892 under

flow conditions but also in the adhesion strength between attached bacteria and the alloy

surface. A careful and detailed analysis of G as a function of the interaction distance

explains the bacterial adhesion-retention processes to the Ti6Al4V surface before and

after irradiation. Secondary adhesion minima are responsible, in any case, for the

0

50

100

150

200

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

G at secondary minimum (kT)

j 0 (

bacte

ria

/cm

2s)

400

500

600

700

800

900

1000

j (b

acte

ria

/cm

2s)

Page 124: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

118

landing of the bacteria onto the surface. Primary adhesion minima present in non-

irradiated surfaces promote a firmer anchorage of bacterial cells while energy barriers,

present in irradiated surfaces, are responsible for loose adhesion. From a practical point

of view, this study proposes UV treatment prior to implantation protocols as an easy,

economic and effective way of reducing the bacterial adhesion to the Ti6Al4V surface

without altering the excellent biocompatibility of the alloy.

5.5. REFERENCES

[1] Mack D, Rohde H, Harris LG, Davies AP, Horstkotte MA, Knobloch JK. Biofilm

formation in medical device-related infection. Int. J. Artif. Organs. 2006;29:343-

359.

[2] Edupuganti OP, Antoci V, King SB, Jose B, Adams CS, Parvizi J, Shapiro IM,

Zeiger AR, Hickok NJ, Wickstrom E. Covalent bonding of vancomycin to Ti6Al4V

alloy pins provides long-term inhibition of Staphylococcus aureus colonization.

Bioorg. Med. Chem. Lett. 2007;17:2692-2696.

[3] An YH, Friedman RJ. Handbook of bacterial adhesion. Principles, methods and

aplications. Totowa, NJ: Humana Press Inc; 2000.

[4] Bos R, Van der Mei HC, Busscher HJ. Physico-chemistry of initial microbial

adhesive interactions – its mechanisms and methods for study. FEMS Microbiol.

Rev. 1999;23:179-230.

[5] Méndez-Vilas A, Gallardo-Moreno AM, Calzado-Montero R, González-Martín ML.

AFM probing in aqueous environment of Staphylococcus epidermidis cells naturally

immobilised on glass: Physico-chemistry behind the successful immobilisation.

Colloid Surface B 2008;63:101-109.

[6] Brunette DM, Tengwall P, Textor M, Thomsen P. Titanium in Medicine, London:

Springer-Verlag; 2001.

[7] De Giglio E, Guascito MR, Sabbatini L, Zambonin G. Electropolymerization of

pyrrole on titanium substrates for the future development of new biocompatible

surfaces. Biomaterials 2001;22:2609-2616.

Page 125: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

119

[8] Pacha-Olivenza MA, Gallardo-Moreno AM, Méndez-Vilas A, Bruque JM,

González-Carrasco JL, González-Martín ML. Effect of UV irradiation on the

surface Gibbs energy of Ti6Al4V and Ti6Al4V oxidized alloys. J. Colloid Interf.

Sci. 2008;320:117-124.

[9] Cho M, Chung H, Choi W, Yoon J. Different inactivation behaviours of MS-2

Phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl. Environ.

Microb. 2005;71:270-275.

[10] Maness P-C, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby W.

Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of

its killing mechanism. Appl. Environ. Microb. 1999;65:4094-4098.

[11] Gopal, J, George RP, Muraleedharan P, Kalavathi S, Banerjee S, Dayal RK,

Khatak HS. Photocatalytic inhibition of microbial fouling by anodized Ti6Al4V

alloy. J. Mater. Sci. 2007;42:5152-5158.

[12] Vogely HCh. Infections in orthopaedic surgery. Clinical and experimental studies.

PhD Thesis. Universiteit Utrecht, 2000.

[13] Holgers KM, Ljungh A. Cell surface characteristics of microbiological isolates

from human percutaneous titanium implants in the head and neck. Biomaterials

1999;20:1319-1326.

[14] Oztürk O, Sudagidan M, Türkan U. Biofilm formation by Staphylococcus

epidermidis on nitrogen ion implanted CoCrMo alloy material. J. Biomed. Mater.

Res. A 2007;81:663-668.

[15] Saldaña L, Vilaboa N, Valles G, Gonzalez-Cabrero J, Munuera L. Osteoblast

response to thermally oxidized Ti6Al4V alloy. J. Biomed. Mater. Res. A

2005;73:97-107.

[16] Sjollema J, Busscher HJ, Weerkamp AH. Real time enumeration of adhering

microorganisms in a parallel plate flow cell using automated image analysis. J.

Microbiol. Meth. 1989;9:73-78.

Page 126: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

120

[17] Busscher HJ, Weerkamp AH, Van der Mei HC, Van Pelt AWJ, de Jong HP,

Arends J. Measurements of the surface free energy of bacterial cell surfaces and

its relevance for adhesion. Appl. Environ. Microb. 1984;48:980-983.

[18] Shaw D.J. Introduction to colloid and surface chemistry. London: Butterworths;

1989.

[19] Van Oss C.J. Interfacial forces in aqueous media. New York: Marcel Dekker;

1994.

[20] González-Martín ML, Janczuk B, Labajos-Broncano L, Bruque JM. Determination

of the carbon black surface free energy components from the heat of immersion

measurements. Langmuir 1997;13:5991-5994.

[21] Diebold U. The surface of titanium dioxide. Surf. Sci. Rep. 2003;48:53-229.

[22] Wu K-R, Wang J-J, Liu W-C, Chen Z-S, Wu J-K. Deposition of graded TiO2 films

featured both hydrophobic and photo induced hydrophilic properties. Appl. Surf.

Sci. 2006;252:5829-5838.

[23] Zhang P, Tay BK, Zhang YB, Lau SP, Yung KP. The reversible wettability of Ti

containing amorphous carbon films by UV irradiation. Surf. Coat. Tech.

2005;198:184-188.

[24] Garcia AJ, Keselowsky BG. Biomimetic surfaces for control of cell adhesion to

facilitate bone formation. Crit. Rev. Eukar. Gene. 2002;12:151-62.

[25] Arima Y, Iwata H. Effect of wettability and surface functional groups on protein

adsorption and cell adhesion using well-defined mixed self-assembled

monolayers. Biomaterials 2007;28:3074-82.

[26] Faucheux N, Schweiss R, Lützow K, Werner C, Groth T. Self-assembled

monolayers with different terminating groups as model substrates for cell adhesion

studies. Biomaterials 2004;25:2721-30.

[27] Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates focal

adhesion composition and signaling through changes in integrin binding.

Biomaterials 2004;25:5947-54.

Page 127: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

121

[28] Liu L, Chen S, Giachelli CM, Ratner BD, Jiang S. Controlling osteopontin

orientation on surfaces to modulate endothelial cell adhesion. J. Biomed. Mater.

Res. A 2005;74:23-31.

[29] MacDonald DE, Rapuano BE, Deo N, Stranick M, Somasundaran P, Boskey AL.

Thermal and chemical modification of titanium-aluminum-vanadium implant

materials: effects on surface properties, glycoprotein adsorption, and MG63 cell

attachment. Biomaterials 2004;25:3135-46.

[30] Feng B, Weng J, Yang BC, Qu SX, Zhang XD. Characterization of surface oxide

films on titanium and adhesion of osteoblast. Biomaterials 2003;24:4663-70.

[31] Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan

BD. High surface energy enhances cell response to titanium substrate

microstructure. J. Biomed. Mater. Res. A. 2005;74:49-58.

[32] Sjollema J, Busscher HJ, Weerkamp AH. Deposition of oral streptococci and

polystyrene lattices onto glass in a parallel flow cell. Biofouling 1988;1:101-112.

[33] Barth E, Mirivik QM, Wagner W, Gristina AG. In vitro and in vivo comparative

colonization of Staphylococcus aureus and Staphylococcus epidermidis on

orthopaedic implant materials. Biomaterials 1989;10:325-328.

[34] Fortún J, Navas E. A critical approach to the pathogenesis, diagnosis, treatment and

prevention of catheter-related bloodstream infections and nosocomial endocarditis.

Clin. Microbiol. Infec. 1999;5:2S40-2S50.

[35] Kodjikian L, Burillon C, Chanloy C, Bostvironnois V, Pellon G, Mari E, Freney J,

Roger T. In vivo study of bacterial adhesion to five types of intraocular lenses.

Invest. Ophth. Vis. Sci. 2002;43:3717-3721.

[36] Dunne WM. Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol.

Rev. 2002;15:155-166.

[37] Gómez-Suárez C, Busscher HJ, Van der Mei HC. Analysis of bacterial detachment

from substratum surfaces by the passage of air-liquid interfaces. Appl. Environ.

Microb. 2001;67:2531-2537.

Page 128: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

122

[38] Gallardo-Moreno AM, González-Martín ML, Bruque JM, Pérez-Giraldo C. The

adhesion strength of Candida parapsilosis to glass and silicone as a function of

hydrophobicity, roughness and cell morphology. Colloid Surface A 2004;249:99-

103.

[39] Gallardo-Moreno AM, Van der Mei HC, Busscher HJ, González-Martín ML,

Bruque JM, Pérez-Giraldo C. Adhesion of Enterococcus faecalis grown under

subinhibitory concentrations of ampicillin and vancomycin to a hydrophilic and a

hydrophobic substratum. FEMS Microbiol. Lett. 2001;203:75-79.

[40] Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J. Quantitative analysis of

adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of

clinical isolates of Staphylococcus epidermidis. Res. Microbiol. 2005;156:506-

514.

[41] Li B, Logan BE. Bacterial adhesion to glass and metal-oxide surfaces. Colloid

Surface B 2004;36:81-90.

[42] Sharma PK, Hanumantha Rao K. Adhesion of Paenibacillus polymyxa on

chalcopyrite and pyrite: surface thermodynamics and XDLVO theory. Colloid

Surface B 2003;29:21-38.

[43] Israelachvili J. Intermolecular and surface forces. London: Academic Press

Limited;1992.

Page 129: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

123

CAPÍTULO 6

Bactericidal behavior of Ti6Al4V surfaces

after exposure to UV-C light

Este capítulo es una reproducción de la publicación: "A.M. Gallardo-Moreno, M.A.

Pacha Olivenza, M.C. Fernández-Calderón, C. Pérez-Giraldo, J.M. Bruque, M.L.

González-Martín. Biomaterials 2010;31:5159-5168".

Page 130: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

124

ABSTRACT

TiO2-coated biomaterials that have been excited with UV irradiation have demonstrated

biocidal properties in environmental applications, including drinking water

decontamination. However, this procedure has not been successfully applied towards

the killing of pathogens on medical titanium-based implants, mainly because of

practical concerns related to irradiating the inserted biomaterial in situ. Previous

researchers assumed that the photocatalysis on the TiO2 surface during UV application

causes the bactericidal effects. However, we show that a residual post-irradiation

bactericidal effect exists on the surface of Ti6Al4V, not related with photocatalysis.

Using a combination of staining, serial dilutions, and a biofilm assay, we show a

significant and time-dependent loss in viability of different bacterial strains of S.

epidermidis and S. aureus on the post-irradiated surface. Although the duration of this

antimicrobial effect depends on the strains selected, our experiments suggest that the

effect lasts at least 60 min after surface irradiation. The origin of such phenomena is

discussed in terms of the physical properties of the irradiated surfaces, which include

the emission of energy and changes in surfaces charge occurring during electron-hole

recombination processes. The method here proposed for the preparation of antimicrobial

titanium surfaces could become especially useful in total implant surgery for which the

antimicrobial challenge is mainly during or shortly after surgery.

6.1. INTRODUCTION

Ti6Al4V is one of the most commonly used biomaterials in orthopedic applications.

The use of Al and V alloying elements stabilizes the alpha-beta microstructure, and

improves the mechanical properties in relation to the commercially pure Ti [1]. An

important feature of Ti-based materials, directly related to their biocompatibility, is their

air-induced passivation. This creates a protective and stable layer of titanium oxide on

the surface, mainly composed of titanium dioxide, with a few nanometers thickness [2].

This layer minimizes ion release from the implant to surrounding tissues and hence

inflammatory reactions in the body [3]. Despite these advantages, a post-operative

serious and unresolved problem leading to the failure of the implant is the appearance of

implant-associated infections. In this sense, both, anti-adhesive and antibacterial surface

modifications are targeted to prevent the bacterial colonization and subsequent biofilm

formation without compromising the biocompatibility of the implant [4, 5]. It is

common to find modified surfaces with integrated antibiotics, antiseptics, metal ions [6-

Page 131: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

125

11] most often with the integration of silver due to its antibacterial properties [12].

However, biocompatibility of most of these anti-infective surfaces is still uncertain and

needs to be clarified.

In a different scenario that shares this common concern, the semiconductor properties of

TiO2 have been successfully applied with antimicrobial purposes for three decades.

Upon excitation with ultraviolet light, the TiO2 surface generates electron-holes pairs

which induce a series of photocatalytic reactions. Without exhaustive details, the hole in

the valence band can react with H2O or hydroxide ions adsorbed on the surface to

produce hydroxyl radicals (OH) and the electron in the conduction band can reduce O2

to produce superoxide ions (O2-). Both holes and OH

have a very short life but are

extremely reactive with contacting organic compounds, leading to the degradation of

organic matter. This novel photocatalytic and bactericidal technology was pioneering

used in the works of Matsunaga et al in 1985 [13]. Since then it has been applied to

different environmental areas such as those related to the drinking water, air

conditioning filters, food preparation surfaces and sanitary-ware surfaces [14-19]. In

these systems, selected strains used for in vitro testing include Escherichia coli [15, 20],

Lactobacillus helveticus [15], Salmonella choleraesuis, Listeria monocytogenes [19],

Pseudomonas aeruginosa [21], Bacillus anthracis [22].

Recently, and novel application is found in the textile industry. Here, apatite-coated

TiO2 particles fixed to cotton textiles, nontoxic to human dermal fibroblasts, have

shown antibacterial activity upon UV irradiation. This suggests its potential use for

reducing the risk of microorganism transmission in textile applications [23].

Nevertheless, although there is no doubt on the bactericidal effect of TiO2 coated

materials upon UV irradiation, there have been very few reports about its application on

bio-implant-related infections. In 1988 Cai et al [24] were one of the first researchers

who showed a new application of TiO2 photocatalyst for medical applications, by

erradicating cancer cells with ultrafine TiO2 powders [25]. Recent in vitro works of

Choi et al. [26, 27] tested the antibacterial response of titanium-made orthodontic

materials under UV irradiation with select strains of Lactobacillus acidophilus and

Streptococcus mutans. Riley et al [28] used a similar experimental set-up to evaluate the

effect of these materials on E. coli strains.

Page 132: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

126

Few details have been published on the TiO2 photocatalytic activity of clinical isolates,

such as Staphylococcus aureus or Staphylococcus epidermidis. Traditional TiO2

photocatalysis is effective only upon irradiation of UV-light at levels that would induce

serious damage to human cells [29]. In addition, taking into account that a direct

illumination of the surface is needed, this methodology cannot be carry out in implanted

biomaterials surrounded by tissues. However, within the last year different groups have

tried to find some ways of using TiO2 photocatalysis in the bio-implant field. Cheng et

al. [30] found that the new developed carbon-containing TiO2 nanoparticles showed

antibacterial properties against S. aureus, Shigella flexneri and Acinetobacter baumannii

under visible-light illumination. The work of Cushnie et al. [31] gave insights on the

influence of different variables on the outcome of TiO2 photocatalysis experiments with

bacteria of clinical interest. Shiraishi et al. [32], compared the viability of S. aureus

strains against two different TiO2 coated materials under UV-A exposure.

Nevertheless, at the moment, it is hard to find a direct and practical application of such

as emerging research to the implant field. Accordingly, this work has been designed to

look at a different direction. We will show that the surface of the biomaterial Ti6Al4V

displays antimicrobial activity after being irradiated with UV light without

compromising the excellent biocompatibility exhibited by the biomaterial surface

previously reported [33]. To this extend, the aims of this research are twofold. First, we

will evaluate the bacterial viability and biofilm formation on the surface of Ti6Al4V

surface before and after being irradiated with UV-C light. For this purpose, we will

work with two representative strains of the vast majority of nosocomial infections, S.

aureus and S. epidermidis, while considering also their ability of producing extracellular

polymer substances (EPS). Second, we will give insight the reasons to the bacterial

viability loss testing whether photocatalytic effect remains on the surface or the

bactericidal mode is provoked by physical phenomena such as energy emission from the

irradiated surface or surface charge excess.

6.2. MATERIALS AND METHODS

6.2.1. Ti6Al4V

Disks of Ti6Al4V were cut from bars of 25 mm in diameter kindly supplied by

SURGIVAL S.A., Spain. A TIMETAL 6–4 ELI alloy was processed as a hot rolled

annealed bar at 700 ºC for 2 h, then air cooled. The disks were abraded on successively

Page 133: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

127

finer silicon carbide papers, mechanically polished with diamond paste, and finished

with colloidal silica.

Prior to their use, the Ti6Al4V disks were carefully cleaned with DSF disinfectant

(DERQUIM DSF 11; Panreac Quimica S.A., Spain) at 60 ºC by vigorously rubbing

with a smooth cotton cloth, then rinsed repeatedly with distilled water and sonicated in

deionized water (Milli-Q system), 70% acetone and finally ethanol for periods of 10

min each. Finally they were dried in an oven at 40 ºC for 1 h and stored in a desiccator

for no longer than 24 h. Samples used as controls were not subjected to any further

treatment. A second set of samples was exposed to an UV-C source for 15 h. This

period was sufficient to guarantee a complete hydrophilization of the surface, as we

have recently shown [34]. G15-T8 UV lamps, emitting predominantly at a wavelength

of 254 nm, were kindly provided by Philips Iberica, Spain. The disks were positioned at

10 cm from the light source and centered, receiving an intensity of about 4.2 mW cm-2

.

The irradiation installation was inside an opaque wood chamber to prevent interference

from the room or daylight, or cause any damage to the users.

6.2.2. Bacterial strains and culture

Staphylococcus aureus ATCC29213 (S. aureus), S. epidermidis ATCC35984 (S.

epidermidis4), S. epidermidis HAM892 (S. epidermidis2) and Escherichia coli ATCC

25922 (E. coli) were stored at -80 ºC in porous beads (Microbank, Pro-Lab Diagnostics,

USA). S. epidermidis HAM892 is a negative extracellular polysaccharide substance

producer (EPS-negative) mutant derived by acriflavine mutagenesis from S. epidermidis

ATCC35984 (EPS-positive) and it was kindly provided by L. Baldassarri from the

Laboratorio di Ultrastrutture, Istituto Superiore di Sanita, Rome, Italy. From the frozen

stock, blood agar plates were inoculated and incubated at 37 ºC to obtain cultures. From

these cultures, tubes of 4 ml of Trypticase Soy Broth (TSB) (BBL, Becton Dickinson,

USA) were inoculated for 10 h at 37 ºC and then 25 l of this pre-culture was used

again to inoculate 50 ml flasks of TSB at 37 ºC for 14 h. This time was sufficient to

guarantee that all strains were at the beginning of the stationary phase of growing

(previously checked with the growing curves for the strains).

The bacteria were then harvested by centrifugation for 5 min at 1000g (Sorvall TC6,

Dulont, USA) and washed three times with 0.15 M phosphate buffered saline (PBS, pH

Page 134: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

128

7.2) pre-conditioned at 37 ºC. Then the bacteria were re-suspended in PBS at a

concentration of 3 x 108 bacteria ml

-1 for the adhesion experiments.

6.2.3. Adhesion experiments

Adhesion experiments were carried out with the help of a sterile reusable silicone

chamber (flexiPERM, Greiner bio-one, Germany). Due to the highly adhesive underside

of the chamber, it was fixed to the Ti6Al4V surface by applying a little pressure to its

top part. Then 2 ml of the bacterial suspension was added to the chamber well and the

contact with the Ti6Al4V surface was allowed for different times, ranging from 10 to 60

min. During these times samples were introduced in an environmental chamber at 37 ºC

and were subjected to slight orbital shaking of 20 rpm (Heidolph Rotamax 120,

Heidolph Electro GmbH and Co, Germany) to minimize sedimentation effects. After the

adhesion time, the silicone chamber was removed and the samples were carefully

immersed twice in a volume of 25 ml of freshly prepared PBS to remove loosely bound

bacteria. To this extend, rinsing forces were carefully applied trying to exert always the

same shear strength to the surface and guarantee the comparison between samples The

use of the silicone chamber permitted a very precise adhesion area on the metal surface.

6.2.4. Viability tests on adhered bacteria

After the adhesion process, different viability tests were carried out to show out the

viability of adhered bacteria to the Ti6Al4V surface before and after being exposed to

the UV irradiation.

6.2.4.1. Staining-based methods

For most of the experiments the kit Live/Dead Baclight L-7012 (Invitrogen SA, Spain)

was used to stain live and dead bacterial cells according to the manufacturer.

Concretely, 2 ml of dimethyl sulfoxide were mixed with 10 l of SYTO 9 and

propidium iodide and 15 l of this mixture were put in contact with the sample surface

for 15 min avoiding exposure to room light. Then, stained bacteria were observed at

randomly chosen locations under fluorescence. Live bacteria, with intact membranes,

fluorescence green while dead bacteria with damaged membranes fluoresce red. For

comparisons, some samples were also stained with acridine orange, 6-Acridinediamine

N,N,N0,N0-tetramethyl-monohydrochloride (Molecular Probes, Inc., USA) (λex = 500

nm, λem = 526 nm). The stain is a DNA binding dye in which the acridin orange

fluorocrome interacts with DNA and RNA by intercalation.

Page 135: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

129

6.2.4.2. Serial dilution method

After the adhesion process, the samples were immersed in 25 ml of sterile PBS and

sonicated for 15 min in an ultrasonic bath at 110 W (Ultrasons, J.P. Selecta, Spain).

which ensures the detachment of the adhered bacteria. Then, viable bacteria were

evaluated with the serial dilution method by using agar plates. Statistical analysis were

made with paired samples, it means, control and irradiated surface using the same

bacterial suspension.

6.2.4.3. Direct transfer of bacteria to solid agar

In this qualitative test, the Ti6Al4V surface with adhered bacteria was used to directly

inoculate the solid agar of a series of petri dishes by carefully rubbing the Ti6Al4V

surface with the solid agar of the plates. Each sample was rubbed on agar plates, trying

to detach the highest number of adhered bacteria. This method, avoiding sonication,

allows the establishment of an intimate relationship with the serial dilution method

since in both cases the colony forming units (CFU) are determined. Statistical analysis

was also made with paired samples.

6.2.5. Biofilm formation on the Ti6Al4V surface

Bacteria was inoculated and incubated in blood agar plates at 37 ºC for 24 h to obtain

cultures, and then transferred to Trypticase Soy Broth medium (TSB) (BD, Becton

Dickinson and Company, Sparks, USA) for overnight culture. The microorganisms

were transferred to fresh TSB until a turbidity equivalent to a 0.5 McFarland standard

and then diluted 1/100 to obtain an inoculum of approximately 106cfu/ml. Then, 500 µl

of the bacterial suspension was cultivated on the metal surface using a sterile silicone

culture chamber in a similar way to the bacterial adhesion experiments for different

periods of time, 8 h and 24 h. After those times the cultures were carefully washed three

times with sterile PBS in order to eliminate the non-adherent bacteria. Later, 1 ml of

PBS was added per well for removing the biofilm from the titanium alloy surface and

the suspension was homogenized by sonication in a ultrasonic bath (Ultrasons; J.P.

Selecta, Spain) for 15 min.

These bacteria included in biofilm were quantified using the BacTiter-Glo™ Microbial

Cell Viability Assay (Promega Corporation, USA) according to the manufacturer. This

is a homogeneous method for determining the number of viable microbial cells in

biofilm culture based on the quantification of ATP present. ATP is an indicator of

Page 136: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

130

metabolically active cells and, by consequence, this method has been frequently used

for adhesion and biofilm development in vitro [35, 36]. The luminescent signal, in

relative light units, in the ATP-bioluminiscence assay is proportional to the amount of

ATP present in the biofilm, which, in turn, is directly proportional to the number of

viable cells in the biofilm.

Specifically, 1 ml of BacTiter-Glo™ Reagent was added directly to bacterial cells

suspension and transfer to wells of sterile 96-well white polystyrene flat-bottomed

microtiter plates (Greiner bio-one, Germany). The light emission (luciferin-luciferase

reaction) was measured in a Microplate Fluorescence Reader (FLx800; Bio-Tek

Instruments, Inc. USA). Positive controls (control surface with bacteria) and negative

controls (control surface without bacteria) were considered. Each assay was performed

in duplicate and repeated at least three times in order to confirm reproducibility.

Although the method was applied for the three strains studied, only S. epidermidis

ATCC35984 induced the production of biofilm in enough quantity to be analysed.

Similar to the adhesion experiments, results were analyzed with paired samples and

independent experiments, up to fourteen, were done.

6.2.6. Evaluation of the changes on the Ti6Al4V surface after irradiation

A series of experiments were carried out in order to elucidate the changes on the

irradiated surface in respect to the control, responsible for the changes in the viability of

adhered bacteria. All the experiments were repeated at least three times to confirm data.

6.2.6.1. Photocatalysis on the irradiated surface

Different testing solutions were used to check whether photocatalytic reactions remain

on the irradiated surface after turning off the UV lamp. The degradation of dyes species

is tested intensively with regard to their photodynamic treatment. Brilliant green (BG,

Sigma-Aldrich, USA) and the complex (TPTZ)2Fe++

(TPTZ: 2,4,6-tripyridyl-1,3,5-

triazine, Fluka) were used by means of colorimetric methods evaluating the optical

absorbance with the help of a spectrophotometer (Spectronic 601, Milton Roy, USA)

before contact and after contact with the control and irradiated surface. In the case of

BG the protocol proposed by Chen et al. [37] was employed. Briefly, stock solutions

containing 1 g L-1

of BG dye in water were prepared, protected from light and stored at

4 ºC. For the complex (TPTZ)2Fe++

, without exhaustive details, based on the work of

Page 137: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

131

Pilch et al. [38], the TPTZ was diluted in glacial acetic acid and sodium acetate 1 M.

This solution was mixed with the compound Fe(NH4)2·6H2O diluted in deionized water

for obtaining an optical density of about 0,8-0,9 at 593 nm. In all the experiments the

ratio between the initial (before contact) and final (after contact with the sample) optical

density was evaluated. Different assays were made changing the initial optical density

ranging from 0,15 to 0,9. Further experiments were also carried out by using the

reactive specie t,t-muconic acid (E,E-2,4-hexadienedioic acid, Sigma–Aldrich, USA).

This compound degrades in the presence of hydroxyl radicals through double C-C

bonds attack [39]. Its concentration in solution was determined before and after being in

contact with the control (dark) and the irradiated surfaces by HPLC (1100 Hewlett-

Packard, USA). The mobile phase was a mixture acetonitrile–water (15/85 v/v) with

0.1% phosphoric acid (flow rate: 1ml min-1). A C18 Kromasil 15 cm long, 0.4 cm

diameter column was used. Detection was made at 264 nm. The contact between the

probe chemicals and the samples were established with the help of silicone wells and

contact time was set as 60 min.

6.2.6.2. Duration time of the post-radiation effect

Bacteria were let to adhere onto the irradiated surface of Ti6Al4V not immediately after

turning off the UV lamp but after different time intervals: 5, 15, 30, 60, 90 and 120 min.

For any time, bacteria were let in contact with the irradiated surface during 60 min. We

refer to those times as post-radiation waiting times and the Live/Dead test was used to

verify the viability of adhered bacteria.

6.2.6.3. Radiation emission from the irradiated surface

Three different probe non-conducting thin films (0.2 mm thickness), quartz,

microscopic slide top glass (glass film) and black plastic film, were selected to test

whether the Ti6Al4V surface was able to release energy in a radiation form after being

irradiated. The films were placed over the Ti6Al4V surface immediately after

irradiation (control samples were studied in the same way but without irradiation).

Then, a 250 l bacterial suspension droplet was deposited on their surface, allowing the

adhesion of microorganisms to the film surface for 60 min at 37 ºC. At that time, the

bacterial suspension was removed and the film surface was slightly washed with PBS to

remove loosely bound bacteria. Adhered bacteria were stained with the Live/Dead

viability kit and the results were analysed in terms of viable microorganisms.

Page 138: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

132

6.2.6.4. Electrical interaction potential at the irradiated surface

Zeta potential of control and irradiated surfaces was obtained from the streaming

potential [40] by using an electrokinetic Analyzer (EKA, Anton Paar, Austria). The

measurements were made with the electrolyte 0.001 M KCl setting a ramp pressure of

600 mb. The pressure gradient (P) between both ends of the clamping cell provoked

the movement of the electrolyte inside the electrokinetic channel, which, in turn, was

reflected in a potential difference between both ends (V). Both magnitudes were

related to provide the value of ,

M001.0

M1.0M1.0

R··P

R···V

(6.1)

with R0.001M being the resistivity of the 0.001 M KCl electrolytic solution and 0.1M and

R0,1M the electrical conductivity and resistivity of a 0.1 M solution of an KCl needed for

correcting the surface conductivity of the sample.

6.2.6.5. Surface charge excess on the irradiated surface

A thin opaque conducting film (0.2 mm thickness) was placed over the irradiated

surface immediately after turning off the UV lamp (parallel experiments were

performed with control samples). Then, a 250 l bacterial suspension droplet was

deposited on their surface, allowing the adhesion of microorganisms to the film surface

for 60 min at 37 ºC. At that time, the bacterial suspension was removed and the film

surface was slightly washed with PBS to remove loosely bound bacteria. Adhered

bacteria were stained with the Live/Dead viability kit and the results were analysed in

terms of viable microorganisms.

6.2.7. Statistical Analyses

Different statistical tests were employed to confirm differences between samples.

Depending on the number of data and its distribution, it was selected parametric paired

t-test or non parametric Wilcoxon matched-pairs signed-ranks test, using the statistical

software SPSS for Windows v12 (Chicago, Illinois, USA). The level of significance

was set at P-values < 0.05. Data are reported as mean ±SD. In this sense, special

attention must be paid when comparing paired data (experiments with control and

irradiated samples handled in parallel), since differences may not be shown graphically

when plotting mean and SD.

Page 139: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

133

6.3. RESULTS

6.3.1. Quantification of adhered bacteria to the control and irradiated surface

The total number of adhered bacteria on the surface, no matter their viability, at the

different contact times is plotted in Fig. 6.1. Those samples not exposed to UV light

(control) were maintained in contact with the bacterial suspension for the maximum

time of 60 min. There is a progressive increase in the number of adhered bacteria to the

surface with time. The adhesion kinetics is the highest for S. epidermidis4 for mostly all

the adhesion times tested, while S. aureus and S. epidermidis2 show similar behaviors,

S. epidermidis2 being the strain with the lowest mean adhesion at any time. In the case

of S. epidermidis4 it is also worth to mention that, due to the particularities of its

bacterial surface, the exact number of adhered bacteria was very difficult to quantify

since the aggregation of cells in big 3-D cumulus lead to the underestimation of the total

number of adhered bacteria. This fact became more relevant at long adhesion times

since bacteria could even promote their aggregation in suspension, for this reason, it is

very likely that the real number of bacteria on the surface at 60 min of adhesion is the

highest for this biofilm-producing strain. Another interesting phenomenon is that the

surface coating at 60 min is similar in the control than in the irradiated surface (not

statistically significant differences).

Fig. 6.1. Total number of adhered bacteria (viable and non-viable) on the Ti6Al4V irradiated

surface as a function of contact time and on the control surface after 60 min of contact.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

tiempo(min)

ba

ct/

ca

mp

o

S. aureus

S epidermidis 2

S. epidermidis 4

Time (min)

n (

bac

teri

a cm

-2)

x 1

0-4

60

Control

S. epidermidis2

S. epidermidis4

S. aureus

Page 140: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

134

6.3.2. Evaluation of the viability of adhered bacteria to the control and irradiated

surface

Focusing on the viability of adhered bacteria, Fig. 6.2 presents various images of typical

areas on the Ti6Al4V after 15 h of irradiation for the different contact times, 10 min, 20

min, 40 min and 60 min. Control-viability images are also shown in the last column for

the maximum time of contact. At first glance, the most interesting observation is that all

bacteria deposited on the non-irradiated surface are 100% viable (green), while bacteria

attached to the irradiated surface show a progressively loss in viability. This

phenomenon seems to be a function of the contact time between bacteria and surface:

bacteria become more damaged as the time of contact between bacteria and the

irradiated surface increases. For 10 and 20 min there are a number of bacteria stained in

yellow-like and orange-like color mixed with green spots, which indicates the beginning

of the bacterial damage, but the color of cells becomes completely red at 60 min, which

means, based on the description of the test, that mostly all bacteria are compromised or

dead.

A quantitative analysis of these results has been performed and presented in Fig. 6.3.

Remarkably, a complete loss of cell viability is observed after 60 min of contact. It is

important to note that the largest decrease in cell viability ( ~ 75 %) occurs after the first

10 min of contact.

Then, after the next 10 min, a further decrease takes place of the order of 20 %, whereas

in the last two 10 min time intervals cell viability decreases by ~ 2,5 % consecutively.

From this time on all bacteria on the surface appeared red. This figure also shows that,

within experimental error, the viability loss is independent on the strain selected, it

seems that the post-radiation effect is not dependent on the strain selected but on the

exposure time to the surface.

Although the surface of the biomaterial analyzed is mainly colonized by gram-positive

staphylococci, mostly represented by both staphylococcal strains selected, we

performed similar experiments with a gram-negative Escherichia coli strain, vastly used

in UV-light related systems [15, 20, 41]. Interestingly, bacteria also turned into red after

60 min of contact with the irradiated surface, showing the post-radiation efficacy with

bacteria with completely different cell wall properties.

Page 141: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

135

Fig. 6.2. Qualitative images of the cells viability loss as a function of the contact time between

the three strains and the irradiated surface after turning off the UV lamp. Control images refer

to the maximum time of contact between bacteria and non-irradiated Ti6Al4V surface.

Page 142: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

136

Fig. 6.3. Quantitative analysis of the percentage of live bacteria adhered to the control and

irradiated surfaces obtained by using the kit Live/Dead kit. Error bars represent standard

deviations of the average.

The study of viability of microorganisms with one specific dye is sometimes contrasted

with other staining techniques [42, 43] to avoid problems with viability detection by

differentiation between viable and non-viable cells. For this reason some experiments

were carried out using acridine orange and the results obtained confirmed those

observed with the Live/Dead kit.

Despite the viability loss shown by staining techniques, Huang et al. [44] have recently

pointed out that in some cases damages to the cell wall can be repaired during the

subculture of cells onto agar plates for the viability study. For this reason, and due to the

valuable results found in the present study, we considered extremely interesting to

contrast this finding with other methodology, able to tell us whether red-like adhered

bacteria can proliferate when finding a nutrient-rich media.

Experiments were carried out under the situation that gave the highest number of red-

stained bacteria and in the control state, both referred to as 60 min of bacteria-surface

contact. Viability of bacteria in nutrient-rich containing media was evaluated and

contrasted with two different protocols.

0

20

40

60

80

100

10 20 40 60 70

Tiempo (min)

po

rcen

taje

sS. aureus

S epidermidis 2

S. epidermidis 4

Time (min)

Live

bac

teri

a (

%)

S. epidermidis2

S. epidermidis4

S. aureus

60

Control

Page 143: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

137

In the first one, bacteria were detached from the surface by sonication, as explained in

the experimental section, and the serial dilution method with agar plates counting was

performed to detect the colonies present in each surface. For all the cases studied there

was a significant reduction in the number of CFU in the irradiated sample. This

decrease was similar for the three strains, although for S. aureus and S. epidermidis4 the

reduction was about 40 % and for S. epidermidis2 was near 35 %.

Statistical comparisons were made assuming a Gaussian distribution and considering

that data are randomly distributed. The paired t-test gave a P value of 0.0012 and the

Wilcoxon test of 0.0039, both significant.

The second protocol was carried out by carefully rubbing the control and the irradiated

surface directly against a series of agar plates, avoiding sonication. This method gave

similar relationships than the previous one, i.e., there was always a reduction in the

number of CFU in the irradiated surface with respect to the control one. In this case the

maximum reduction values found were of only 20 % (P = 0.0377) likely due to the

impossibility of detaching all adhered bacteria with the rubbing, which was confirmed

with the microscopic observation of the surface alloy after rubbing.

6.3.3. Assessment of bacterial biofilm growth on the control and irradiated surface

A linear relationship was found between the detected amount of bacterial ATP and the

number of viable cells (CFU/ml) using S. epidermis4 with a high correlation factor (r2

=

0.975, data not shown). Then, experiments were carried out with this biofilm producer

strain, as S. epidermidis4 exhibited a behavior with regard to the UV-irradiated surfaces

similar to the other strains and has shown reductions in viable cells of the same order of

magnitude than the others.

After both times selected for the growth of biofilms there was reduction in microbial

biofilm formation on the irradiated surfaces versus the control. It is worth to mention

that after 8 h, 14 % of the experiments performed showed no reduction, while 86 % of

them showed a markedly reduction in the ATP bioluminiscence signal. These data are

summarized in Fig. 6.4. It is interesting to note that half of the total number of

experiments presented a biofilm reduction comprised between 45 % - 75 %, and for the

other cases the reduction was distributed equally in the other three ranges considered.

The two-tailed P value was 0.0085, i.e., very significant.

Page 144: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

138

Fig. 6.4. Biofilm reduction (in range) associated with the number of experiments that presented

visible reductions for the strain S. epidermidis4.

After 24 h of culture, the changes in biofilm formation between the control and the

irradiated samples were lower. Though reductions were observed in all the cases, the

percentage in biofilm decrease was never higher than 16 %. The small changes gave a

two-tailed P value very close to the significance level limit (P = 0.0577), which implied

not quite significant differences.

6.3.4. Insights into the post-radiation antimicrobial mechanisms

6.3.4.1. Photocatalysis on the irradiated surface

None of the reactive species employed were degraded by the control or the irradiated

surface (data not shown), in any of the several repetitions carried out, which indicates

that photocatalysis is not the reason for the antimicrobial activity manifested by the

surfaces after irradiation.

6.3.4.2. Duration time of the post-radiation effect

A summary of the results concerning the post-radiation waiting times for S.

epidermidis4 is presented in Fig. 6.5 (similar images were obtained for the other

strains). In all cases bacteria were in contact with the surface for 60 min, the time of

maximum damage observed for bacteria in contact with the irradiated surfaces.

In these images it can be appreciated that microorganisms become more viable as the

post-radiation waiting time increases. After a waiting time of 30 min bacteria appear

stained in red, and as this waiting time increases a higher number of green spots are

0

1

2

3

4

5

6

7

1 2 3 4

Nu

mb

er

of

exp

eri

men

ts

< 15 % 15 % - 45 %

Ranges of biofilm reduction (%)

45 % - 75 %

> 75 %

N

um

ber

of

exp

eri

me

nts

Page 145: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

139

visible. Finally, when this time goes up to 120 min, the viability of adhered bacteria is

about 100 %. In the case of S. epidermidis2 and S. aureus this final state is reached at

the 90 min waiting time, while in the case of S. aureus a very high proportion of green

bacteria is observed at 60 min.

Fig. 6.5. Post-radiation waiting times experiments. Bacteria are allowed to contact with the

irradiated surface for 60 min not immediately after turning off the UV lamp, but after waiting

different times. Images refer to those waiting times. The strain used was S. epidermidis4.

10µm 10µm

10µm 10µm

10µm 10µm

5 min

30 min

90 min

15 min

60 min

120 min

Page 146: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

140

6.3.4.3. Radiation emission

Fig. 6.6 shows representative images for S. epidermidis2, adhered to the surface of the

different non-conducting film surfaces investigated. Control surfaces always showed

complete viability while irradiated surfaces were able to turn into yellow-like or orange-

red color those bacteria adhered to quartz and glass film. However, when a black film

was used, with the same thickness than quartz and glass film, adhered bacteria were 100

% viable.

Fig. 6.6. Images of adhered bacteria (S. epidermidis2) to different film surfaces placed over the

Ti6Al4V surface before irradiation and immediately after irradiation.

10µm 10µm

Black plastic film

Control Irradiated

10µm 10µm

10µm 10µm

Quartz

Glass film

Page 147: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

141

The characterization of the three films employed was carried out by obtaining the

transmission curves for different wavelengths, ranging from 254 nm to 490 nm and

results are presented in Fig. 6.7. It can be observed that quartz has nearly complete

transmission in the UV range selected, while glass film shows high transmission from

305 nm. No transmission is observed for the black plastic film.

Fig. 6.7. Emission graphs for quartz, glass film and black plastic film in the UV - visible range.

6.3.4.4. Electrical interaction potential at the irradiated surface

Zeta potential at the same pH of adhesion experiments (pH 7) did not change after

irradiating the surface. The values obtained were -31±2 mV and -30±2 mV for control

and irradiated surfaces, respectively, which would denote a similar negatively charged

surface in both cases.

6.3.4.5. Surface charge excess on the irradiated surface

Fig. 6.8 presents the viability of bacteria adhered to the conducting film deposited over

the control and irradiated surface after turning off the UV lamp. It is clearly appreciated

that bacteria are degraded in the case of the irradiated surface, while control surface

exhibits 100% viability.

0

20

40

60

80

100

200 250 300 350 400 450 500 550

Longitud de onda (nm)

Tra

ns

mit

an

cia

(%

)

glass film

quartz film

black plastic film

Wavelength (nm)

Tran

smit

tan

ce (

%)

Page 148: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

142

Fig. 6.8. Viability of adhered bacteria (S. epidermidis2) to a thin opaque conducting film placed

over the control and Ti6Al4V irradiated surface after turning off the UV lamp.

6.4. DISCUSSION

6.4.1. The antimicrobial effect

Irradiation of Ti6Al4V surfaces with UV-C light provokes a residual post-radiation

effect which directly affects the viability of adhered bacteria. Staining-based methods

have shown that bacteria attached to the irradiated surfaces present a progressively loss

in viability, reaching its maximum damage after 60 min of contact (Fig. 6.2 and Fig.

6.3). These results have been contrasted with different methodologies based on the

evaluating of the CFU on the control and irradiated surfaces. Although experiments

support the hypothesis that not all red-stained bacteria correspond to dead cells, as some

of them are able of survive when finding a nutrient rich media, bacteria adhered to

irradiated surfaces always show a significant reduction in their viability after turning off

the UV lamp. This reduction was also reflected by the different ways in which the

remaining live bacteria begin to build a biofilm over irradiated vs. non irradiated

Ti6Al4V surfaces (Fig. 6.4). The decrease in biofilm production on the irradiated

surfaces during the first hours of its development represents a valuable finding in

relation to minimize the infectious incidences. The initial time after the implantation is

crucial for avoiding the proliferation of microbial biofilms, the competitive process

between microorganisms, eukaryotic cells and other biological molecules yields to the

success or failure of the implantation.

Results have also revealed that the duration time of the post-radiation effect is a time-

dependent action (Fig. 6.5). Regardless of the strain selected, the antimicrobial

activation of the surface is guarantee for at least 60 min after turning off the UV lamp,

Control Irradiated

10µm 10µm

Page 149: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

143

then it begins to attenuate. Consequently, the method here proposed for the preparation

of antimicrobial titanium surfaces could become especially useful in totally internal

implant surgery, for which the antimicrobial challenge is mainly during or shortly after

surgery [45].

6.4.2. Mechanisms underlying the antimicrobial effect

Reactive oxygen species are known as the basis of the photocatalytic disinfection

system, hydroxyl radicals being frequently assumed to be the major factor responsible

for the antimicrobial activity observed in the TiO2 photocatalysis [20]. Therefore, we

firstly hypothesized that surface free radicals could be the reasons for the antimicrobial

activity shown by the irradiated surface.

In bibliography, oxidant analysis with testing solutions is commonly employed to reveal

the presence of such radicals in TiO2 systems under UV light [37, 39, 46]. Hereby based

on such studies, different probe chemicals, with different methodology, have been used

to check the presence of oxygen reactive species in the irradiated surface. Neither the

applied tests based on the degradation of dyes nor the accurate experiments based on

chromatography have demonstrated that reactive species are generated on the irradiated

surface after turning off the UV lamp.

Viability results when films made from dielectric materials are deposited on the

Ti6Al4V surface (Fig. 6.6) have provided useful information about the causes

underlying the antimicrobial effect. Bacteria can be receiving an external energy from

the irradiated surface that potentially damages the cell membranes even though they are

not in direct-intimate contact with the surface. It is very likely that, after irradiation, the

excited Ti6Al4V surface returns the absorbed energy in a radiation form. Electron-hole

pairs induced in the semiconductor energy bands of TiO2 upon irradiation do not

recombine instantly. In ordinary semiconductors, after activation, the electron-hole pairs

are recombined very fast, however, in the titanium dioxide this process is relatively

slow and by this reason, after the photoactivation, the TiO2 surface continues stable, this

aspect being decisive for the vastly use of TiO2 as photocatalytic support [47]. In our

research it is shown a direct consequence of such a slow recombination, implying the

emission of radiation while recombining. From the transmission curves of the three

selected films presented in Fig. 6.7 we have observed the nearly complete transmission

of quartz in the UV range selected and the high transmission of the glass film from

Page 150: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

144

about 305 nm. Considering that, according to the manufacturer, our short-wave UV

light source generates radiation almost exclusively at 254 nm

(www.philips.com/uvpurification) it is very likely that emission might be carried out at

similar and longer wavelengths since both quartz and glass film show loss in bacterial

viability. This is also consistent with the less intense colour of bacteria adhered to the

glass film in relation to the quartz surface (Fig. 6.6).

It is widely established that radiation at wavelengths below 320 nm causes disinfection,

with the optimum effect occurring around 260 nm [48, 49]. In this sense, the

inactivation of microorganisms under UV light is understood by means of DNA

alterations, basically, adjacent thymine bases form chemical bond that creates dimmers

preventing DNA replication [50, 51]. However, by the time the UV illumination is

ceased, some microorganisms, particularly bacteria, are known to be capable of

repairing their damage DNA in the presence or absence of visible light by mechanisms

commonly referred to as photoreactivation and dark repair, respectively [51]. The basis

of such activating mechanisms relies on what is also known as SOS responses. The term

SOS response has been applied to the cellular response to DNA damage produced by

UV as well as other agents such as pH, high pressure stresses or subinhibitory doses of

antibiotics [52-55]. A previous work of Crowley and Courcelle [56] has shown that

Escherichia coli is able to challenge the DNA lesions caused upon irradiation with near

ultraviolet (254 nm) by upregulating the expression of several genes which function to

repair the DNA lesions, maintaining the integrity of the DNA replication fork and

preventing premature cell division. Also, in a recent review of Erill et al. [57] the SOS

response is considered as a moderately infrequent event, triggered mainly by UV

irradiation. Photoreactivation, dark repair or SOS response must be acting on the

adhered bacteria once the energy emission from the irradiated surface finishes,

explaining the observed viability increase in those experiments carried out with

nutrient-rich media.

The relatively slow recombination of electron-holes pairs of TiO2 after irradiation can

also provoke a surface charge excess on the Ti6Al4V surface which could directly

affect the viability of sessile bacteria. It has been already described that the bacterial

adhesion state to metallic surfaces can be altered by the application of little currents

[58]. Although it has not been observed changes in the zeta potential between the

control and irradiated surfaces, in a previous work of our group [34] we have shown

Page 151: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

145

that irradiated surface displayed a huge increase in the electron-donor parameter of the

surface tension, as consequence of the electron promotion from the valence to the

conduction band after irradiation. Probably, this excess of surface charge is not detected

by streaming potential because of the particularities of the technique: time needed for

conditioning and filling the measuring streaming channel without air bubbles is long (it

can take about 30 min) and it can be crucial for detecting any electrical change between

both surfaces. Nevertheless, the viability tests applied on the adhered bacteria to a thin

opaque conducting film (with the same thickness than previous dielectric films) placed

over the irradiated surface immediately after turning off the UV lamp (Fig. 6.8),

confirmed the degradation of bacteria in such conditions. Bacteria turned into complete

green when repeating the experiments but delaying the deposition of bacterial

suspension to 30 min. Surface charge changes during recombination process would

induce small potential gradients, which, in turn, can be directly related to small surface

electrical currents. Both effects, the surface charge excess on the Ti6Al4V surface after

irradiation and the energy emission while the electron-hole recombinations must be

present at the initial steps of bacterial adhesion as shown by the enormous reduction (

95 %) in the bacterial viability during the first 20 min of adhesion experiments (Fig.

6.3). Present experiments in our group are devoted to measure such as electrical surface

currents by using more specific techniques.

6.5. CONCLUSIONS

The surface of the biomaterial Ti6Al4V shows bactericidal effect after being exposed to

UV-C for both gram-positive and gram-negative bacteria. This effect is a time-

dependent action but, regardless the strain selected, it is guaranteed at least 60 min after

turning off the UV lamp before it begins to attenuate. Deepening in the observed

phenomena, radiation emission from the irradiated surfaces and changes in the surfaces

charge taking place during the electron-hole recombination process are proposed as the

mechanisms responsible for the post-radiation effect. This research can bring great

benefits in the implant field. The first reason relies on the fact that irradiation of the

prosthesis before implantation can diminishes the infectious incidences in totally

internal implants through preventing the bacterial proliferation on the Ti6Al4V surface.

The second reason is built on the low costs and easiness in the application of the

methodology proposed.

Page 152: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

146

6.6. REFERENCES

[1] Navarro M, Michiardi A, Castaño O, Planell JA. Biomaterials in orthopaedics. J.

Roy. Soc. Interface. 2008;5:1137-1158.

[2] Sittig C, Textor M, Spencer ND, Wieland M, Vallotton PH. Surface characterization

of implant materials c.p.Ti, Ti-6Al-7Nb and Ti-6Al-4V with different pretreatments. J.

Mater. Sci. Mater. M. 1999;10:35-46.

[3] Guillemot F, Prima F, Tokarev VN, Belin C, Porté-Durrieu MC, Gloriant T, Baquey

CH, Lazare S. Ultraviolet laser surface treatment for biomedical applications of

titanium alloys: morphological and structural characterization. Appl. Phys. A

2003;77:899-904.

[4] Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and

maxillofacial implants: current status and future developments. Int. J. Oral. Max. Impl.

2000;15:15-46.

[5] Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G, Gollwitzer

H. A novel antibacterial titania coating. Metal ion toxicity and in vitro surface

colonization. J. Mater. Sci. Mater. M 2005;16:883-888.

[6] Darouiche RO, Raad II, Heard SO, Thornby JI, Wenker OC, Gabrielli A, Berg J,

Khardori N, Hanna H, Hachem R, Harris RL, Mayhall G. A comparison of two

antimicrobial-impregnated central venous catheters. New Engl. J. Med. 1999;340:1-8.

[7] Gollwitzer H, Ibrahim K, Meyer H, Mittelmeier W, Busch R, Stemberger A.

antibacterial poly(D,L-lactic acid) coating of medical implants using a biodegradable

drug delivery technology. J. Antimicrob. Chemoth. 2003;51:585-591.

[8] Hench LL, Polak JM. Third-generation biomedical materials. Science 2002;295:

1014–1017.

[9] Olsson J, Van der Heijde Y, Holmberg K. Plaque formation in-vivo and bacterial

attachment in-vitro on permanently hydrophobic and hydrophilic surfaces. Caries Res.

1992;26:428-433.

[10] Raad I, Darouiche R, Dupuis J, Abi-Said D, Gabrielli A, Hachem R, Wall M,

Harris R, Jones J, Buzaid A, Robertson C, Shenaq S, Curling P, Burke T, Ericsson C.

Page 153: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

147

Central venous catheters coated with minocycline and rifampin for the prevention of

catheter-related colonization and vloodstream infections: A randomized, double-blind

trial. Ann. Intern. Med. 1997;127:267-274.

[11] Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD. Efficacy of antiseptic-

impregnated central venous catheters in preventing catheter-related bloodstream

infection: a meta-analysis. JAMA – J. Am. Med. Assoc. 1999;281:261-267.

[12] Carbon RT, Lugauer

S, Geitner U, Regenfus A, Böswald M, Greil J, Bechert T,

Simon SI, Hümmer HP, Guggenbichler

JP. Reducing catheter-associated infections with

silver-impregnated catheters in long-term therapy of children. Infection 1999:27:S69-

S73.

[13] Matsunaga TR, Tomada R, Nakajima T, Wake H. Photochemical sterilization of

microbial cells by semiconductor powders. FEMS Microbiol. Lett. 1985;29:211-214.

[14] Byrne JA, Eggins BR, Brown NMD, McKinnery B, Rouse M. Immobilisation of

TiO2 powder for the treatment of polluted water. Appl. Catal. B Environ. 1998;17:25-

36.

[15] Liu HL, Yang TCK. Photocatalytic inactivation of Escherichia coli and

Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Process

Biochem. 2003;39:475-481.

[16] Gaswami DY, Trivedi DM, Block SS. Photocatalytic disinfection of indoor air. J.

Sol. Energ.-T. Asme 1997;119: 92-96.

[17] Maneerat C, Hayata Y. Antifungal activity of TiO2 photocatalysis against

Penicillium expansum in vitro and in fruit tests. Int. J. Food Microbiol. 2006;107:99-

103.

[18] Nonami T, Hase H, Funakoshi K. Apatite-coated titanium dioxide photocatalyst for

air purification. Catalysis Today 2004;96:113-8.

[19] Kim B, Kim D, Cho D, Cho S. Bactericidal effect of TiO2 photocatalyst on

selected food-borne pathogenic bacteria. Chemosphere 2003;52:277-81.

Page 154: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

148

[20] Cho M, Cheng H, Choi W, Yoon J. Different inactivation behaviours of MS-2

phase and Escherichia coli in TiO2 photocatalytic disinfection. Appl. Environ. Microb.

2005;71:270-275.

[21] Madrid PA, Moorillon GVN, Borunda EO, Yoshida MM. Photoinduced

bactericidal activity against Pseudomonas aeruginosa by TiO2 based thin films. FEMS

Microbiol. Lett. 2002;211:183-8.

[22] Prasad GK, Agarwal GS, Singh B, Rai GP, Vijayaraghavan R. Photocatalytic

inactivation of Bacillus anthracis by titania nanomaterials. J. Hazard. Mater. 2009;165:

506-610.

[23] Kangwansupanonkon W, Lauruengtana V, Surassmo S, Ruktanonchai U.

Antibacterial effect of apatite-coated titanium dioxide for textile applications.

Nanomedicine 2009;5:240-249.

[24] Cai R., Hashimoto K., Itoh K., Fujishima A, Kubota Y. Photocatalytic Effect on

Tumor Cells. Photomed. Photobiol. 1988;10:253-255.

[25] Cai R, Hashimoto K, Itoh K, Kubota Y, Fujishima A. Photokilling of malignant

cells with ultrafine TiO2 powder. Bull. Chem. Soc. Jpn. 1991;64:1268-1273.

[26] Choi JY, Kim KH, Choy KC, Oh KT, Kim KN. Photocatalytic Antibacterial Effect

of TiO2 Film Formed on Ti and TiAg exposed to Lactobacillus acidophilus. J. Biomed.

Mater. Res. B 2007;80:353-359.

[27] Choi JY, Chung CJ, Oh KT, Choi YJ, Kim KH. Photocatalytic antibacterial effect

of TiO2 film on TiAg on Streptococcus mutans. Angle Orthod. 2009;79:528-532.

[28] Riley DJ, Bavastrello V, Covani U, Barone A, Nicolini C. An in-vitro study of the

sterilization of titanium dental implants using low intensity UV-radiation. Dent. Mater.

2005;21:756-760.

[29] Musk P, Campbell R, Staples J, Moss DJ, Parsons PG. Solar and UVC-induced

mutation in human cells and inhibition by deoxynucleosides. Mutation Res. Lett.

1989;227:25-30.

Page 155: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

149

[30] Cheng CL, Sun CS, Chu WC, Tseng YH, Ho HC, Wang JB, et al. The effects of

the bacterial interaction with visible-light responsive titania photocatalyst on the

bactericidal performance. J. Biomed. Sci. 2009;16:7-17.

[31] Cushnie TPT, Robertson PKJ, Officer S, Pollard PM, McCullagh C, Robertson

JMC. Variables to be considered when assessing the photocatalytic destruction of

bacterial pathogens. Chemosphere 2009;74:1374-1378.

[32] Shiraishi K, Koseki H, Tsurumoto T, Baba K, Naito M, Nakayama K, et al.

Antibacterial metal implant with a TiO2-conferred photocatalytic bactericidal effect

against Staphylococcus aureus. Surf. Interface Anal. 2009;41:17-22.

[33] Gallardo-Moreno AM, Pacha-Olivenza MA, Saldaña L, Pérez-Giraldo C, Bruque

JM, Vilaboa N, et al. In vitro biocompatibility and bacterial adhesión of physico-

chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater.

2009;5:181-192.

[34] Pacha-Olivenza MA, Gallardo-Moreno AM, Méndez-Vilas A, Bruque JM,

González-Carrasco JL, González-Martín ML. Effect of UV irradiation on the surface

Gibbs energy of Ti6Al4V and thermally oxidized Ti6Al4V. J. Colloid Interf. Sci.

2008;320:117-124.

[35] Gracia E, Fernandez A, Conchello P, Alabart JL, Perez M, Amorena B. In vitro

development of Staphylococcus aureus biofilms using slime-producing variants and

ATP-bioluminescence for automated bacterial quantification. Luminescence

1999;14:23-31.

[36] Gracia E, Fernandez A, Conchello P, Lacleriga A, Paniagua L, Seral F, et al.

Adherence of Staphylococcus aureus slime-producing strain variants to biomaterials

used in orthopaedic surgery. Int. Orthop. 1997;21:46-51.

[37] Chen CC, Lu CS, Fan HJ, Chung WH, Jan JL, Lin HD, Lin WY. Photocatalyzed

N-de-ethylation and degradation of brilliant green in TiO2 dispersions under UV

irradiation. Desalination 2008;219(1-3):89-100.

[38] Pilch P, Somerville R. Periodate oxidation of vicinal hydroxyls. J. Chem. Educ.

1977;54:449-

Page 156: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

150

[39] Rodríguez EM, Mimbrero M, Masa FJ, Beltrán FJ. Homogeneous iron-catalyzed

photochemical degradation of muconic acid in water. Water Res. 2007;41:1325-1333.

[40] Shaw DJ. Introduction to colloid and surface chemistry. London: Butterworths;

1989.

[41] Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA.

Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its

killing mechanism. Appl. Environ. Microb. 1999;65(9):4094-4098.

[42] Crnigoj M, Kostanjsek R, Kaletunç G, Ulrih NP. Effect of different fluorescent

dyes on thermal stability of DNA and cell viability of the hyperthermophilic archaeon

Aeropyrum pernix. World J. Microb. Biot. 2008;24:2115-2123.

[43] Beck P, Huber R. Detection of cell viability in cultures of hyperthermophiles.

FEMS Microbiol. Lett. 1997;147:11-14.

[44] Huang Z, Maness PC, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA.

Bactericidal mode of titanium dioxide photocatalysis. J. Photoch. Photobio. A

2000;130:163-170.

[45] Busscher HJ, Ploeg RJ, van der Mei HC. Biofilms and biomaterials; mechanisms

of medical device related infections. Biomaterials 2009;30:4047-4048.

[46] Siemon U, Bahnemann D, Testa JJ, Rodríguez D, Litter MI, Bruno N.

Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. J. Photoch.

Photobio. A 2002;148:247-255.

[47] Yatskiv VI, Korzhak AV, Granchak VM, Kovalenko AS, Kuchmii SY.

Peculiarities of the behaviour of porous titanium dioxide in the photocatalytic evolution

of molecular hydrogen from aqueous ethanolic solutions. Theor. Exp. Chem.

2003;39:172-176.

[48] Jagger J. Introduction to Research in ultraviolet Photobiology. Chicago, IL:

Prentice Hall; 1967.

[49] Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J. Application of the

photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer

cells. Sep. Purif. Method 1999;28:1-50.

Page 157: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

151

[50] Harm W. Biological effects of ultraviolet irradiation. New York: Cambridge

University Press; 1980.

[51] Sang C, Cheung LM, Ho CM, Zeng M. Repression of photoreactivation and dark

repair of coliform bacteria by TiO2-modified UV-C disinfection. Appl. Catal. B-

Environ. 2009;89:536-542.

[52] Sousa FJ, Lima LM, Pacheco AB, Oliveira CL, Torriani I, Almeida DF, et al.

Tetramerization of the LexA repressor in solution: implications for gene regulation of

the E. coli SOS system at acidic pH. J. Mol. Biol. 2006;359:1059-1074.

[53] Aertsen A, Van Houdt R, Vanoirbeek K, Michiels CW. An SOS response induced

by high pressure in Escherichia coli. J. Bacteriol. 2004;186:6133-6141.

[54] Mesak LR, Miao V, Davies J. Effects of subinhibitory concentrations of antibiotics

on SOS and DNA repair gene expression in Staphylococcus aureus. Antimicrob. Agents

Ch. 2008;52(9):3394-3397.

[55] Úbeda C, Maiques E, Knecht E, Lasa I, Novick P, Penadés JR. Antibiotic-induced

SOS response promotes horizontal dissemination of pathogenicity island-encoded

virulence factors in staphylococci. Mol. Microbiol. 2005;56(3):836-844.

[56] Crowley DJ, Courcelle J. Answering the call: coping with DNA damage at the

most inopportune time. J. Biomed. Biotechnol. 2002;2(2):67-74.

[57] Erill I, Campoy S, Barbé J. Aeons of distress: an evolutionary perspective on the

bacterial SOS response. FEMS Microbiol. Rev. 2007;31:637-656.

[58] Van der Borden AJ, van der Werf H, van der Mei H, Busscher HJ. Electric current-

induced detachment of Staphylococcus epidermidis biofilms from surgical stainless

steel. App. Environ. Microb. 2004;70:6871-6874.

Page 158: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

152

CAPÍTULO 7

Explaining the bactericidal behavior of the

UV-treated Ti6Al4V substrata through

electrochemical surface analysis

Este capítulo es una reproducción de la publicación enviada recientemente a "Surface

and Coating Technology" realizada por: M.A. Pacha Olivenza, A.M. Gallardo-Moreno,

V. Vadillo-Rodríguez, M.L. González-Martín, C. Pérez-Giraldo, J.C. Galván, en

colaboración con el grupo del Dr. J.C. Galván del Centro Nacional de Investigaciones

Metalúrgicas, CENIM-CSIC (Madrid).

Page 159: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

153

ABSTRACT

This research gets insight into the reasons behind the bactericidal effect exhibited by the

Ti6Al4V surface after being irradiated with UV-C light. It arises as a continuation of a

previous published work in Biomaterials in which we hypothesized, based on a range of

qualitative tests, that small surface currents occurring as a consequence of the electron-

hole pairs recombination that takes place after the excitation process were behind the

bactericidal properties of this UV-treated material. To corroborate this hypothesis we

have now used different electrochemical techniques such as electrochemical impedance

spectroscopy (EIS), potentiodynamic polarization curves and Mott-Schottky plots. EIS

and Mott-Schottky plots have shown that UV-C treatment causes an initial increase on

the superficial electrical conduction of this material. In addition, EIS and anodic

polarization curves have detected higher corrosion currents for the UV treated against

the non-irradiated samples. Despite this increase in the corrosion currents, EIS has also

shown that such currents are not likely affect the good stability of this material oxide

film since the irradiated samples completely recovered the control values after being

stored in dark conditions for a period not longer than 24 h. These results agree with the

already-published in vitro transitory behavior of the bactericidal effect, which was

shown to be present at initial times after the biomaterial implantation, a crucial moment

to avoid a large number of biomaterial associated infections.

7.1. INTRODUCTION

Titanium and its alloys are the most commonly used materials in modern orthopedic and

dental applications. This is due to their excellent mechanical properties and resistance to

corrosion, which derive from a compact, thin and chemically stable oxide film that

spontaneously develops on these materials surface under ambient conditions, such as air

or water [1,2]. This oxide film, further able to minimize ion release from the implants to

the surrounding tissues and hence inflammatory reactions in the body, is of a few

nanometers thickness ( 5 nm) and mainly composed of amorphous or poorly

crystallized TiO2 [3,4]. The presence of other oxides has also been detected in titanium

alloys; in particular, Milosev et al [5] identified small traces of TiO, Ti2O3 and Al2O3 on

the naturally occurring oxide film of Ti6Al4V through XPS experimentation.

TiO2 is a n type photoactive oxide semiconductor [6,7], which properties temporarily

change after exposure to UV radiation. Its photoactivation under UV light provokes

Page 160: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

154

photocatalytic surface reactions that degrade organic material, conferring bactericidal

properties to this particular oxide [8-13]. Exploiting these properties in the biomedical

implant field has been limited by the impossibility of irradiating the material in situ. It is

for this reason that little is known about how clinically relevant bacterial strains, such as

Staphylococcus aureus and Staphylococcus epidermis, are affected by the photocatalytic

activity of TiO2. Interestingly, using these gram-positive and other clinically relevant

gram-negative strains [14], our research group has recently shown that the Ti6Al4V

alloy exhibits antibacterial adhesive properties after being subjected to UV radiation. In

particular, microbial cells adhered with a lower force to the UV treated than to the

untreated surface, an observation that has been related with the decrease of the material

surface hydrophobicity that originates from the irradiation [15]. Most interestingly, a

post-radiation bactericidal effect has been also shown by the Ti6Al4V surface [16].

Although this post-radiation bactericidal property is time-dependent, its time duration

appeared enough to affect or to kill bacteria that could contaminate the implant surface

during the surgery procedure, which is the crucial to avoid a large number of

biomaterials associated infections. It is important to mention as well that the excellent

biocompatibility of this alloy was found not to be affected by the UV treatments, i.e.

human cells proliferate equally on the control and irradiated Ti6Al4V samples [14].

Investigations aimed to uncover the underlying basis of such bactericidal effect revealed

that the photocatalytic activity of this material surface, absent once the irradiation was

stopped, could not be responsible. It was hypothesized, based on a range of qualitative

tests, that small currents whose origin lies on the electron-hole pairs recombination that

takes place after the excitation process were behind the bactericidal properties of the

irradiated Ti6Al4V material. Thus, treating this material with UV produces superficial

electronic conductions that potentially interfere with the viability of the adhered

bacteria.

For this reason, the goal of this work is to quantitatively analyze the electric properties

of the Ti6Al4V alloy oxide film after being excited with UV radiation using

electrochemical techniques such as: electrochemical impedance spectroscopy (EIS),

potentiodynamic polarization curves and Mott-Shottky plots. All of these are powerful

technique to study charge transfer processes that have been previously used to evaluate

recombination processes taking place at the Ti6Al4V-TiO2/electrolyte interface [7,17].

Page 161: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

155

The findings presented in this work clarify the origin of the bactericidal properties of the

Ti6Al4V UV treated materials.

7.2. MATERIALS AND METHODS

7.2.1. Ti6Al4V

Disks of Ti6Al4V were cut from bars of 25 mm in diameter kindly supplied by

SURGIVAL S.A., Spain. A TIMETAL 6–4 ELI alloy was processed as a hot rolled

annealed bar at 700 ºC for 2 h, then air cooled. The disks were abraded on successively

finer silicon carbide papers, mechanically polished with diamond paste, and finished

with silica colloidal.

Prior to their use, the Ti6Al4V disks were carefully cleaned with DSF disinfectant

(DERQUIM DSF 11; Panreac Quimica S.A., Spain) and distilled water at 60 ºC by

vigorously rubbing with a smooth cotton cloth, then rinsed repeatedly with distilled

water and sonicated in deionized water (Milli-Q system), 70% acetone and finally

ethanol for periods of 10 min each. Finally they were dried in an oven at 40 ºC for 1 h

and stored in a desiccator for no longer than 24 h. Samples, denoted as control, were not

subjected to any further treatment. A second set of samples, referred as UV, was

exposed to an UV-C source for 15 h. This period was sufficient to guarantee a complete

hydrophilization of the surface, as we have recently shown [15]. G15-T8 UV lamps,

emitting predominantly at a wavelength of 254 nm, were kindly provided by Philips

Iberica, Spain. The disks were positioned at 10 cm from the light source and centered,

receiving an intensity of about 4.2 mW cm-2

. The irradiation installation was inside an

opaque wood chamber to prevent interference from the room or daylight, or cause any

damage to the users.

7.2.2. Solution electrolyte

In order to simulate the physiological conditions around the bone tissues, the

electrochemical assays were carried out by immersing the samples in Ringer’s solution

(Ringer Lactato Grifols; Laboratorios Grifols S.A., Barcelona, Spain) [18]. This

solution contains 600 mg of NaCl, 40 mg of KCl, 27 mg of CaCl2 and 305 mg of

NaHCO3 diluted in 100 ml of water.

Page 162: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

156

7.2.3. Electrochemical characterization

The electrochemical characterization (EIS, potentiodynamic polarization studies and

Mott-Schottky analysis) was carried out in a conventional electrochemical cell filled

with the Ringer´s solution and using the investigated specimen as working electrode

(control or UV), a counter electrode of platinum, and a reference electrode of Ag/AgCl

saturated in a potassium chloride solution. Measurements were made with a

potentiostat/galvanostat AUTOLAB EcoChemie PGSTAT30 (Eco Chemie, Utrecht,

The Netherlands) equipped with a frequency analyzer module FRA2.

In all the experiments the working electrode was firstly conditioned with the Ringer’s

solution (15 ml) for 5 min in complete darkness. This time was enough for the

adsorption of the ionic species from solution and for reaching the stabilization of the

open circuit potential value (EOCP). Experiments were repeated at least three times using

always fresh Ringer’s solution.

7.2.4. Electrochemical Impedance Spectroscopy (EIS)

The EIS technique was used to evaluate the properties exhibited by the working

electrode under alter current (AC) polarization. It is a versatile technique and suitable

for studying the behavior of biomaterials under corrosive environments. In the

experiments, an electric potential of variable frequency is applied to the material inside

an electrochemical cell and then its current response is measured and analyzed [19].

The input signal was a sine wave perturbation with ±10 mV amplitude. The frequency

range selected was from 10 kHz to 1 mHz, measuring five impedance points per

frequency decade. The impedance spectrums were analyzed in terms of Nyquist and

Bode diagrams and the resistance and capacitance values were obtained through the

application of the software ZView 3.1c (Scribner Associates Inc, Southern Pines, NC,

EEUU). The goodness of the proposed fitting for the selected equivalent circuit was

given by the values of Chi-square and the relative error.

7.2.5. Potentiodynamic Polarization Curves

The polarization curves allow the determination of the corrosion potential and intensity

as well as the anodic and cathodic Tafel slopes. This experiment was done by applying

a range of direct current (DC) potentials between the working electrode and the

reference electrode. The potentials were scanned at a rate of 0.5 mVs-1

in anodic

direction between -0.5 and 2 V. Then the electric current between the sample (working

Page 163: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

157

electrode) and the reference electrode was registered. The analysis of the curves was

performed with the option “Corrosion rate analysis” implemented on the software

General Purpose Electrochemical Systems (GPES). The “Fit Tafel Slope” and

“Levenberg/Marquardt” models were used.

7.2.6. Mott-Schottky Curves

The Mott-Schottky experiments allowed for the evaluation of the interfacial capacity

associated to the oxide layer in terms of the DC potential. The range of the applied DC

potential was the same than in the Potentiodynamic Polarization technique, with

potential steps of 0.1 V. In order to obtain the capacitance at each applied potential, it

was used a sine wave perturbation with ±10 mV of amplitude and constant frequency of

10 kHz.

7.3. RESULTS AND DISCUSSION

In a previous work we qualitatively observed that bacteria adhered not directly to the

irradiated surface but on a thin metallic film, which was previously deposited on the

irradiated sample, appeared dead, against those adhered to the same metallic thin film

but dropped on a non-irradiated Ti6Al4V surface (Fig. 7.1). This observation led to the

hypothesis that there should be some electrical effect on the irradiated surface

responsible of the degradation of the bacterial cells.

Fig. 7.1. Adhesion experiment in which bacteria were not deposited directly in contact with the

Ti6Al4V surface but on a thin metallic film dropped previously on the Ti6Al4V surface (a).

Images of green (live) or red-like (dead or damaged) stained adhered bacteria on the thin

metallic film dropped on the control (non-irradiated) (b) or UV (irradiated) (c) Ti6Al4V

surface.

Ti6Al4V

Thin metallic film (a) (b) (c)

Page 164: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

158

7.3.1. Electrochemical Impedance Spectroscopy (EIS)

7.3.1.1. EIS for Ti6Al4V before and after the UV irradiation treatment

The Nyquist diagrams for both samples (control and UV) show a unique capacitive loop

with a wide incomplete semicircle for all the frequency range studied (Fig. 7.2a). This

behavior is typical of thin oxide films [2,20-26]. The irradiation process alters the

electrochemical behavior of the interface Ti6Al4V-TiO2/electrolyte. The spectrum for

the control sample presents higher impedance values (imaginary part) than those

obtained for the irradiated sample.

The Bode diagrams (Fig. 7.2b) have been registered under the same conditions as the

previous Nyquist diagrams. The comparative analysis between control and UV shows

changes in the impedance module (|Z|) and phase versus frequency, which are due to

phenomena related to the passive film [21,27-29]. In both cases a single time constant

has been obtained. At high frequencies, |Z| and phase reach minimum and constant

values with a phase angle closes to 0º, this fact being related with a predominant

influence of the electrolyte resistance. In the region of medium and low frequencies the

|Z| diagram presents a lineal tendency with a slope close to -1 and a phase angle close to

80 º, especially in the case of the control sample. This is a typical capacitive response,

associated to the presence of passive films [30-32]. The high impedance values close to

106 ohms at the lowest frequencies indicate the good dielectric and protector properties

of the oxide film formed on the alloy surface [33].

In order to provide a full interpretation of the EIS results and a clearer understanding of

the electrocatalytic processes occurring at the interface Ti6Al4V-TiO2/ electrolyte the

establishment of a mathematical model is necessary [17]. The best model describing the

impedance spectrum was an electrical equivalent circuit with a single capacitive loop, as

shown in Fig. 7.3 [21,29,34,35]. This circuit consists of a resistance mainly operating at

high frequencies, related with the electrolyte resistance (Rs) [30,36,37] and a parallel

association of a constant phase element (CPE), to correct the non-ideal behaviour of the

capacitance, and a polarization resistance (Rp) that is inversely proportional to the

corrosion current [38].

Page 165: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

159

Fig. 7.2. Impedance spectra for the Ti6Al4V alloy before (Control) and after being subjected to

UV radiation (UV). (a) Nyquist diagram representing the imaginary -jZimag vs. the real Zreal

parts of the impedance. (b) Bode diagram representing the modulus of the impedance (|Z|) in a

double-logarithmic scale and the phase angle in a semi-logarithmic scale vs. frequency.

The CPE is an electric element for which the impedance is a function of the angular

frequency, ω, but its phase does not depend on ω. This impedance is expressed as,

(7.1)

where Y0 is the constant phase element parameter of the CPE, j is the imaginary number

and = 2f, f being the frequency in Hz. The exponential n, known as the

exponent of the CPS, is related with a non-uniform current distribution due to the

surface roughness or other distributed properties. n can be related with the phase angle

of the CPE, , through the expression n = /(/2). When 0 < n< 0.5 the CPE is mainly

a resistance, when 0.5 <n <1 the CPE is mainly a capacitor [39] and if -1<n<0, the CPE

is mainly an inductor [35].

Mansfeld et al. reported a way concerning the conversion of the Constant Phase

Element Parameter Y0 into a capacitance C [40,41], by using the following equation:

(7.2)

where is the angular frequency at which the imaginary part of the impedance (Zimag)

has a maximum in the representation of Nyquist plots.

101

102

103

104

105

106

|Z| /

ohm

s·c

m2

10-3

10-2

10-1

100

101

102

103

104

0

-20

-40

-60

-80

Frequency / Hz

Ph

ase

/ d

eg

ree

s

0 1x106

2x106

3x106

0

1x106

2x106

3x106

-j·Z

ima

g /

oh

ms·c

m2

Zreal

/ ohms·cm2

Control1

Control3

Control4

UV1

UV2

UV4

FitResults_Control1

FitResults_Control3

FitResults_Control4

FitResults_UV1

FitResults_UV2

FitResults_UV4

(a) (b)

2 3

3

2 3

3

Page 166: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

160

The CPE of the equivalent circuit of Fig. 7.3 represents two capacitors CCS and CH, CCS

being the space-charge capacitance and CH the capacitance of the Helmholtz layer. The

total capacitance C is expressed as C = (CSC-1

+ CH-1

)-1

.

Fig. 7.3. Equivalent circuit for the electrochemical film system Ti6Al4V-TiO2 / solution. Rs

represents the electrolyte resistance, Rp the polarization resistance and CPE a constant phase

element.

The results of numerical analysis via Complex Nonlinear Least Squares Fitting (CNLS)

of the spectra obtained in Fig. 7.2 by using this equivalent circuit are shown in Table

7.1. Comparing both samples, it is observed that Rp decreases after the UV treatment

which is likely related to the increase of electron-hole pairs generated during the

irradiation process [25,42]. Such increment is also related with the higher values of Y0-

CPE in irradiated samples

Table 7.1. Values obtained for the equivalent circuit parameters. Samples: Control (non-

irradiated Ti6Al4V) and UV (UV-irradiated Ti6Al4V). Rs: electrolyte resistance; Y0-CPE: CPE

parameter; n-CPE: CPE exponent; RP: polarization resistance. Inmersion time in Ringer´s

solution before EIS measurements: 5 min. The goodness of the fit, given by the statistical Chi-

square values, was always of the order of 10-4

for a sample control and the orden of 10-5

for UV,

and percentages of error were never more than 4 %.

Rs(Ω) Rp(MΩ) Y0-CPEx10-5

(sn/Ω) n-CPE

Ti6Al4V

(Control)

72.86±11 14.2±2.4 4.75±0.08 0.938±0.02

Ti6Al4V

(UV)

55.07±5.5 3.81±0,8 6.56±0.12 0.918±0.01

Rs

RP

CPE

Ringer TiO2

Ti6

Al4

V

Hel

mholt

z

Page 167: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

161

The generation of electron-hole pairs increases the capacitance and, by consequence, the

surface conduction of the alloy [43]. The values obtained for n-CPE are similar in both

samples and close to 1. This indicated a near ideal capacitance of the passive film

formed on the Ti alloy [28]. However, it is always slightly lower for the UV sample.

Although it was not the scope of the manuscript, it is worth mentioning that we made a

parallel experience in which the sample was subjected to an extreme irradiation. In this

case the irradiation source was located to the minimum separation distance from the

sample (1 cm) and it was operated for the standard time of 15 h. The EIS results (data

not shown), fitted through the equivalent circuit of Fig. 7.3, presented a Rp of 0,021

MΩ. This value can provoke corrosion currents which are able to cause important

superficial deterioration of the sample with no possibility of recuperation.

7.3.1.2. EIS for Ti6Al4V after different post-radiation times

In the previous work [16] we showed that the bactericidal effect was transitory and

appeared highly suitable for avoiding the risk of early infections after implantation. It is

for this reason that EIS experiments were also carried out with samples that were

irradiated and keeping in complete darkness 5, 15, 30, 45, 60 min and 24 h before the

electrochemical assays.

The EIS diagrams for such experiments are presented in Fig. 7.4 and they show again

the typical shape of open and uncompleted semicircles, with a diameter depending on

the waiting time.

The fitted parameters for the equivalent circuit of the system Ti6Al4V-TiO2/electrolyte

at the different waiting times are summarized in Table 7.2. The lowest Rp is observed at

the lowest waiting time, 5 min, and it increases as the waiting time becomes longer,

reaching a similar value to that of the control sample at 24 h, within experimental error.

The opposite behavior is observed for Y0-CPE and for the capacitance of the passive

film calculated from equation (7.2) of Mansfeld. The highest values belong to the

lowest waiting time of 5 min and then they decrease to values similar to control. The n-

CPE suffers small changes and its value increases as the waiting times increase which

denote a higher capacitive behavior of the system. All the RS values are similar, within

the experimental error.

Page 168: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

162

Fig. 7.4. Impedance spectra for the Ti6Al4V alloy before (Control) and after being subjected to

UV radiation (UV). (a) Nyquist diagram representing the imaginary -jZimag vs. the real Zreal

parts of the impedance. (b) Bode diagram representing the modulus of the impedance (|Z|) in a

double-logarithmic scale and the phase angle in a semi-logarithmic scale vs. frequency for

different waiting times: 5, 30, 45, 60 min and 24 h.

Table 7.2. Values obtained for the equivalent circuit parameters by modelling the experimental

impedance at different waiting times after irradiating a Ti6Al4V sample with UV.

Waiting

times

(minutes)

Rs(Ω)

Rp(MΩ)

Y0-CPEx10-5

(sn/Ω)

n-CPE

C(µF)

5 50±3 3.74±0.2 7.62±1.2 0.897±0,03 145.8±2.3

15 67±12 4.40±0.1 5.20±0.3 0.933±0,01 76.8±1.4

30 57±9 4.43±0.1 4.89±0.1 0.935±0,02 71.2±1.1

45 56±8 7.87±0.08 4.86±0.3 0.937±0,01 72.4±1.7

60 53±7 9.63±0.1 4.81±0.1 0.936±0,02 73.1±1.5

1440 (24h) 51±3 12.3±2.1 4.02±0.3 0.940±0,02 59.73±1.1

These results indicate that although after irradiation the surfaces present high corrosion

rates due to the lowest Rp values, the process is controlled and the recovery of the

sample is reached without affecting the good functionality of the biomaterial.

This recovery is in agreement with the short-term bactericidal effect. However, it is

clearly appreciated in the Niquist diagram a mostly total recovery after 60 min while at

101

102

103

104

105

106

107

Control 4

PostRadiation, 5 min

PostRadiation, 15 min

PostRadiation, 30 min

PostRadiation, 45 min

PostRadiation, 60 min

PostRadiation, 24 h

|Z| /

ohm

s·c

m2

10-3

10-2

10-1

100

101

102

103

104

0

-20

-40

-60

-80

Phase / d

egre

es

Frequency / Hz

0 1x106

2x106

3x106

0

1x106

2x106

3x106

-j

·Zim

ag/ oh

ms·c

m2

Zreal / ohms·cm2

Control 4

PostRadiation, 5 min

PostRadiation, 15 min

PostRadiation, 30 min

PostRadiation, 45 min

PostRadiation, 60 min

PostRadiation, 24 h

(a) (b)

Page 169: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

163

this time bacterial viability still remained compromised. This agrees with the previously

proposed bactericidal mechanism in which it was suggested that the combination of

electrical effects and radiation emission from the surface after irradiation should be

considered [16].

7.3.2. Potentiodynamic polarization curves

This technique allows the evaluation of the reactions that occur on the working

electrode when operating near to its EOCP and enables to determine the effect of

different electrochemical variables on the total oxidation current. This is a great

advantage because the intrinsic kinetic parameters of the reaction can be estimated,

particularly when the process is controlled by electron transfer such as in the present

study [7].

As an example, Fig.7.5 shows the anionic and cationic polarization behavior of a

control and UV sample recorded in Ringer solution with a scan speed of 0.5 mVs-1

.

Fig. 7.5. Potentiodynamic polarization curves for the Ti6Al4V alloy before (Control)

and after being subjected during 15 h to UV radiation (UV).

The shape of the curves is typical of Ti6Al4V alloys [20,27-29,33,44,45]. Using the “Fit

Tafel Slope” model, Ecorr and Icorr were determined by lineal extrapolation of the anionic

(ba) and cationic (bc) Tafel lines. These values were used as initial parameters in the

“Levenberg/Marquardt” model to determine the best fit values through an iterative

method in which each step involves a least square fit.

-0.5 0.0 0.5 1.0 1.5 2.010

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

UV irradiated samples

Cu

rre

nt

inte

nsi

ty,

I (A

)

Potential, E vs Ag/AgCl (V)

Control samples

Potential, E (V) vs. Ag/AgCl, sat. KCl

Page 170: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

164

Table 7.3 shows that the UV treated samples exhibit Icorr values of one order of

magnitude larger than those obtained for the control samples (2.78×10-9

Acm-2

vs.

21.6×10-9

Acm-2

), revealing for the treated samples a higher susceptibility to corrosion

in Ringer solution. However, a shift of the curve to more positive potentials is also

observed, Ecorr taking values of -412 mV and -156 mV for the control and treated

samples, respectively. This is a clear indication that a more protected potential corrosion

has been developed on the material film after UV treatment [25]. In the passivation

region of both samples, the current intensity is independent of the applied potential,

suggesting that the samples do not suffer any kind of localized attacked and that the

TiO2 film remains stable during the immersion time in Ringer solution. This is a

characteristic behavior of titanium, known as valve metals [46].

Table 7.3. Results obtained through the Tafel Slope model for the control and UV Ti6Al4V

samples. Ecorr/SCE is the corrosion potential with respect to the reference potential, Icorr the

corrosion density current, and ba and bc the anionic and cationic slopes. The goodness of the fit,

given by the Chi-square values, was always of the order of 10-13

.

Even if the UV treatment increases the values of Icorr, resulting in material surfaces with

larger susceptibility for oxidation, the protecting potentials also found to be higher. The

latter guarantee the good stability of the biomaterial in Ringer solution after UV

treatment, in agreement with the complete recovery observed in the EIS experiments.

7.3.3. Mott-Schottky experiments

The Mott-Schottky analysis was carry out to evaluate the effect of the DC potential on

the capacitance behavior of the Ti6Al4V alloy after being subjected to UV radiation in a

control manner. This model predict that if the oxide film that develops on a metal

surface behaves as a semiconductor, there will be a relation between the film space-

charge capacitance and the superimposed potential, according to equation (7.3) and

(7.4) for n and p type semiconductors, respectively:

Ecorr /SCE(mV) icorr x10-9

(Acm-2

)

ba(V/dec) bc(V/dec)

Ti6Al4V

(Control)

-412±9 2.78±0.4 0.09±0.02 0.08±0.02

Ti6Al4V

(UV)

-156±15 21.6±5 0.29±0.03 0.35±0.05

Page 171: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

165

(7.3)

(7.4)

where CSC is the space-charge capacitance, q the electric charge of the carriers, ND and

NA the number of donor and acceptor charge carriers, respectively, the film relative

permittivity, 0 the vacuum permittivity, V the superimposed potential, VFB the flatband

potential, k the Boltzmann constant and T the temperature [35].

In Fig. 7.6 the Mott-Schottky plot for a control and irradiated Ti6Al4V samples is

shown together with the lineal correlation coefficient R2 for each straight line. The

positive sign of the slope of the lines indicates a capacity decreases as the anionic

potential increases over the flatband potential. This denotes that the oxide film covering

our samples is a n type semiconductor, in agreement with the published literature for

films grown on pure Ti and its alloys [47,48].

Fig. 7.6. Mott-Schottky diagram for the Ti6Al4V alloy before (Control) and after being

subjected during 15 h to UV radiation (UV) obtained in Ringer solution. A 10 kHz AC

signal with a 10 mV amplitude was used.

It is worth noting that the equivalent circuit proposed in Fig.7.3 for EIS contains two

different capacitors, i.e. the capacitor of the space-charge region (CSC) and the

Helmholtz capacitor (CH), but the Mott-Schottky curves shows only one (CSC).

However, considering that C CSC [35,49], a direct comparison between these results

-0,5 0,0 0,5 1,0 1,5 2,0

1x1010

2x1010

3x1010

4x1010

Frequency = 10 kHz

(-

·Zim

ag)2

/ (

1/F

)2

Potential, E (V) vs. Ag/AgCl, sat. KCl

Control

UV

-0.250 V

R2= 0.999

R2= 0.998 -0.604V

Page 172: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

166

and the calculated from EIS can be done. The increase in the values of CSC for the UV

treated alloy with respect to the control (Fig. 7.6) is in agreement with the results found

in EIS.

According to the approximation of Mott-Schottky, the slope of the straight lineal regime

of the 1/C2

SC vs E representation corresponds to 2/ 0qND. If kT/q is negligible, the

flatband potential can be obtained by extrapolation of the linear regime of the graph to

1/C2

SC = 0. Thus, an accurate calculation of ND strongly depends of the correct

determination of the relation between CSC and E [35]. The density of free carriers

calculated through the lineal correlation gave values 30% higher for the Ti6Al4V-UV

electrode than for the control. The values obtained, of the order of 1020

cm-3

, are

relatively high but within reported values in the literature [50]. The flatband potential

calculated (see Fig. 7.6) is 55 % higher for the control than the Ti6Al4V-UV electrode.

It is difficult to establish a clear relation between the thin oxide film semiconductor

properties and its corrosion characteristics; however, some authors working with

stainless steel were able to relate the density of free carriers within the film with a high

concentration of superficial defects [51]. Lee et al. [52] also observed that the number of

metastable pits was linked to the density of donor carriers of the passive film of 316L

and 316 LN stainless steels. Ningshen et al. [53] using EIS were able to detect a

decrease in the polarization resistance for these materials with the increase of the oxide

film free carriers. This is in agreement with the results obtained in this work for the

Ti6Al4V alloy, for which EIS results on UV treated samples showed a decrease in RP,

Mott-Schottky an increase in ND and the polarization curves an increase in the corrosion

currents. These findings indicate that even if the good superficial properties of the TiO2

semiconductor are slightly compromised, they completely recover under the controlled

treatment at which they have been here subjected.

Different authors have already shown this phenomenon to occur during the irradiation

process [17,54,55]. The origin is not clear, but most authors have attributed it to the

capture of minority charge carriers located in superficial states. If the number of free

superficial states is high enough, a considerable amount of charge can be stored,

provoking thus a band position change [55].

Page 173: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

167

7.4. CONCLUSIONS

It has been shown that electrochemical type experiments are a powerful tool to

investigate the surface phenomena that take place after the irradiation of the Ti6Al4V

alloy with UV light. EIS shows that this treatment causes an initial increases on the

superficial electrical conduction that fade out after storing the sample in dark conditions

for a period of 24 hours. Mott-Schottky curves further confirmed these results. Thus, the

hypothesis stated on our previous work [16] relating the bactericidal properties of these

substrata with an increase on electrical surface currents is here corroborated. In addition,

the anionic polarization curves detected higher corrosion currents for the UV treated

material, however, EIS confirmed that these did not affect the good stability of the

material oxide film.

7.5. REFERENCES

[1] Fonseca C, Barbosa MA. Corrosion behaviour of titanium in biofluids containing

H2O2 studied by electrochemical impedance spectroscopy. Corros. Sci. 2001;43:

547-559.

[2] Zhang XL, Jiang ZhH, Yao ZhP, Song Y, Wu ZhD. Effects of scan rate on the

potentiodynamic polarization curve obtained to determine the Tafel slopes and

corrosion current density. Corros. Sci. 2009;51:581-587.

[3] Bao Y, Wang W, He B, Wang M, Yin Y, Liang L et al. EIS analysis of

hydrophobic and hydrophilic TiO2 film. Electrochim. Acta 2008;54:611-615.

[4] Vörös J, Wieland N, Ruiz-Taylor L, Textor M, Brunette DM. in: Brunette DM,

Tengvall P, Textor M, Thomsen P (Eds.), Titanium in medicine: material science,

surface science, engineering, biological responses and medical applications,

Springer-Verlag, Berlin, 2001; p87.

[5] Milosev I, Metikos-Hukovic M, Strehblow H-H. Passive film on osthopaedic

TiAlV alloy formed in physiological solution investigated by X-ray photoelectron

spectroscopy. Biomaterials 2000;21:2103-2113.

[6] Textor M, Sittig C, Frauchiger V, Tosatti S, Brunette DM, in: Brunette DM,

Tengvall P, Textor M, Thomsen P (Eds.), Titanium in medicine: material science,

surface science, engineering, biological responses and medical applications,

Springer-Verlag, Berlin, 2001, p. 171.

Page 174: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

168

[7] Pedraza Avella JA, Acevedo Peña P, Pedraza Rosas JE. Photocatalytic oxidation of

cyanide on TiO2: An electrochemical approach. Catal. Today 2008;133-135:611-

618.

[8] Byrne JA, Eggins BR, Brown NMD, McKinnery B, Rouse M. Immobilisation of

TiO2 powder for the treatment of polluted water. Appl. Catal. B Environ

1998;17:25-36.

[9] Liu HL, Yang TCK. Photocatalytic inactivation of Escherichia coli and

Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Process

Biochem. 2003;39:475-481.

[10] Gaswami DY, Trivedi DM, Block SS. Photocatalytic disinfection of indoor air. J.

Sol. Energy. Eng. 1997;119:92-96.

[11] Maneerat C, Hayata Y. Antifungal activity of TiO2 photocatalysis against

Penicillium expansum in vitro and in fruit tests. Int. J. Food Microbiol.

2006;107:99-103.

[12] Nonami T, Hase H, Funakoshi K. Apatite-coated titanium dioxide photocatalyst for

air purification. Catal. Today 2004;96:113-118.

[13] Kim B, Kim D, Cho D, Cho S. Bactericidal effect of TiO2 photocatalyst on selected

food-borne pathogenic bacteria. Chemosphere 2003;52:277-81.

[14] Gallardo Moreno AM, Pacha Olivenza MA, Saldaña L, Pérez Giraldo C, Bruque

JM, Vilaboa N et al. In vitro biocompatibility and bacterial adhesion of physico-

chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater.

2008;5:181-192.

[15] Pacha Olivenza MA, Gallardo Moreno AM, Méndez Vilas A, Bruque JM,

González Carrasco JL, González Martín ML. Effect of UV irradiation on the

surface Gibbs energy of Ti6Al4V and thermally oxidized Ti6Al4V. J. Colloid

Interf. Sci. 2008;320:117-124.

[16] Gallardo Moreno AM, Pacha Olivenza MA, Fernández Calderón MC, Pérez

Giraldo C, Bruque JM, González Martín ML. Bactericidal behaviour of Ti6Al4V

surfaces after exposure to UV-C light. Biomaterials 2010; 31:5159-5168.

[17] Leng WH, Zhang Z, Zhang JQ, Cao CN. Investigation of the kinetics of a TiO2

photoelectrocatalytic reaction involving charge transfer and recombination through

surface states by electrochemical impedance spectroscopy. J. Phys. Chem. B

2005;109:15008-15023.

Page 175: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

169

[18] Long M, Rack HC. Titanium alloys in total joint replacement -a materials science

perspective. Biomaterials 1998;19:1621-1639.

[19] Princeton NJ. Basic Electrochemical Impedance Spectroscopy (EIS). Application

Note AC-1. EG&G Princeton Applied Research 1989.

[20] Grosgogeat B, Boinet M, Dalard F, Lissac M. Electrochemical studies of the

corrosion behaviour of titanium and the Ti-6Al-4V alloy using electrochemical

impedance spectroscopy. Biomed. Mater. Eng. 2004;14:323-331.

[21] Xu J, Linlin L, Lu X, Jiang S. Effect of carbon doping electrochemical behavior of

nanocrystalline Ti5Si3 film in NaCl solution. Electrochem. Commun. 2011;13:102-

105.

[22] Wang M, Wang W, He BL, Sun ML, Bao YS, Yin YS et al. Corrosion behaviour of

hydrophobic titanium oxide film pre-treated in hydrogen peroxide solution. Mater.

Corros. 2010;62:320-325.

[23] Bao Y, Wang W, He B, Wang M, Yin Y, Liang L et al. EIS analysis of

hydrophobic and hydrophilicTiO2 film. Electrochim. Acta 2008;54:611-615.

[24] Mindroiu M, Pirvu C, Ion R, Demetrescu I. Comparing performance of

nanoarchitectures fabricated by Ti6Al7Nb anodizing in two kinds of electrolytes.

Electrochim. Acta 2010;56:193-202.

[25] Li M, Lou S, Wu P, Shen J. Photocathodic protection effect of TiO2 films for

carbon steel in 3% NaCl solutions. Electrochim. Acta 2005;50:3401-3406.

[26] Huang H-H. Surface characterization of passive film on NiCr-based dental casting

alloys. Biomaterials 2003;24:1575-1582.

[27] Shukla AK, Balasubramaniam R, Bhargava S. Properties of passive film formed on

CP titanium, Ti-6Al-4V and Ti-13.4Al-29Nb alloys in simulated human body

conditions. Intermetallics 2005;13:631-637.

[28] Tamilselvi S, Raman V, Rajendran N. Corrosion behaviour of Ti-6Al-7Nb and Ti-

6Al-4V ELI alloys in the simulated body fluid solution by electrochemical

impedance spectroscopy. Electrochim. Acta 2006;52:839-846.

[29] Alves VA, Reis RQ, Santos ICB, Souza DG, Goncalves TF, Preira-da-Silva MA et

al. In situ impedance spectroscopy study of the electrochemical corrosión of Ti and

Ti-6Al-4V in simulated body fluid at 25 ºC and 37 ºC. Corros. Sci. 2009;51:2473-

2482.

[30] Baron A, Simka W, Chrzanowski W. EIS tests of electrochemical behaviour of

Ti6Al4V and Ti6Al7Nb alloys. J. Achiev. Mat. Eng. 2007;21:23-26.

Page 176: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

170

[31] Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA. Corrosion behaviour of

commercially pure titanium shot blasted with different materials and sizes of shot

particles for dental implant applications. Biomaterials 2003;24:263-273.

[32] Vasilescu C, Drob P, Vasilescu E, Demetrescu I, Ionita D, Prodana M et al.

Characterisation and corrosion resistance of the electrodeposited hydroxyapatite

and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface.

Corros. Sci. 2011;53:992-999.

[33] Paszenda Z, Walke W, Jadacka S. Electrochemical investigations of Ti6Al4V and

Ti6Al7Nb alloys used on implants in bone surgery. J. Achiev. Mat. Eng.

2010;38:24-32.

[34] González JEG, Mirza-Rosca JC. Study of the corrosion behavior of titanium and

some of its alloys for biomedical and dental implant applications. J. Electroanal.

Chem. 1999;471:109-115.

[35] Harrington SP, Devine TM. Analysis of electrodes displaying frequency dispersion

in Mott-Schottky tests. J. Electrochem. Soc. 2008;155(8):381-386.

[36] Bozzini B, Carlino P, Durzo L, Pepe V, Mele C, Venturo F. An electrochemical

impedance investigation of the behavior of anodically oxidised titanium in human

plasma and cognate fluids, relevant to dental applications. J. Mater. Sci–Mater. M.

2008;19:3443-3453.

[37] Mogoda AS, Ahmad YH, Badawy WA. Corrosion behaviour of Ti–6Al–4V alloy

in concentrated hydrochloric and sulphuric acids. J. Appl. Electrochem.

2004;34:873-878.

[38] Stern M, Geary AL. Electrochemical Polarization: I. A theoretical analysis of the

shape of polarization curves. J. Electrochem. Soc. 1957;104(1):56-53.

[39] Wang D, Liu Y, Hu H, Zeng Z, Zhou F, Liu W. Electrochemical characterization of

the solution accessibility of CaTiO3 microstructures and improved

biomineralization. J. Phys. Chem. 2008;112:16123-16129.

[40] Hsu CH, Mansfeld F. Technical Note: Concerning the conversion of the constant

phase element parameter Y0 into a capacitance. Corrosion 2001;57:747-748.

[41] Huang Y, Shih H, Mansfeld F. Concerning the use of constant phase elements

(CPEs) in the analysis of impedance data. Mater. Corros. 2010;61:302-305.

[42] Baram N, Ein-Eli Y. Electrochemical impedance spectroscopy of porous TiO2 for

photocatalytic applications. J. Phys. Chem. C 2010;114:9781-9790.

Page 177: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

171

[43] Nelson BP, Candal R, Corn RM, Anderson M. Control of surface and ξ potentials

on nanoporous TiO2 films by potential-determining and specifically adsorbed ions.

Langmuir 2000;16:6094-6101.

[44] Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoridated mouthwashes

on corrosion resistance of orthodontics wires. Biomaterials 2004;25:4535-4542.

[45] Paul S, Yadav K. Corrosion Behaviour of surface-trated implant Ti-6Al-4V by

electrochemical polarization and impedance studies. J. Mater. Eng. Perform.

2011;20:422-435.

[46] Pan J, Leygraf C, Thierry D, Ektessabi AM. Corrosion resistance for biomaterial

applications of TiO2 films deposited on titanium and stainless steel by ion-beam-

assisted sputtering. J. Biomed. Mater. Res. 1997;35:309-318.

[47] Tsuchiya H, Macak JM, Ghicov A, Rader AS, Taveira L, Schmuki P.

Characterization of electronic properties of TiO2 nanotube films. Corros. Sci.

2007;49:203-210.

[48] Taveira LV, Sagues AA, Macak JM, Schmuki P. Impedance behaviour of TiO2

nanotubes formed by anodization in NaF electrolytes. J. Electrochem. Soc.

2008;155:C293-C302.

[49] Antunes RA, Oliveira MCL, Costa I. Study of the correlation between corrosión

resistance and semi-conducting properties of the passive film of AISI 316L

stainless steel in physiological solution. Mater. Corros. 2011;62:1-7.

[50] Baumanis C, Bahnemann DW. TiO2 thin film electrodes: correlation between

photocatalytic activity and electrochemical properties. J. Phys. Chem. C

2008;112:19097-19101.

[51] Schmuki P, Bohni H, Mansfeld F. A photoelectrochemical investigation of passive

films formed by alternating voltage passivation. J. Electrochem. Soc. 1993;

140:L119-L121.

[52] Lee JB, Yoon SI. Effect of nitrogen alloying on the semiconducting properties of

passive films and metastable pitting susceptibility of 316L and 316LN stainless

steels. Mater. Chem. Phys. 2010;122:194-199.

[53] Ningshen S, Mudali UK. Hydrogen effects on pitting corrosion and semiconducting

properties of nitrogen-containing type 316L stainless steel. Electrochim. Acta

2009;54:6374-6382.

[54] Spagnol V, Sutter E, Chouvy CD, Cachet H, Baroux B. EIS study of photo-induced

modifications of nano-columnar TiO2 films. Electrochim. Acta 2009;54:1228-1232.

Page 178: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

172

[55] Hagfeldt A, Bjorksten U, Gratzel M. Photocapacitance of nanocrystalline oxide

semiconductor films: band-edge movement in mesoporous TiO2 electrodes during

UV illimination. J. Phys. Chem. 1996;100:8045-8048.

Page 179: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

173

CAPÍTULO 8

Conclusiones generales

Page 180: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

174

1.- La implantación iónica con silicio provoca ligeros cambios en la hidrofobicidad

superficial del Ti6Al4V y es capaz de reducir la acumulación bacteriana sobre su

superficie en presencia de fuerzas de cizalladura.

2.- La irradiación con luz UV-C provoca cambios significativos en la hidrofobicidad y

energía de Gibbs superficial sobre la superficie del Ti6Al4V cuya magnitud viene

determinada no sólo por el tiempo de radiación sino por las características de la capa de

TiO2 formada sobre su superficie. La hidrofilización de la superficie es más rápida en la

superficie oxidada espontáneamente que en aquella oxidada térmicamente, sin embargo,

tras 15 h de radiación se consigue una superficie completamente hidrófila en ambos

casos. Este hecho fundamentalmente está relacionado con el significativo aumento del

parámetro electrón-donador de la componente ácido-base de la tensión superficial,

aspecto que indica una alta adsorción de grupos hidroxilos y agua orientada sobre la

superficie. En cualquier caso, los dos procesos de oxidación superficial en la aleación

deben compartir un mecanismo similar de hidrofilización debido a las relaciones

análogas mostradas por los cosenos de los líquidos prueba.

3.- Los gradientes térmicos durante la fabricación de barras anchas de Ti6Al4V

provocan ligeros incrementos en la fracción en volumen de la fase β al desplazarnos

desde el exterior al interior de las probetas. Este hecho hace que aparezca una

dependencia radial de la hidrofobicidad y energía de Gibbs superficial tras irradiar las

muestras con luz UV-C, la cual se minimiza aumentando el tiempo de exposición a la

radiación.

4.- La completa hidrofilización de la superficie del Ti6Al4V tras ser irradiada con luz

UV-C disminuye de forma significativa la adhesión de diferentes cepas de S.

epidermidis en condiciones de flujo así como el número de bacterias retenidas a dicha

superficie tras ser sometida a fuerzas de cizalladura simulando condiciones in vivo. El

modelo teórico de adhesión basado en la aproximación X-DLVO ha permitido

relacionar directamente los cambios físico-químicos en la superficie antes y después de

su irradiación con las pendientes iniciales de adhesión a través de la energía de Gibbs de

interacción evaluada especialmente a distancias correspondientes al mínimo secundario

de energía.

5.- Tras el cese de la radiación UV-C la superficie de la aleación Ti6Al4V exhibe un

novedoso comportamiento bactericida residual cuyo origen no parece estar relacionado

Page 181: CARACTERIZACIÓN Y RESPUESTA ANTIBACTERIANA DE LA

175

con reacciones fotocatalíticas sino con procesos de emisión de energía y fenómenos

eléctricos superficiales. Se ha comprobado que dicho efecto presenta una duración

temporal garantizado, en cualquier caso, en las primeros momentos de formación de la

biocapa, período crucial para el éxito o fracaso del implante.

6.- A través de análisis electroquímicos se han podido detectar cambios en propiedades

eléctricas superficiales del Ti6Al4V tras ser irradiado con luz UV-C. La espectroscopía

de impedancia electroquímica y los diagramas Mott-Schottky han demostrado que

después de la radiación se incrementa la conducción eléctrica superficial como

consecuencia de la recombinación de pares electrón-hueco en el TiO2 presente en la

superficie. Este hecho también está relacionado con un aumento en las corrientes de

corrosión sobre la muestra irradiada que parecen no afectar la buena estabilidad de la

aleación, ya que ésta se recupera completamente en condiciones de oscuridad, hecho

que está de acuerdo con la transitoriedad del efecto bactericida.