capítulo página360 espejos con un foco común e hizo una demostración en los jardines del palacio...

133
- 1 - 1.1.-MEMORIA DESCRIPTIVA ÍNDICE Capítulo Página 1.1.1.- Introducción………………………………………...............................2 1.1.1.1.-Recursos energéticos………………………………………...…….….2 1.1.1.2.-El Sol…………………………………………………….…………….3 1.1.1.3.-Qué es la energía solar……………………………….………...……...3 1.1.1.4.-Historia de la energía solar…………………………….……...............4 1.1.1.5.-Uso directo y natural de la energía solar……………………………...7 1.1.1.6.-En que beneficia la energía solar al medioambiente y a mi economía?..........................................................................................................10 1.1.2.- Energía solar Térmica……………......................................................13 1.1.2.1-Introducción….……………………………….……………………....13 1.1.2.2.-¿Qué se puede hacer con la energía solar?...........................................17 1.1.2.3.- Sistemas de captación. Tipos de paneles solares………………..…..19 1.1.2.3.1.-Sistema de captación de baja temperatura……………….…….22 1.1.2.3.2.-Media y alta temperatura………………………………………29 1.1.2.3.3.-Aspectos particulares para una correcta elección de un panel solar plano……………………………………………………………………….…..41 1.1.2.4.- Disposición de los sistemas de captación…………………………....50 1.1.2.4.1.- Estanque solar……………………………………….……..….50 1.1.2.4.2.- Disposición en tejados o azoteas……………………....……...52 1.1.2.5.-Instalación de paneles solares, sistemas de circulación y ejemplos……………………………………………………………………….52 1.1.2.5.1.- Sistemas de circulación natural ……………………...…………57 1.1.2.5.2.- Sistemas de circulación forzada …………………………..…58 1.1.2.5.3.- Sistemas de circulación forzada de vacío….…………………59 1.1.2.5.4.-Algunos ejemplos…………………………………………….59 1.1.2.6.-Mantenimiento de los paneles solares………………………………..68 1.1.3.-Energía solar Fotovoltaica……………………………………...……..71 1.1.3.1.-Los sistemas fotovoltaicos……………………………………………76 1.1.3.2.-Costes y perspectivas…………………………………………………79 1.1.4.-Descripción del modelo desarrollado………………………..………..82 1.1.4.1.-Objetivos y especificación………………………………….………..82 1.1.4.2.-Funcionamiento básico y partes del sistema…………………………87 1.1.4.3.-Inversión, costes y subvenciones…………………………………….90 1.1.5.-Análisis de resultados……………………………………………….…93 1.1.6.-Conclusiones……………………………………….………………….96 1.1.7.-Bibliografía............................................................................................99

Upload: others

Post on 16-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 1 -

1.1.-MEMORIA DESCRIPTIVA

ÍNDICE

Capítulo Página 1.1.1.- Introducción………………………………………...............................2

1.1.1.1.-Recursos energéticos………………………………………...…….….2 1.1.1.2.-El Sol…………………………………………………….…………….3 1.1.1.3.-Qué es la energía solar……………………………….………...……...3 1.1.1.4.-Historia de la energía solar…………………………….……...............4 1.1.1.5.-Uso directo y natural de la energía solar……………………………...7

1.1.1.6.-En que beneficia la energía solar al medioambiente y a mi economía?..........................................................................................................10

1.1.2.- Energía solar Térmica……………......................................................13 1.1.2.1-Introducción….……………………………….……………………....13 1.1.2.2.-¿Qué se puede hacer con la energía solar?...........................................17 1.1.2.3.- Sistemas de captación. Tipos de paneles solares………………..…..19 1.1.2.3.1.-Sistema de captación de baja temperatura……………….…….22 1.1.2.3.2.-Media y alta temperatura………………………………………29

1.1.2.3.3.-Aspectos particulares para una correcta elección de un panel solar plano……………………………………………………………………….…..41

1.1.2.4.- Disposición de los sistemas de captación…………………………....50 1.1.2.4.1.- Estanque solar……………………………………….……..….50 1.1.2.4.2.- Disposición en tejados o azoteas……………………....……...52

1.1.2.5.-Instalación de paneles solares, sistemas de circulación y ejemplos……………………………………………………………………….52

1.1.2.5.1.- Sistemas de circulación natural ……………………...…………57 1.1.2.5.2.- Sistemas de circulación forzada …………………………..…58 1.1.2.5.3.- Sistemas de circulación forzada de vacío….…………………59 1.1.2.5.4.-Algunos ejemplos…………………………………………….59 1.1.2.6.-Mantenimiento de los paneles solares………………………………..68 1.1.3.-Energía solar Fotovoltaica……………………………………...……..71

1.1.3.1.-Los sistemas fotovoltaicos……………………………………………76 1.1.3.2.-Costes y perspectivas…………………………………………………79

1.1.4.-Descripción del modelo desarrollado………………………..………..82 1.1.4.1.-Objetivos y especificación………………………………….………..82 1.1.4.2.-Funcionamiento básico y partes del sistema…………………………87 1.1.4.3.-Inversión, costes y subvenciones…………………………………….90 1.1.5.-Análisis de resultados……………………………………………….…93 1.1.6.-Conclusiones……………………………………….………………….96 1.1.7.-Bibliografía............................................................................................99

Page 2: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 2 -

1.1.1.-Introducción

1.1.1.1- Recursos energéticos

El mundo moderno basa su desarrollo en el consumo creciente de energía

en sus distintas variedades: petróleo, gas, carbón, electricidad, etcétera.

Cuando en la década del 70 los países productores de petróleo llevaron el

valor del mismo a precios imprevistos, los países consumidores tomaron conciencia

de que era necesario buscar otras fuentes de energía que no fueran las mencionadas

más arriba, ya que las mismas se clasifican dentro de las "no renovables", o sea que

con el correr del tiempo se van a extinguir.

En la actualidad, el mundo depende del petróleo en un 46%, del carbón

en un 27% y del gas en un 17%, lo que hace que la dependencia total de los

combustibles fósiles llega al 90%, siendo el 10% restante aplicable a las energías

hidroeléctricas, nuclear, etcétera.

Con el aumento excesivo del costo de estas energías no renovables,

también se tomó conciencia de un mejor aprovechamiento y de un uso racional y

cuidadoso de la energía.

En el curso de las dos últimas décadas, se intensificó el empleo del

petróleo y del gas, y sus reservas comienzan a decrecer rápidamente, calculándose su

extinción a mediados del siglo 21. Simultáneamente comenzará el uso más intensivo

del carbón, cuyas reservas se calculan hasta el siglo 28.

Nos encontramos pues ante la necesidad de reactivar el uso de las

energías renovables, o sea, de las energías que nunca se extinguen tales como la

solar, la geotérmica, la biomasa, etcétera.

Page 3: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 3 -

Naturalmente que la más importante de todas ellas es la energía solar, o

sea, la energía suministrada por el sol, que también se manifiesta en la producción

del viento, en el movimiento de las olas, etcétera.

1.1.1.2.-El sol

La estrella que, por el efecto

gravitacional de su masa, domina el

sistema planetario que incluye a la Tierra.

Mediante la radiación de su energía

electromagnética, aporta directa o

indirectamente toda la energía que

mantiene la vida en la Tierra, porque todo

el alimento y el combustible procede en última instancia de las plantas que utilizan la

energía de la luz del Sol.

1.1.1.3.-¿Qué es la energía solar?

Es La energía radiante producida en el Sol como resultado de

reacciones nucleares de fusión. Llega a la Tierra a través del espacio en cuantos de

energía llamados fotones, que interactúan con la atmósfera y la superficie

terrestres. La intensidad de la radiación solar en el borde exterior de la atmósfera, si

se considera que la Tierra está a su distancia promedio del Sol, se llama constante

solar, y su valor medio es 1,37 × 106 erg/s/cm2, o unas 2 cal/min/cm2. Sin

embargo, esta cantidad no es constante, ya que parece ser que varía un 0,2% en un

periodo de 30 años. La intensidad de energía real disponible en la superficie

Page 4: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 4 -

terrestre es menor que la constante solar debido a la absorción y a la dispersión de

la radiación que origina la interacción de los fotones con la atmósfera.

La intensidad de energía solar disponible en un punto determinado de

la Tierra depende, de forma complicada pero predecible, del día del año, de la hora

y de la latitud. Además, la cantidad de energía solar que puede recogerse depende

de la orientación del dispositivo receptor.

1.1.1.4.-Historia de la energía solar

Las primeras utilizaciones de la energía solar se pierden en la lejanía de

los tiempos. No obstante, por algunas tablillas de arcilla halladas en Mesopotamia, se

sabe que hacia el año 2000 antes de J.C. las sacerdotisas encendían el fuego sagrado

de los altares mediante espejos curvados de oro pulido.

En Egipto, hacia el año 1450 antes de J.C., existían unas estatuas sonoras

del faraón Amenhotep III. El sonido producido por estas estatuas era consecuencia

del aire calentado en sus enormes pedestales, que eran huecos, y que comunicaban

con el exterior por un orificio muy pequeño.

Arquímedes utilizó espejos cóncavos, con los cuales incendió las naves

romanas durante el renacimiento.

Kicher (1601-1680) encendió una pila de leña a distancia utilizando espejos por un

procedimiento similar al utilizado por Arquímedes.

Ehrenfried von Tschirnhaus (1651-1700), que era miembro de la Academia Nacional

Francesa de la Ciencia, logró fundir materiales cerámicos mediante la utilización de

una lente de 76 cm. de diámetro.

George Louis Leclerc (1707-1788) fabricó un horno solar compuesto por

Page 5: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 5 -

360 espejos con un foco común e hizo una demostración en los jardines del Palacio

de Versalles, encendiendo una pila de leña a 60 m.

El primer colector solar plano fue fabricado por el suizo Nicholas de

Saussure (1740-1799), y estaba compuesto por una cubierta de vidrio y una placa

metálica negra encerrada en una caja con su correspondiente aislamiento térmico.

Este colector solar se utilizó para cocinar alimentos que se introducían en su interior.

Antoine Lavoisier (1743-1794), célebre químico francés descubridor del

oxígeno, experimenté con lentes de 130 cm. de diámetro y fundió el platino, cuyo

punto de fusión es de 17600C.

John Herschell, hijo del célebre astrónomo británico William Herschell,

descubridor del planeta Urano, utilizó colectores solares de dos cubiertas también

para cocinar alimentos, obteniendo en 1837 un prototipo que alcanzaba los 1160C.

En 1874 se instaló en Las Salinas (Chile) un destilador solar pasivo, consistente en

4700 m2 de superficie acristalada que producían 23000 litros de agua dulce al día.

Este destilador funcionó durante 40 años hasta que fue traída el agua mediante una

tubería desde Antofagasta.

En 1875, el francés Mouchont realizó un colector cónico de 18.6 m2 de

área de abertura, destinado a la producción de vapor y que fue presentado en París.

Este colector tuvo un accidente como consecuencia de haberse quedado sin agua.

Abel Pifre utilizó en la Exposición de París del año 1878 un colector

doble parabólico para la producción de vapor, con el cual se accionaba una pequeña

imprenta. El primer colector cilíndrico-. parabólico fue ideado por el norteamericano

John Ericsson en 1883. Hacia finales del siglo antepasado existía ya un cierto interés

por la energía solar, puesto de manifiesto por las diversas revistas científicas de la

época.

Page 6: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 6 -

A principios del siglo pasado la utilización de la energía solar tuvo

especial Interés en Estados Unidos, principalmente en California, donde se hicieron

algunos trabajos y estudios en colaboración con astrónomos, construyéndose algunos

prototipos de grandes dimensiones. El abaratamiento de los combustibles, como

consecuencia de la I Guerra Mundial, dio al traste con todos estos trabajos.

Un ejemplo de los aludidos fue el colector del portugués Himilaya en San

Louis (Missisipi) del año 1904, con un factor de concentración de 2000, destinado a

fundir metales, así como un colector cónico realizado por el norteamericano Eneas,

contemporáneo del anterior.

En 1913, los también norteamericanos Shuman y Boys Instalaron,

primero en Filadelfia (USA) y luego en Egipto, colectores cilíndrico. que producían

vapor para el accionamiento mecánico de bombas hidráulicas destinadas a irrigación.

El colector de Egipto proporcionaba una potencia de 37 a 45 Kw. durante un período

de cinco horas.

En la década de los años 30 de nuestro siglo se popularizaron en Japón

equipos de circulación natural para obtener agua caliente sanitaria con una capacidad

de almacenamiento de 100-200 litros.

Después de la II Guerra Mundial este tipo de sistemas se extendió

también en Israel, pero debido al bajo precio de los combustibles convencionales, el

uso de la energía solar quedó relegado a un segundo plano.

El resurgimiento de la energía solar como una disciplina científica se

produce en 1953, cuando Farrington Daniels organiza en la Universidad de

Wisconsin un Simposio Internacional sobre la utilización de la Energía Solar,

auspiciado por la National Science Foundation de Estados Unidos. Dos años más

tarde, en Tucson (Arizona), se celebró otro simposio y se formó la Asociación para la

Aplicación de la Energía Solar.

Page 7: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 7 -

Como consecuencia de estos simposios se creó la revista “Solar Energy”,

de muy alto nivel científico, que edita la Sociedad internacional de la Energía Solar

con sede en Australia, entidad que sucedió a la asociación para la aplicación de la

energía solar.

En esta misma época (1954) se descubrió la fotopila de silicio en los

laboratorios de la bell Telephone, los cuales recibieron por ello un fuerte impulso

debido a las inminentes necesidades de fotopilas para actividades espaciales.

En la década de los años 60, el excesivo abaratamiento de los combustibles

convencionales hizo que se dedicase poca atención al tema de la energía solar, si bien

en esta época se construyó el horno solar de Font Romeu (Francia).

Fue en 1973 cuando, como consecuencia de la cuarta guerra árabe-israelí,

la OPEP decidió elevar enormemente los precios del petróleo y se produjo un fuerte

resurgimiento mundial de la energía solar, al poder ser ya competitiva con los nuevos

y altos precios del petróleo y de los productos energéticos en general.

En este contexto se prevé, pasados ya más de 15 años desde aquella fecha crucial, un

crecimiento moderado pero sostenido de las aplicaciones de la energía solar y de

otras fuentes de energía renovables en todo el mundo.

1.1.1.5.-Uso directo y natural de la energía solar

La recogida natural de energía solar se produce en la atmósfera, los

océanos y las plantas de la Tierra. Las interacciones de la energía del Sol, los

océanos y la atmósfera, por ejemplo, producen vientos, utilizados durante siglos

para hacer girar los molinos. Los sistemas modernos de energía eólica utilizan

hélices fuertes, ligeras, resistentes a la intemperie y con diseño aerodinámico que,

cuando se unen a generadores, producen electricidad para usos locales y

especializados o para alimentar la red eléctrica de una región o comunidad.

Page 8: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 8 -

Casi el 30% de la energía solar que alcanza el borde exterior de la

atmósfera se consume en el ciclo del agua, que produce la lluvia y la energía

potencial de las corrientes de montaña y de los ríos. La energía que generan estas

aguas en movimiento al pasar por las turbinas modernas se llama energía

hidroeléctrica.

Gracias al proceso de fotosíntesis, la energía solar contribuye al

crecimiento de la vida vegetal (biomasa) que, junto con la madera y los

combustibles fósiles que desde el punto de vista geológico derivan de plantas

antiguas, puede ser utilizada como combustible. Otros combustibles como el

alcohol y el metano también pueden extraerse de la biomasa.

Asimismo, los océanos representan un tipo natural de recogida de

energía solar. Como resultado de su absorción por los océanos y por las corrientes

oceánicas, se producen gradientes de temperatura. En algunos lugares, estas

variaciones verticales alcanzan 20 °C en distancias de algunos cientos de metros.

Cuando hay grandes masas a distintas temperaturas, los principios termodinámicos

predicen que se puede crear un ciclo generador de energía que extrae energía de la

masa con mayor temperatura y transferir una cantidad a la masa con temperatura

menor. La diferencia entre estas energías se manifiesta como energía mecánica

(para mover una turbina, por ejemplo), que puede conectarse a un generador, para

producir electricidad. Estos sistemas, llamados sistemas de conversión de energía

térmica oceánica, requieren enormes intercambiadores de energía y otros aparatos

en el océano para producir potencias del orden de megavatios.

Page 9: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 9 -

La recogida directa de energía solar requiere dispositivos artificiales

llamados colectores solares, diseñados para recoger energía, a veces después de

concentrar los rayos del Sol. La energía, una vez recogida, se emplea en procesos

térmicos o fotoeléctricos, o fotovoltaicos. En los procesos térmicos, la energía solar

se utiliza para calentar un gas o un líquido que luego se almacena o se distribuye.

En los procesos fotovoltaicos, la energía solar se convierte en energía eléctrica sin

ningún dispositivo mecánico intermedio. Los colectores solares pueden ser de dos

tipos principales: los de placa plana y los de concentración, de los cuales

hablaremos más tarde con mayor profundidad.

El tema del uso directo o natural de la energía solar se puede explicar de

forma resumida en el siguiente esquema:

Page 10: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 10 -

1.1.1.6.-En que beneficia la energía solar al medioambiente

y a mi economía?

La energía solar, además de ser renovable y no contaminar el Medio

Ambiente, es una energía muy abundante en España. Su utilización contribuye a

reducir el efecto invernadero producido por las emisiones de CO2 a la atmósfera, así

como el cambio climático provocado por el efecto invernadero. Además, con su

difusión y promoción todos colaboramos a que en el futuro se aproveche también el

Sol en otras escuelas y edificios.

Beneficios medioambientales

Disminución de las emisiones de CO2. Por cada 20 kWh de electricidad

producidos a partir de energía solar se dejan de emitir unos 10 Kg de CO2 al año, en

25 años se evitan 250 Kg de CO2.

Reducción de la contaminación atmosférica, del efecto invernadero

producido por las emisiones de CO2 y del cambio climático provocado por el efecto

invernadero.

Beneficios educativos

Educación de los alumnos en las tecnologías ecológicas y en la cultura de

respeto al Medio Ambiente.

Posibilidad de creación de un Club Solar en cada centro, que recoja,

estudie y elabore trabajos sobre temas relacionados con la energía solar.

Programación de actividades educativas relacionadas con la energía solar

y la ecología: Semana Solar, concursos, exposiciones con los resultados de los

trabajos, etc.

Contacto e intercambio con otros centros incluidos en la Red de Escuelas

Solares en España (y posiblemente en otros países).

Page 11: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 11 -

Beneficios Económicos

Cada kilovatio-hora (kWh) producido con energía solar fotovoltaica lo

podemos cobrar a 66 Ptas (0.40 €).

Una instalación de 5 kW de potencia puede producir al año entre 5.000 y

7.500 kWh, es decir, entre 330.000 ptas ( 1983.34 €) y 500.000 Ptas (3005.06 €)

Una instalación de 5 kW de potencia cuesta aproximadamente unos 5 ó 6

millones ptas ( 30050.61 o 36060.73 €) y puede producir entre 150.000 y 187.500

kWh en 25-30 años, es decir, de 10 a 12 millones ptas ( 60101.21 € a 72121.45 €).

El beneficio total de la instalación solar es de 150.000 a 275.000 pts al

año y entre 4,5 y 7 millones ( 27045.54 y 42070.85 €) a lo largo de los 25-30 años

de funcionamiento.

Con las ayudas de algunas entidades y administraciones públicas se

puede conseguir hasta el 50% de la inversión. Este tipo de subvenciones a fondo

perdido no han de devolverse posteriormente.

Beneficios Sociales

Las energías renovables generan más puestos de trabajo que otras

energías más contaminantes. Por cada 100 millones de pesetas invertidas en energía

solar se crean entre 4 y 6 nuevos empleos. La misma inversión en energía procedente

del petróleo sólo crearía 0,6 puestos de trabajo.

Los puestos generados por la inversión en energía solar no son

estacionarios (ligados a la construcción de una central, etc.), y se distribuyen a

pequeña escala por todo el territorio.

La utilización de energía solar en zonas rurales o aisladas, permite la

creación de pequeñas empresas, lo que potencia el desarrollo económico de comarcas

poco favorecidas.

Page 12: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 12 -

Page 13: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 13 -

1.1.2.-Energía solar térmica

1.1.2.1.-Introducción

Una energía garantizada para los próximos 6.000 millones de años

El Sol, fuente de vida y

origen de las demás formas de energía

que el hombre ha utilizado desde los

albores de la Historia, puede satisfacer

todas nuestras necesidades, si

aprendemos cómo aprovechar de forma

racional la luz que continuamente

derrama sobre el planeta. Ha brillado en el cielo desde hace unos cinco mil millones

de años, y se calcula que todavía no ha llegado ni a la mitad de su existencia.

Durante el presente año, el Sol arrojará sobre la Tierra cuatro mil veces

más energía que la que vamos a consumir. España, por su privilegiada situación y

climatología, se ve particularmente favorecida respecto al resto de los países de

Europa, ya que sobre cada metro cuadrado de su suelo inciden al año unos 1.500

kilovatios-hora de energía. Esta energía puede aprovecharse directamente, o bien ser

convertida en otras formas útiles como, por ejemplo, en electricidad.

No sería racional no intentar aprovechar, por todos los medios

técnicamente posibles, esta fuente energética gratuita, limpia e inagotable, que puede

liberarnos definitivamente de la dependencia del petróleo o de otras alternativas poco

seguras o, simplemente, contaminantes.

Es preciso, no obstante, señalar que existen algunos problemas que

debemos afrontar y superar. Aparte de las dificultades que una política energética

Page 14: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 14 -

solar avanzada conllevaría por sí misma, hay que tener en cuenta que esta energía

está sometida a continuas fluctuaciones y a variaciones más o menos bruscas. Así,

por ejemplo, la radiación solar es menor en invierno, precisamente cuando más la

necesitamos.

La energía solar es igual de gratis que las demás fuentes de energía.

Todas se encuentran allí esperando a que las tomemos, pero al cogerlas cuestan

dinero, y en especial coger la energía solar cuesta más que las demás. Acto seguido

se expecifica el porqué la energía solar es tan costosa de aprovechar, agrupando los

distintos métodos de aprovechamiento para ver comparativamente cuáles son sus

posibilidades.

Uno de los obstáculos para el aprovechamiento en general de la energía

solar es su baja intensidad. Incluso para las condiciones de tiempo despejado, ha

quedado claro que la baja intensidad (y la variabilidad) de la energía son desventajas

importantes en una potencial fuente de energía.

A mediodía, en los trópicos, la intensidad puede acercarse a 1 kW por m

2 de superficie expuesta. Incluso el mejor de los muchos dispositivos que

estudiaremos más adelante para la conversión de la energía solar en formas más

convenientes, no nos daría más de unos 150 W/ml aun en estas condiciones ideales.

La energía diaria sería tan sólo de 0,5 a 1 kWh/m'. Evidentemente, el tamaño de los

colectores por sí sólo haría antieconómico abastecer por este procedimiento otra cosa

que no fuese una demanda de energía local y pequeña.

En los países más desarrollados, la demanda total de energía ya es del

orden de 50 kWh por persona y día. Para satisfacer esa demanda en una comunidad

de tamaño medio por ejemplo 100.000 personas, mediante el método de mayor

rendimiento con el que pudiésemos contar en la actualidad, se necesitarían unos

colectores con una superficie total mayor de 5 km'. Esta superficie es del mismo

orden que el área de terreno sobre la que se construye la ciudad, incluso para las

intensidades medias de una ciudad antigua. Si se utilizase una zona alrededor del

Page 15: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 15 -

perímetro de esta ciudad, tendría que ser de una anchura de varios cientos de metros.

Donde el clima es menos favorable, hay muchos países del mundo donde el consumo

de energía excede a la energía solar que incide sobre todo su territorio, habitado o no.

Se han hecho proyectos para situar colectores solares en autopistas y vías

de ferrocarril y, en todos aquellos lugares donde no obstaculicen la incidencia de la

luz en las apreciadas tierras de labor. Se puede demostrar que con esos sistemas se

podría conseguir una parte importante del suministro de energía en zonas

desarrolladas. No obstante, aunque no se puede decir que no llegará el día en que se

lleven a la práctica esos proyectos, podemos afirmar sin riesgo a equivocarnos que

durante bastante tiempo las comunidades de estas zonas seguirán obteniendo su

energía por otros procedimientos.

Sin embargo, para las demandas más modestas de una comunidad en

desarrollo o rural, la perspectiva puede ser muy diferente. En este Caso, el

aprovechamiento de la energía, en unas cantidades muy inferiores a la energía

incidente sobre la región, produciría unos cambios espectaculares para el futuro de la

zona. Además, los dispositivos solares serían competitivos con otras fuentes de

energía. La prueba la tenemos en el éxito de las instalaciones de agua caliente solar.

La demanda de agua caliente, incluso en los países desarrollados, puede satisfacerse

por medio de dispositivos cuya área de colectores sea menor que la superficie de

cubierta de los edificios normales de viviendas. Los millones de estos aparatos hoy

en uso son una prueba de su competitividad en estas aplicaciones.

Hay cantidad de pequeñas labores, en la actualidad realizadas a mano o

utilizando trabajo animal o que no se realizan en absoluto, cuya demanda energética

estaría dentro de las posibilidades de los sistemas solares con superficies de colector

desde unos cuantos metros cuadrados hasta unos cuantos cientos de metros. Al igual

que con otras innovaciones, la introducción de estos aparatos es en gran medida una

cuestión económica, materia especialmente difícil. Mientras tanto, sin embargo,

estudiaremos de nuevo otra causa de dificultades, que existe incluso cuando la

intensidad solar es la máxima posible. Es la variación de la intensidad según la hora

Page 16: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 16 -

y la estación, y la gran proporción de tiempo al día en que no podemos contar con la

energía solar.

Siempre que se diseñe un sistema de calefacción o de refrigeración de

edificios, producción de energía eléctrica para uso continuo y cualquier otra

utilización en la que la variación de la demanda no coincida con la variación de

suministro, hay que habilitar un sistema de almacenamiento de la energía. Para un

cielo continuamente despejado, que se da durante gran parte del año en algunas

zonas desérticas, puede ser necesario habilitar un almacenamiento equivalente

únicamente al suministro de un día, ya que al día siguiente el suministro se volverá a

restablecer. Este pequeño almacenamiento puede seguir siendo suficiente cuando se

prevea la utilización de una fuente auxiliar, para aquellas ocasiones en que el

surninistro no pueda satisfacer la demanda.

La mayoría de sistemas de calefacción para viviendas que funcionan con

energía solar suelen llevar un sistema auxiliar, ya que sería antieconómico diseñar un

sistema de calefacción solar de forma que pudiese satisfacer la demanda en el día

más nublado y frío del año, ya que para el resto del tiempo resultaría una instalación

sobredimensionada. Evidentemente hay una relación en este caso, entre la

variabilidad de la radiación solar, la variabilidad de la demanda de calefacción, la

capacidad del sistema auxiliar y la capacidad de almacenamiento que hay que

habilitar. El equilibrio que hay que establecer entre estos factores depende

fundamentalmente de razones económicas. No podemos entrar aquí en demasiadas

profundidades; depende de factores tales como el coste del combustible, materiales,

maquinaria y mano de obra, y de la variación de la temperatura del aire exterior.

De alguno de estos factores, como el soleamiento, no se puede hacer

una predicción exacta para un emplazamiento dado, sino que se debe hacer un acopio

de datos estadísticos durante un período largo de tiempo, para ese emplazamiento

concreto. Se verá, sin embargo, que en la relación entre estas magnitudes no se

incluyen tanto los valores de asoleo máximos o mínimos que se hayan registrado,

sino el tiempo que duran esos períodos de máximo o mínimo.

Page 17: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 17 -

Contando con este tipo de datos, el ingeniero puede empezar a equilibrar

las distintas partes del sistema: el convertidor de energía, la maquinaria auxiliar (si

hace falta) y el sistema de almacenamiento.

Es de vital importancia proseguir con el desarrollo de la incipiente tecnología

de captación, acumulación y distribución de la energía solar, para conseguir las

condiciones que la hagan definitivamente competitiva, a escala planetaria.

1.1.2.2.-¿Qué se puede hacer con la energía solar?

Básicamente, recogiendo de forma adecuada la radiación solar, podemos

obtener calor y electricidad.

El calor se logra mediante los colectores térmicos, y la electricidad, a

través de los llamados módulos fotovoltaicos. Ambos procesos nada tienen que ver

entre sí, ni en cuanto a su tecnología ni en su aplicación.

Hablemos primero de los sistemas de

aprovechamiento térmico a grandes rasgos, ya que

más adelante se explicaran estos mismos con más

detalle. El calor recogido en los colectores puede

destinarse a satisfacer numerosas necesidades. Por

ejemplo, se puede obtener agua caliente para

consumo doméstico o industrial, o bien para dar

calefacción a nuestros hogares, hoteles, colegios,

fábricas, etc. Incluso podemos climatizar las piscinas

y permitir el baño durante gran parte del año.

También, y aunque pueda parecer extraño, otra de las más prometedoras

aplicaciones del calor solar será la refrigeración durante las épocas cálidas

Page 18: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 18 -

.precisamente cuando más soleamiento hay. En efecto, para obtener frío hace falta

disponer de un «foco cálido», el cual puede perfectamente tener su origen en unos

colectores solares instalados en el tejado o azotea. En los países árabes ya funcionan

acondicionadores de aire que utilizan eficazmente la energía solar.

Las aplicaciones agrícolas son muy amplias. Con invernaderos solares

pueden obtenerse mayores y más tempranas cosechas; los secaderos agrícolas

consumen mucha menos energía si se combinan con un sistema solar, y, por citar

otro ejemplo, pueden funcionar plantas de purificación o desalinización de aguas sin

consumir ningún tipo de combustible.

Las «células

solares», dispuestas en paneles

solares, ya producían

electricidad en los primeros

satélites espaciales.

Actualmente se perfilan como

la solución definitiva al

problema de la electrificación

rural, con clara ventaja sobre

otras alternativas, pues, al carecer los paneles de partes móviles, resultan totalmente

inalterables al paso del tiempo, no contaminan ni producen ningún ruido en absoluto,

no consumen combustible y no necesitan mantenimiento. Además, y aunque con

menos rendimiento, funcionan también en días nublados, puesto que captan la luz

que se filtra a través de las nubes.

La electricidad que así se obtiene puede usarse de manera directa (por

ejemplo para sacar agua de un pozo o para regar, mediante un motor eléctrico), o

bien ser almacenada en acumuladores para usarse en las horas nocturnas. Incluso es

posible inyectar la electricidad sobrante a la red general, obteniendo un importante

beneficio.

Page 19: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 19 -

Si se consigue que el precio de las células solares siga disminuyendo,

iniciándose su fabricación a gran escala, es muy probable que, para primeros de

siglo, una buena parte de la electricidad consumida en los países ricos en sol tenga su

origen en la conversión fotovoltáica.

La energía solar puede ser perfectamente complementada con otras

energías convencionales, para evitar la necesidad de grandes y costosos sistemas de

acumulación. Así, una casa bien aislada puede disponer de agua caliente y

calefacción solares, con el apoyo de un sistema convencional a gas o eléctrico que

únicamente funcionaría en los periodos sin sol. El coste de la «factura de la luz» sería

sólo una fracción del que alcanzaría sin la existencia de la instalación solar.

1.1.2.3.- Sistemas de captación. Tipos de paneles solares

La energía solar presenta dos características que la diferencian de las

fuentes energéticas convencionales:

Dispersión: su densidad apenas alcanza 1 kW/m2, muy por debajo de

otras densidades energéticas, lo que hace necesarias grandes superficies de captación

o sistemas de concentración de los rayos solares.

Intermitencia: hace necesario el uso de sistemas de almacenamiento de

la energía captada. Ello lleva a un replanteamiento en el aprovechamiento de la

energía, totalmente distinto al clásico, lo que requiere un gran esfuerzo de desarrollo.

Así pues, el primer paso para el aprovechamiento de la energía solar es su captación,

aspecto dentro del que se pueden distinguir dos tipos de sistemas:

Pasivos: no necesitan ningún dispositivo para captar la energía solar,

cuyo aprovechamiento se logra aplicando distintos elementos arquitectónicos

Page 20: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 20 -

Activos: captan la radiación solar por medio de un elemento de

determinadas características, llamado "colector"; según sea éste se puede llevar a

cabo una conversión térmica (a baja, media o alta temperatura), aprovechando el

calor contenido en la radiación solar, o bien una conversión eléctrica, aprovechando

la energía luminosa de la radiación solar para generar directamente energía eléctrica

por medio del llamado "efecto fotovoltáico"

El colector es una superficie, que expuesta a la radiación solar, permite

absorber su calor y transmitirlo a un fluido. Existen tres técnicas diferentes entre sí

en función de la temperatura que puede alcanzar la superficie captadora. De esta

manera, los podemos clasificar como:

Page 21: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 21 -

Baja temperatura: captación directa, la temperatura

del fluido es por debajo del punto de ebullición.

Media temperatura: captación de bajo índice de

concentración, la temperatura del fluido es más elevada de

100ºC.

Alta temperatura: captación de alto índice de

concentración, la temperatura del fluido es más elevada de

300ºC

Page 22: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 22 -

1.1.2.3.1.-Sistema de captación de BAJA Temperatura:

Generalmente el aprovechamiento térmico a baja temperatura se realiza a

través de colectores planos, cuya característica común es que no tienen poder de

concentración, es decir, la relación entre la superficie externa del colector y la

superficie captadora, la interior, es prácticamente la unidad.

a)Colectores planos

El principio fundamental de funcionamiento de un colector solar se basa

en el aprovechamiento de la propiedad que posee una superficie revestida de negro o

de una sustancia de material selectivo, que absorbe la radiación solar en un 90% y la

emite en menos de un 10 por ciento.

En particular, el colector

solar plano está formado por una

superficie metálica plana que lleva

adherida a ella una serie de tuberías de

cobre, estando todo el conjunto

revestido de pintura negra absorbente

selectiva. Por las tuberías circula el

agua a ser calentada por la radiación

solar. Para evitar las pérdidas de calor

por convección (pérdidas térmicas) se

coloca una o dos cubiertas de vidrio

entre la superficie de absorción y el

medio ambiente; que además de

reducir las pérdidas de calor, protegen

al conjunto de las condiciones

Page 23: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 23 -

atmosféricas. Para evitar la pérdida de calor por conducción, el conjunto

lleva en su parte posterior una capa de material aislante térmico que puede ser:

poliuretano expandido, lana de vidrio, fiberglass, etcétera.

El rendimiento de un colector solar, en general, se deduce comparando la

cantidad de calor que se obtiene del agua y la cantidad de calor que recibe el colector

de la radiación solar, o sea:

Si Qr es la cantidad de calor recibida de la radiación solar, y Qu es la

cantidad de calor que se obtiene del agua, el rendimiento será:

Desarrollando las expresiones de Qr y Qu en función de las temperaturas

del agua, de la temperatura ambiente, de la radiación recibida, y de los elementos que

provocan las pérdidas ópticas: transmitancia de la superficie donde incide el rayo

solar, absortancia efectiva de la tubería por donde circula el líquido, reflectancia

especular, fracción de radiación interceptada por el receptor; y las pérdidas térmicas:

coeficiente de transmisión del calor, masa del líquido, temperaturas inicial y final del

líquido y temperatura ambiente; se llega a una expresión del rendimiento siguiente:

Page 24: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 24 -

Siendo A y B funciones de los elementos arriba citados, Id: la radiación

solar directa, Tfp la temperatura promedio del líquido y Ta la temperatura ambiente.

La expresión anterior representada en coordenadas cartesianas es una

recta, donde la ordenada en el origen nos da el rendimiento considerando solamente

el valor de las pérdidas ópticas, mientras que la inclinación (la tangente del ángulo,

nos da las pérdidas térmicas).

Page 25: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 25 -

Según se puede apreciar en el dibujo, el rendimiento cae bruscamente a

medida que aumenta la temperatura, debido naturalmente a las pérdidas térmicas.

Para disminuir estas pérdidas, lo que significa hacer que la recta tenga menos

inclinación, se recurre a la solución de poner 2 o 3 cubiertas de vidrio en lugar de una

sola. Pero con esta solución aparece otro inconveniente, ya que si bien disminuyen

las pérdidas térmicas, aumentan las pérdidas ópticas, ya que todo rayo solar incidente

sobre un vidrio pierde parte de intensidad por absorción y refracción en el mismo,

pérdidas éstas que se acrecientan al haber más capas de vidrio. Hay entonces una

limitación en el número óptimo de cubiertas de vidrio, que depende

fundamentalmente del tipo de vidrio, de su espesor, de la temperatura del fluido a

calentar; por el cual el número de vidrios conviene que no pase de dos.

Otra forma de reducir las pérdidas térmicas y obtener simultáneamente

una reducción de las pérdidas ópticas, es colocar entre las dos placas de vidrio,

placas verticales de vidrio o plástico, constituyendo así el conjunto una placa tipo

nido de abeja. De esta forma se reducen las pérdidas térmicas por convección, y en

cuanto a las reflexiones y refracciones producidas en las placas horizontales son

atrapadas por las verticales, recuperándose así parte de las pérdidas ópticas.

Otra forma de mejorar el rendimiento es emplear pinturas especiales

selectivas, electroplateado de las superficies con cromo negro o níquel negro, este

último desarrollado por un prestigioso físico israelí, el doctor Tabor. La característica

de estos dos elementos es la siguiente:

- Cromo negro: sobre una superficie de óxido de cobre o nitrato de cobre

se hace el cromado sobre una capa previa de niquelado. Las características son:

selectividad = 0.95, emisividad = 0.10 a 0,15

- Níquel negro: sobre una superficie de acero con contenido de níquel y

azufre se hace el niquelado. Posee mejores características de selectividad (0.96) y

emisividad (0.07), y es ideal para su uso en climas secos, habiendo aún dudas sobre

su resistencia a la humedad.

Page 26: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 26 -

Existen otro tipo de colectores planos que no responden a esta

descripción:

b)Colectores para piscinas.

Son colectores sin cubierta, sin aislante y sin caja, solamente están

compuestos por la placa absorbente, que por lo general es de un material plástico.

Aumenta la temperatura del agua entre 2 – 5ºC, y solo funciona en épocas veraniegas

ya que tiene grandes pérdidas, por eso se usa para calentar el agua de las piscinas.

c)Colectores de vacío

La idea de hacer el vacío entre la cubierta de vidrio y la placa receptora

resultó muy atractiva por cuanto ello reduce las pérdidas por convección a cero, y si

a ello le agregamos una superficie de absorción selectiva, también se pueden reducir

casi a cero las pérdidas por radiación, con lo cual se consigue un colector ideal.

Sin embargo, el conseguir un vacío entre las placas de un colector plano

es muy difícil técnicamente, por cuanto hay que tener un soporte rígido del espacio

entre las placas (para ello el panel de abeja es ideal) y un sellado hermético a veces

imposible de practicar.

Habiéndose conseguido y estando disponible la tecnología para la

fabricación de tubos para iluminación fluorescente, se han desarrollado dos tipos de

colectores el vacío tubulares, producidos por Corning y Owens-Illinois, que pueden

apreciarse en el dibujo siguiente:

Page 27: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 27 -

El desarrollado por Corning usa un tubo de vidrio de gran diámetro que

rodea a una superficie plana selectiva. En cambio, el de Owens-Illinois emplea

también un tubo de vidrio grande pero en lugar de una superficie plana selectiva, usa

un tubo concéntrico de menor diámetro que lleva a su alrededor la superficie

selectiva.

Según puede apreciarse en la figura, se observa una mejora importante en

las curvas de rendimiento si se las compara con las del colector plano, sobre todo en

Page 28: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 28 -

la visible disminución de las pérdidas térmicas, pudiéndose así lograr altas

temperaturas (cercanas a los 100º C) con un rendimiento importante.

El inconveniente de este tipo de colectores es su costo elevado y su

mantenimiento difícil, por lo cual no tienen mucha aceptación en el mercado.

También la firma General Electric desarrolló un colector similar y de rendimiento

importante, muy parecido en sus características al de Owens-Illinois.

Page 29: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 29 -

1.1.2.3.2.-MEDIA y ALTA temperatura

Para la obtención de elevadas temperaturas es necesario recurrir a

colectores especiales, ya que con los planos es imposible, estos colectores son los

colectores de concentración, cuya filosofía no es más que aumentar la radiación por

unidad de superficie. Hay varias formas y sistemas, pero la parte común a todos es

que necesitan orientación.

a)Colectores de concentración

El principio de los colectores concentradores es el de concentrar

mediante procedimientos ópticos la energía que irradia el sol antes de su

transformación en calor. Así, una radiación solar que entra a un colector

concentrador a través de una superficie determinada es reflejada, refractada o

absorbida por una superficie menor, para luego ser transformada en energía térmica.

Esto no ocurre en el colector plano donde la transformación de la energía solar en

energía térmica se efectúa en la misma superficie que recibe la radiación.

La ventaja importante de este tipo de colector es ante todo la reducción

de las pérdidas térmicas en el receptor, pues al ser éste de menor superficie habrá

menos área para la radiación del calor y por lo tanto el líquido que circula por el

receptor puede calentarse a mayores temperaturas con un rendimiento razonable y a

un costo menor. Claro está que las reflexiones y refracciones extras de la radiación

solar hacen aumentar las pérdidas ópticas y entonces las curvas representativas del

rendimiento, parten de ordenadas en el origen menores que las de un colector plano,

pero no tienen la pendiente pronunciada, característica de estos últimos.

Históricamente, la idea de concentrar la radiación solar para obtener más

energía, fue anterior a la de los colectores planos. Así, por ejemplo, los caldeos, que

se distinguieron por la astronomía, crearon sus lentes fundiendo cuarzo mediante la

concentración de rayos solares. En 1695 en Florencia fue fundido un diamante

Page 30: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 30 -

empleando energía solar concentrada y el famoso químico francés Lavoisier, ya en el

siglo XVIII, hacía sus experiencias químicas a alta temperatura mediante el empleo

de lentes concentradores.

Se define como coeficiente de concentración a la relación:

Los colectores concentradores, de acuerdo con el valor de C, se dividen

en dos tipos:

- de alta concentración

(C > 10)

Son los que, mediante dispositivos especiales y precisos de enfoque y

seguimiento del sol, logran en el receptor una alta densidad de energía;

- de media y baja concentración

(2 < C < 10)

Son los que no requieren dispositivos especiales de enfoque y tampoco

un seguimiento permanente del sol, sino la modificación de su posición algunas

veces por año, que dependerá del valor de C. Así, por ejemplo, para

Page 31: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 31 -

C = 2 a 3; 4 veces por año.

C = 3 a 6; 8 veces por año.

C = 10; 80 veces por año.

Los colectores

concentradores pueden ser

de varios tipos:

I.Parabólicos (por

reflexión) :

El colector

está formado por una

superficie reflectora

(espejo, aluminio

anodizado, etc.) de forma

parabólica, que recibe los

rayos solares y que

merced a la propiedad de

la parábola que dice que

cuando los rayos son

paralelos al eje de la

misma se concentran en el

foco de ella, dichos rayos

inciden en un elemento receptor ubicado en el foco, que contiene el fluido a calentar.

II. Parabólicos (por refracción):

El colector está formado por una lente que recibe los rayos solares

paralelos y los refracta concentrándolos en un punto, donde se encuentra el elemento

receptor que contiene el fluido a calentar.

Page 32: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 32 -

III. Parabólico compuesto (C.P.C.):

El colector está formado por dos parábolas dispuestas de tal manera que

ambos ejes forman con la vertical el mismo ángulo f. Se demuestra que existe una

vinculación entre la concentración C del colector y dicho ángulo, mediante la

expresión:

Page 33: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 33 -

Todos los rayos solares que inciden con un ángulo respecto de la vertical

y que se encuentran dentro de dicho valor de f tienen la particularidad de llegar por

una o dos reflexiones al receptor ubicado en la parte inferior. Este receptor puede ser

plano horizontal, plano vertical, cilíndrico, etc.

Este ángulo f recibe el nombre

"medio ángulo de aceptancia".

Aquí se ve en corte y ennvista un

C.P.C. fabricado en Israel, donde se puede

apreciar la superficie reflectora interior de

aluminio anodizado, que en la parte inferior

Page 34: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 34 -

tiene la forma de trapecio (también puede tener la forma de una W).

En la parte superior hay un vidrio que permite el paso de la radiación

solar, que en forma directa o luego de una o dos reflexiones incide en una tubería

metálica con revestimiento selectivo por donde circula el fluido a calentar.

Rodea a esta tubería una manga de plástico especial que hace disminuir

las pérdidas térmicas por convección en el espacio entre la tubería y el vidrio.

Todo el conjunto está cerrado por una cubierta de chapa de hierro

galvanizada y entre ésta y el aluminio reflectivo hay un aislante que puede ser

poliuretano expandido, lana de vidrio, etcétera.

A continuación se indica la curva obtenida haciendo el ensayo respectivo

de rendimiento y su comparación con los colectores solares planos.

Page 35: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 35 -

IV. Parabólico con receptor de foco lineal:

Colector Parabólico Receptor de Foco Lineal

Se trata de un colector formado

por un segmento de parábola cilíndrico que

tiene su foco constituido por una tubería

cilíndrica de metal por la cual circula el

líquido a calentar o evaporar. Rodea a esta

Page 36: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 36 -

tubería metálica otra de vidrio, y entre ambas se ha efectuado el vacío, para disminuir

las pérdidas térmicas por convección.

Este colector requiere un seguimiento permanente del sol por cuanto los

rayos de la radiación solar deben ser permanentemente paralelos al eje de la

parábola.

Este tipo de colector fabricado en el país por una prestigiosa firma, ha

sido instalado en instalaciones muy grandes en los Estados Unidos de América, para

la producción de energía eléctrica y se halla conectado con las redes de la Compañía

de Electricidad de la región donde se colocó.

Sistema de Receptor Central con Foco Lineal

V. Segmentos parabólicos con receptor de foco lineal:

En los dibujos indicados se presentan dos sistemas que reciben la energía

solar y la reflejan a un receptor central del tipo lineal. En el primer caso se trata de

una serie de colectores parabólicos individuales enfocados a un receptor común.

En el segundo caso, que ustedes apreciarán directamente en el Kibutz Nir

Eliahu, se trata de segmentos de espejos parabólicos accionados simultáneamente, de

modo que en todo momendo los rayos reflejados inciden en un receptor formado por

una tubería metálica con revestimiento selectivo y rodeada de una tubería de vidrio.

Page 37: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 37 -

VI. Plato parabólico con receptor de foco puntual:

Se trata de uno de los pocos

tipos de colectores concentradores

tridimensionales y por lo tanto deben

tener seguimiento solar en las dos

direcciones. El receptor está en el foco

del plato parabólico y es equivalente a

un punto. A él a veces se conecta un

motor Stirling.

b)Otros tipos de capatadores

Heliostatos:

Heliostato (vista frontal y

trasera)

Se define así a un

espejo plano o ligeramente

parabólico de gran superficie

(40/50 m2), a veces también

formado por varios espejos,

colocados sobre una estructura

metálica definida que le

permite un movimiento

universal, para posibilitar así

el seguimiento solar en ambas

direcciones: N-S y E-O.

Page 38: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 38 -

Los heliostatos se emplean para formar sistemas, en cantidades grandes

(30, 40, etc.), formando un campo que tiene la forma de gradas de un anfiteatro, y la

radiación solar recibida en cada uno de ellos es reflejada a una torre central

receptora, donde la energía solar recibida se la transforma en energía térmica para

diversos usos.

Varios proyectos de este tipo se están llevando a cabo en el mundo y en

Israel. En California se están instalando 1.800 heliostatos que permitirán obtener una

potencia eléctrica de 10 MW. El proyecto se lleva a cabo en una superficie de 30

hectáreas. Algo similar se realiza también en España y Alemania. En Israel, el

Instituto Científico Weizman de Rehovot está por completar una instalación de 2,500

m2 de heliostatos (56 de 7.5 x 6 m cada uno) que permitirán generar una potencia

eléctrica de 3 MW. El profesor Dostrovsky que se ocupa de este proyecto asegura

que si los resultados de esta primera instalación resultaren satisfactorios, se harán de

inmediato otras 14 instalaciones en distintas partes del país. En el receptor se piensa

obtener temperaturas del orden de los 600°C que permitirán su aplicación a energía

eléctrica y química. Ustedes podrán apreciar personalmente esta instalación durante

la visita programada al lugar.

Piletas solares:

Bajo condiciones no controladas, el calor solar que se deposita en la masa

de agua de una pileta, se disipa a la atmósfera a medida que las capas más calientes,

y por ello menos densas, suben a la superficie debido a las corrientes de convección.

Si en cambio se modifica la composición salina del agua de la pileta,

haciendo que se componga de varias capas de distinta salinidad: solución diluida de

densidad 1.05 en la superficie y solución saturada de 1.3 en el fondo, o sea de varias

capas de densidad variable y creciente desde la superficie al fondo, se impide la

aparición de corrientes de convección desde el fondo a la superficie al calentarse el

agua por efecto de la radiación solar. En consecuencia, la radiación solar que penetra

hasta el fondo logra calentar la capa inferior hasta 90°C, mientras que la capa

Page 39: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 39 -

superior no pasa de 30°C. No habiendo convección y siendo el agua mala conductora

del calor, se acumula en las capas inferiores energía térmica en forma de agua

caliente, que puede extraerse directamente mediante tuberías, o poniendo un

intercambiador de calor adecuado.

Este es el fundamento de una pileta solar, que son piletas artificiales de

superficie variable y de una profundidad que varía de 1 a 3 metros. El fondo de la

pileta está pintado de negro.

Las ventajas del empleo de la pileta solar somo colector son:

1. Bajo costo inicial.

2. Empleo de materiales no degradables con el medio ambiente.

3. Sistema propio de acumulación de calor, que puede aprovecharse

cuando no hay sol.

Sus inconvenientes son:

1. Necesidad de grandes extensiones de terreno, para disminuir los

efectos laterales.

2. Rendimiento térmico muy bajo (del orden del 10%).

3. Con el tiempo se produce difusión de las sales que obliga a separar el

exceso que aparece en las capas superiores.

4. Acumulación de desperdicios en la parte superior.

5. Eventual formación de olas que alteran el gradiente de salinidad. Ello

obliga a colocar redes rompeolas.

Page 40: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 40 -

6. Requiere un mantenimiento más riguroso.

7. Se deben hacer en terrenos planos, en zonas cercanas al mar, en suelos

de bajo contenido biológico y sin napas freáticas altas.

Sistema de Receptor Central con Foco Puntual

Page 41: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 41 -

Se puede ver su aplicación en Israel, en la zona de Ein Bokek (vecina al

Mar Muerto), donde hay una instalación de 150 KW equipada con una turbina

especial acoplada a un generador que produce la energía eléctrica. En ese mismo

lugar se dio comienzo a una instalación de 5 MW que proveerá de energía eléctrica a

toda la zona de hoteles del lugar. La ventaja de la ubicación de estas piletas solares es

la cercanía al Mar Muerto que como se sabe su agua posee una concentración salina

muy alta.

1.1.2.3.3.-Aspectos particulares para una correcta elección de un

panel solar plano

Con los catálogos pocas cosas podemos hacer, aunque podemos saber de

qué está hecho el circuito hidráulico, la disposición de las conexiones y tal vez el

material de la caja y cubierta. Este es el momento de dirigirnos al fabricante,

distribuidor o aprovechar una exposición, feria, etc. para poder ver y tocar el panel

solar.

Los catálogos pueden ser engañosos, pues distorsionan la realidad en un

sentido u otro. Si no se tiene experiencia o no se conocen de antemano, es muy

conveniente examinar los paneles personalmente y hacer las preguntas que creamos

conveniente a la persona que nos lo señale.

Page 42: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 42 -

a)DISEÑO, TAMAÑO Y PESO DE UN PANEL SOLAR PLANO

Generalmente, todos los paneles solares pianos consisten en un

paralepípedo, caracterizado por las tres dimensiones: largo, ancho y grueso. La

disposición más general es la vertical, es decir, el lado menor se coloca horizontal,

recorriendo el circuito hidráulico la placa colectora de abajo a arriba. Esta

disposición vertical suele ser más eficiente para conseguir temperaturas más elevadas

y es más barata de fabricar, en la mayoría de los casos, por lo que es el más general.

Existen paneles que se colocan al revés, es decir con el lado mayor horizontal

(apaisados). Esta disposición horizontal se presta más a paneles sin excesivos

requerimientos de altas temperaturas, pero suele ser más cara y la distribución del

fluido en su interior no suele ser tan eficiente.

Existen también paneles solares cuadrados, que tienen características

intermedias, pero que en general son más pequeños en superficie que los

rectangulares. Hay finalmente paneles especiales con la cubierta curvada, con

espejos en el interior, etc,

El tamaño de los paneles es un dato Importante. Las dimensiones

estandarizadas son de 2 x 1 m de largo x ancho, lo que permite disponer de

aproximadamente 1 .8 a 1.9 m2 de superficie útil por panel solar. Paneles de mayor

tamaño son difíciles de transportar, mientras que si son más pequeños el efecto de las

superficies inútiles del marco, las conexiones entre ellas, etc. aumentan

considerablemente, especialmente en instalaciones de un cierto tamaño.

El peso es otro factor a tener muy en cuenta. El peso ideal es de unos 30

Kg/m2 de panel, que asegura una cierta rigidez, al tiempo que el peso total de los

paneles es aceptable.

Page 43: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 43 -

b)ACABADO

Nos fijaremos ahora en el aspecto exterior del panel. Este debe tener un

aspecto agradable a la vista; debemos comprobar que el marco exterior es uniforme

en toda su longitud, que la placa colectora no presenta raspaduras desconchaduras o

abolladuras, que los elementos de cierre son uniformes a todo lo largo del panel, que

los orificios para las conexiones estén limpios y perfectamente sellados y, en general,

que no se aprecie ninguna “chapuza”.

c)CUBIERTA

La cubierta puede ser de vidrio o plástico. En general, son preferibles las

cubiertas de vidrio. En los paneles de 2 x 1 m, suelen haber dos vidrios, uno que

cubre la parte inferior y otro para la superior. En paneles más pequeños puede haber

un solo vidrio. Un panel de 2 x 1 m. o mayor con tan solo vidrio es desaconsejable,

pues este vidrio, aunque suele ser de mayor espesor, está más expuesto a romperme

por dilataciones, pedrisco, vientos huracanados, etc.

El vidrio puede ser del tipo solar o normal (transparente). El de tipo solar

es pulido en su cara interior y ligeramente rugoso en la exterior. Esto se hace para

aumentar el cono de abertura útil (que es en este caso, mayor de 1200C). Este tipo de

vidrio está comercializado en España y cada vez tiene más aceptación.

El colector puede tener dos cubiertas; en este caso el colector es especial

para obtener altas temperaturas.

Si la cubierta es de plástico deberemos ir con más cuidado. Los plásticos

más utilizados son el policarbonato y el Tedlar. Si utiliza policarbonato, lo

reconoceremos por su enorme transparencia, pero deberemos averiguar si ha sido

tratado para resistir a la radiación ultravioleta. Las láminas de policarbonato, tienen

un espesor similar a las de vidrio, pero en general los plásticos se comportan peor

que el vidrio en relación con el “efecto invernadero”

Page 44: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 44 -

Si la cubierta es de Tedlar, lo reconoceremos por el hecho de ser

ligeramente mate y por su falta de rigidez. El Tedlar es una película de 0.1 mm. de

espesor de fluoruro de polivinilo. El Tedlar es el plástico que mejor comportamiento

tiene: tiene una transmitancia tanto para la radiación solar como para la infrarroja

lejana bastante aceptable (aunque el vidrio es mejor), es inmune a la radiación

ultravioleta, resiste altas temperaturas y a pesar de su pequeño espesor, es altamente

resistente a impactos, golpes, etc, hasta el extremo que un hombre puede andar sobre

la cubierta de Tediar de un colector sin dañarla (cosa impensable en cubierta de

vidrio o policarbonato). A pesar de ello, el Tediar se usa poco debido a su elevado

precio y a las dificultades que entraña la fijación del mismo en el panel (cosa que no

ocurre con una lámina rígida).

d)MATERIAL Y FORMA DEL CIRCUITO HIDRAULICO

El material y la forma del circuito hidráulico son importantes por dos

motivos: el material del circuito hidráulico (aluminio, cobre, acero, acero inoxidable)

nos determinará el material de las tuberías y del depósito acumulador en el caso de

líquidos, ya que debido a los problemas de corrosión no es conveniente utilizar

materiales muy distintos entre sí, como, por ejemplo, cobre y acero galvanizado.

Por su parte, la forma del circuito hidráulico y su diseño (serie, paralelo,

tubos, canalículos) determina la presión máxima de utilización. Los circuitos en serie

de tubos son los más resistentes, siguiéndole luego los circuitos en paralelo, también

de tubos. Los circuitos más sensibles a sobrepresiones son los formados por

canalículos hechos en la propia placa, ya sea por soldadura de dos placas estampadas

entre sí o por una placa Roll-Bond. (En los catálogos suele venir indicada la presión

máxima de servicio).

En general, son preferibles los circuitos en paralelo, así como los

formados por tubos Independientes de la placa colectora (que son más seguros),

aunque la transmisión de calor sea en estos casos un poco peor.

Page 45: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 45 -

e)SUPERFICIE SELECTIVA

La superficie selectiva requerirá seguidamente nuestra atención.

Debemos comprobar que el pigmento negro sea totalmente uniforme en toda la

superficie de la placa colectora, sin la presencia de zonas más brillantes o más mates.

Asimismo, deberemos comprobar que no existe ningún agrietamiento, irregularidad,

etc. en la misma. Según el sistema de tratamiento elegido y los materiales (pintura,

electrodeposición, tratamiento químico, los componentes del pigmento selectivo

pueden reaccionar con el metal base o con la humedad del aire, degradándose, o bien

despegándose del mismo y saltando. Este punto es sumamente delicado y no estará

de más preguntar acerca de las garantías que tiene el recubrimiento, tanto si es

selectivo como si no. Finalmente, recordemos que la selectividad, especialmente si es

muy elevada, puede perder características rápidamente con el paso del tiempo y

disminuir a valores inferiores de los previstos.

f)AISLANTE TÉRMICO

A continuación de la placa colectora nos encontramos con el aislante

térmico. Aquí debemos comprobar la presencia del reflector, una hoja de aluminio

brillante, pegada encima del aislante en la parte que mira a la placa colectora. El

reflector, como su nombre indica, es un espejo térmico que refleja otra vez hacia la

placa la radiación que ésta emite por debajo, por lo que su presencia aumenta el

rendimiento energético de un panel solar respecto a otro idéntico sin ella.

El aislante debe tener un grosor apropiado (nunca inferior a 3 cm y

preferentemente 5 cm y más). Cuanto mayor es el espesor de aislante, tanto mejor,

pues las pérdidas del panel serán reducidas. Un dato muy importante y que se suele

pasar por alto es comprobar que el aislante continua por los cuatro laterales del panel

solar. A veces, por razones estéticas y para aproximar más la superficie total a la de

abertura (es decir, hacer el marco más estrecho), los fabricantes no ponen aislante en

esta zona; esto es especialmente grave en el lateral superior, donde debido a la

Page 46: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 46 -

convección interna, el material estará muy caliente, con pérdidas elevadas. Una

simple inspección a través de la cubierta transparente nos evidenciará si existe

aislante (que generalmente estará tapado por una chapa metálica por razones

estéticas) o si es imposible que éste exista debido al escaso espesor del marco.

El tipo de aislante es muy importante, ya que los aislantes son materiales

fibrosos que tienen tendencia a absorber humedad. La humedad puede infiltrarse en

un panel a partir del aire atmosférico o por entrada directa de agua, por ejemplo, de

lluvia. Los aislantes húmedos pierden sus propiedades aislantes y se vuelven buenos

conductores del calor. Por esta razón deberemos asegurarnos que el aislante elegido

por el fabricante no tenga estos problemas.

g)MARCO EXTERIOR Y/O CAJA

Todo lo anteriormente descrito se introduce en una caja, la cual puede ser

de una sola pieza o bien compuesta de un marco y de una placa de fondo

Independiente (que generalmente es una plancha e acero galvanizado) Ya hemos

dicho que es conveniente que el marco tenga algunos centímetros de grosor, con

objeto de tener aislante térmico en su interior.

La caja puede ser metálica o de algún material como poliéster reforzado

con fibra de vidrio (material, este último, con que se fabrican embarcaciones). Si la

caja es metálica, es preferible que conste de un marco y de una placa de fondo

independientes. Los materiales más utilizados para el marco son el acero inoxidable

y el aluminio anodizado, por su resistencia a la corrosión. Los marcos de acero

pintado no son convenientes, pues acaban oxidándose tarde o temprano. El marco es

el elemento donde se apoyan todos los componentes del panel solar, por lo que es

conveniente que sea muy rígido. En acero inoxidable los cuatro laterales pueden

soldarse entre sí, mientras que en aluminio anodizado se atornillan.

Page 47: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 47 -

Si la caja es de poliéster, ésta suele ser de una sola pieza, pudiendo a

veces llevar refuerzos de alambre en algunas zonas, especialmente en el marco, y con

dibujos y nervaduras en el fondo para darle más rigidez mecánica.

h)FIJACIONES

Debemos a continuación examinar las fijaciones del panel. Hay paneles

que las llevan incorporadas, mientras que en otros los mismos fabricantes

proporcionan unas piezas sencillas que los sujetan por las esquinas.

Es importante destacar que las fijaciones deben ser robustas y sencillas. Todas

aquellas fijaciones compuestas de piezas complicadas y mas o menos ingeniosas

conducen a que tengamos que depender de unas piezas exclusivas y caras.

i)CONEXIONES

Los tubos de conexión, ya vimos que podían presentarse de tres maneras

diferentes: por los laterales derecho e izquierdo, por los laterales superior e inferior y

por la parte posterior. Lo normal es que estas conexiones estén rodeadas a fin de

acoplar allí el racord apropiado. No obstante, hay algunos que son lisos y están

previstos para ser soldados o para colocar un manguito de plástico. En general, las

conexiones roscadas son preferibles sobre las demás, ya que pueden permitir el

rápido desmontaje de un panel y la sustitución por otro.

En el caso de que ¡a conexión sea por la parte posterior hay que verificar

que el tubo de salida está lo más alto posible e incluso si no es perpendicular a la

placa de fondo sino inclinado hacia arriba (hecho que es preferible) para poder dar

salida a las posibles burbujas de aire.

j)ELEMENTOS DE CIERRE

El panel, en general, debe ser estanco, principalmente a la lluvia. Por otra

parte, los paneles a lo largo de las 24 horas del día están sometidos a fuertes

Page 48: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 48 -

calentamientos y enfriamientos que hacen que sus materiales se dilaten de forma

apreciable. Ello obliga a disponer de elementos de cierre que garanticen la

estanqueidad, pero permitan las dilataciones. Esto se consigue mediante juntas de

caucho especial y/o de siliconas.

Estos materiales deben colocarse a lo largo del perímetro de la cubierta

transparente, en los ángulos de aquellos marcos que sean de cuatro piezas no

soldadas, junto a los elementos de fijación y en las conexiones.

Los elementos de cierre pueden degradarse con el tiempo debido a tas

altas temperaturas, y a la radiación ultravioleta. Los tipos de caucho más usado son el

Etileno—propileno y el EPOM. Las siliconas, que pueden teñirse del color que se

desee, son en general más resistentes que los cauchos.

Un cierre defectuoso origina un problema muy común después de una

lluvia o de unos días con mucha humedad: el agua entra dentro del panel solar, bien

sea directamente (lluvia) o en forma de vapor de agua. Mientras que el vapor de agua

existente dentro del panel solar esté por encima del punto de rocío no pasará nada,

pero en caso contrario el agua condensará en forma de vaho, preferentemente en la

parte inferior de la cubierta transparente.

El empañamiento del panel tiene lugar preferentemente le noche, cuando

la temperatura es baja, y en las zonas inferiores del panel. El vaho formado no deja

pasar la radiación solar, por lo que el panel solar no se calienta. Al no calentarse el

panel solar, el vaho no se desvanece y el rendimiento energético es bajo. Este

fenómeno se ve acentuado si el material aislante es buen absorbente de humedad. La

presencia de humedad es peligrosa, pues puede provocar la oxidación de la placa

colectora y la degradación de la superficie selectiva.

El empañamiento se evita haciendo algún orificio en la parte posterior del

panel, al abrigo del agua de lluvia. En general, un panel solar debe ser estanco al

agua de lluvia, pero no necesariamente hermético, siendo preferible que posea una

Page 49: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 49 -

cierta ventilación por la parte posterior del mismo.

k)ACCESIBILIDAD DEL PANEL SOLAR

Finalmente, debemos fijarnos en un detalle de suma importancia: la

accesibilidad de las diferentes partes del panel solar y su posible desmontaje. En este

sentido son preferibles aquellos paneles que estén atornillados o que puedan

desmontarse con cierta facilidad.

Hay paneles en los que, una vez construidos, resulta imposible hacer

cualquier reparación sin romperlos. La accesibilidad es especialmente Importante en

el caso de la cubierta transparente, ya que este elemento es el más vulnerable debido

a su fragilidad. Por ello, el panel debe estar construido de tal forma que se pueda

cambiar la cubierta fácilmente, incluso sin necesidad de desmontarlo ni desco-

nectarlo del circuito hidráulico.

Igual recomendación debe hacerse para el resto de componentes, aunque

en este caso deberemos desmontado y desconectarlo del circuito hidráulico.

Con estas ideas, a buen seguro ya disponemos de elementos de juicio más

que suficientes para hacer una elección acertada del tipo de panel solar que deseamos

instalar.

Para ello deberemos evaluar los pros y contras de cada marca, teniendo

bastante claro que no existe ningún panel que cumpla todos los requisitos de

perfección.

Page 50: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 50 -

1.1.2.4.- Disposición de los sistemas de captación

-Estanques solares.

-Disposición en tejados o azoteas.

1.1.2.4.1.- Estanque solar

Los estanques solares son un sistema para el almacenamiento de energía

solar en forma de calor de un modo sencillo y económico.

Estos estanques

solares permiten el

almacenamiento en largos

periodos de tiempo. Se

encuentran estanques solares

naturales en lagos muy salados

de Hungría.

Estos consisten en: Lagos o estanques donde penetra la radiación solar,

calentando el agua. El agua caliente al tener menor densidad que el resto del líquido,

asciende por convección. En la superficie es mayor que en el fondo y se enfría.

Estos fenómenos tienen lugar por convección, que es el modo más

común de transporte de calor en los fluidos. Si se logra impedir la convección, la

zona de agua caliente no podrá ascender ni descender en la masa del líquido.

Consiguiendo de esta forma almacenar agua caliente.

Page 51: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 51 -

El estanque solar se compone de tres capas:

La capa superficial, que es convectiva a causa de la lluvia, viento,

evaporación...

La capa intermedia, que no es convectiva y es donde se acumula el agua

caliente

La capa inferior, que es convectiva, transmitiendo calor al fondo del estanque

o lago.

Para anular la convección:

Se diluye sal cuya solubilidad no varía con la temperatura (sal común). El

agua se distribuye por capas de salinidad, menor conforme este más en la superficie.

Teniendo un estanque o lago con la superficie de agua dulce y el fondo saturado de

sal.

Por lo tanto la densidad del agua es mayor a mayor profundidad. Ahora

al recibir la radiación solar, el agua salada se calienta más que el resto que le rodea.

Al calentarse, disminuye su densidad, con lo que tendría tendencia a ascender. Pero

como las capas superiores tienen densidades menores, no existen fuerzas

ascensionales.

La zona de agua caliente permanece inmóvil. Lo mismo ocurre al

enfriarse.

Es difícil de imaginar, la creación de un lago solar, ya que conlleva la

utilización de un recurso natural y medioambiental, mucho más valioso y apreciado

que la energía que se pueda extraer de él.

Instalaciones industriales para el aprovechamiento de este tipo de

sistemas, lo podemos encontrar ahí, donde de forma natural existe, por ejemplo, en

Israel, en el Mar Muerto donde hay dispuesta una planta que produce 150 kW.

Page 52: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 52 -

1.1.2.4.2.- Disposición en tejados o azoteas

Las instalaciones centrales están formadas por "baterías" de colectores,

ya sean unos pocos, para un edificio pequeño de viviendas o una piscina, hasta

centenares de colectores para Hospitales, grandes hoteles que poseen grandes tanques

de acumulación de agua, preparados para recibir una energía convencional de apoyo

como electricidad o gas.

Los colectores se montan

en baterías ya sea en serie o en

paralelo. Gracias a la

energía solar el agua consigue la

temperatura requerida,

ahorrando combustible y reduciendo la

polución causada por los sistemas

convencionales.

1.1.2.5.-Instalación de paneles solares, sistemas de

circulación y ejemplos

A. El dimensionamiento de los paneles solares

Para calcular el tamaño de los paneles solares que hay que instalar debe

tenerse en cuenta el consumo previsible de agua caliente de la familia, así como el

de los elementos domésticos que puedan hacer uso de él. Por ejemplo, se calcula que

en una familia, de media, el consumo de agua caliente es de aproximadamente 30–50

litros/día por persona.

El agua caliente producida por un panel solar varía en función de

diferentes elementos: la posición, la zona geográfica, la radiación solar diaria, etc. De

Page 53: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 53 -

media, puede considerarse una producción de agua de 80–100 litros/día, a la

temperatura de 40° C, por cada metro cuadrado de panel instalado.

Para calentar el agua del depósito hace falta aproximadamente media

jornada de sol en verano y un día en invierno. La temperatura del agua que se puede

alcanzar en los días de sol es de aproximadamente 40° C en invierno y de

aproximadamente 60–80° C en verano.

Teniendo en cuenta las variables referidas, en la tabla siguiente se

propone un esquema de dimensionamiento del depósito y de los paneles solares:

VIVIENDAS

USO ANUAL ORIENTACIÓN SUR

personas

Capacidad

boiler

Metros

cuadrados

paneles

1÷3 130÷150 1,8÷2,6

3÷5 200÷300 3,6÷5,2

6÷8 300÷450 5,4÷7,8

B. Una solución para cada situación

Todos los edificios que tienen un espacio soleado (tejado inclinado,

tejado tipo azotea, jardín, etc.) pueden tener una instalación solar para la producción

de agua caliente sanitaria.

El coste de instalación es tanto más bajo cuanto más fácil es acceder a

estos lugares. Es preferible un tejado tipo azotea o un jardín bien soleado, pero vale

también una cubierta de tejas.

Debe prestarse especial atención a la mejor ubicación del panel solar.

Hay que elegir la posición que ofrezca la mejor irradiación solar, pero también las

Page 54: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 54 -

zonas más accesibles y menos criticas para los anclajes, pues así se ahorra en los

costes de instalación.

Es mejor si los paneles solares están orientados hacia el sur, con una

tolerancia de desviación hacia el este o el oeste de 30°, y una inclinación de

aproximadamente 35–40° respecto al plano horizontal.

Cada instalación de paneles solares presenta problemas específicos, todos

solucionables, pero hay que enfrentarse a ellos pidiendo distintos presupuestos a

empresas e instaladores cualificados.

ANTES DE COMPRAR UN SISTEMA SOLAR

• Consultar una empresa solvente.

• Pedir una declaración por escrito sobre cuanta agua caliente puede

producir el panel.

• Pedir siempre que el presupuesto incluya los costes de instalación.

C. En los edificios en construcción

Lo mejor es proyectar las viviendas nuevas pensando en todas las

conexiones y las necesidades para la instalación de un sistema solar. Una ubicación

Page 55: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 55 -

correcta del panel solar en el edificio permite obtener el máximo rendimiento con un

gasto mínimo de instalación.

Todas las viviendas nuevas, e incluso las que se fueran a reformar,

deberían estar preparadas para la instalación de paneles solares. Esta predisposición

tiene un coste irrelevante y la instalación de un sistema solar permitiría ahorrar

mucho dinero durante la utilización de la vivienda.

Los paneles solares pueden instalarse en todos los edificios: desde los

chalet individuales a las comunidades de propietarios.

D. En las casas con tejado de tejas

En primer lugar debe averiguarse la orientación del tejado. La posición

más ventajosa es la orientación sur. En todo caso se podrá instalar en el tejado

incluso si está orientado hacia el sureste o el suroeste.

Es importante que el tejado tenga una inclinación de por lo menos 35°

respecto al plano horizontal. Hay que tener cuidado para que en ningún mes del año

haya sombras que cubran el panel de los rayos del sol.

Page 56: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 56 -

E. En las casas con tejado tipo azotea

La instalación de los paneles solares en un tejado tipo azotea es la

solución más fácil porque ofrece la seguridad de poder orientar el colector solar hacia

el sur (excepto eventuales sombras), con la inclinación optima, reduce al mínimo los

costes de instalación y permite un fácil mantenimiento.

F. En el jardín

Entre las diferentes zonas en las que se puede instalar un sistema solar

está el jardín, siempre que la casa tenga una zona verde no cubierta por la sombra en

los diferentes meses del año.

Cuando sea posible, la instalación del sistema solar en el jardín es la

mejor solución ya que es fácil de realizar y poco costosa.

Page 57: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 57 -

1.1.2.5.1.- Sistemas de circulación natural

Los sistemas de circulación natural son muy sencillos, requieren poco

mantenimiento y se pueden construir utilizando cualquier modelo de panel solar.

Todos los sistemas de circulación natural se basan en el principio por el

que el fluido del circuito primario, calentado por el sol, disminuye su densidad, se

vuelve más ligero y asciende, provocando un movimiento natural del fluido mismo.

En los sistemas de circulación natural el depósito de acumulación del

agua tiene que estar siempre colocado más arriba del panel y a poca distancia del

mismo.

La mejor solución técnica y estética es la colocación del depósito de

acumulación debajo del tejado a una altura superior respecto a la del panel solar. Esto

permite reducir al mínimo las dispersiones térmicas y tener un fácil acceso al

depósito para eventuales operaciones e mantenimiento o completar el líquido del

circuito primario.

La aplicación típica de los sistemas de circulación natural es la

producción de agua caliente para uso sanitario.

Page 58: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 58 -

1.1.2.5.2.- Sistemas de circulación forzada

El principio de funcionamiento de un sistema de circulación forzada se

distingue del de circulación natural porque el fluido, contenido en el colector solar,

fluye en el circuito cerrado por efecto del empuje de una bomba controlada por una

centralita (o termostato) activada, a su vez, por sondas colocadas en el colector y en

el depósito.

Las aplicaciones típicas de la circulación forzada son, además de la

producción de agua caliente para uso sanitario en los casos en los que la circulación

natural no se puede utilizar, la calefacción y la conservación de la temperatura del

agua de la piscina, el agua caliente en las comunidades y en la industria.

Los sistemas de circulación forzada son más complejos que los de

circulación natural, y han de ser instalados por personal especializado. Son un poco

más caros, pero en cambio ofrecen una mayor eficiencia porque hacen más rápida la

circulación del fluido, con la consiguiente mayor absorción de la radiación solar.

Además, el depósito se coloca dentro del edificio donde se registra una menor

dispersión térmica y una mejor accesibilidad para su mantenimiento.

Hay que instalar los sistemas de circulación forzada:

o cuando el deposito no se puede colocar más alto que el panel solar;

o en las instalaciones de gran tamaño;

o cuando la intervención ha de ser especialmente precisa.

Page 59: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 59 -

1.1.2.5.3.- Sistemas de circulación forzada de vacío

Los sistemas de circulación forzada de vacío permiten solucionar el

problema del sobrecalentamiento del fluido portador del calor, que puede darse

cuando el calor producido por el sistema solar no se utiliza por mucho tiempo y el

fluido puede alcanzar temperaturas extremadamente altas.

En el caso de alcanzar temperaturas entre los 160–170° C el fluido

anticongelante se transforma químicamente y deja de tener una función

anticongelante, arriesgando el correcto funcionamiento del sistema en el periodo

invernal.

En los sistemas forzados de vacío esto no pasa ya que, con el sistema

parado, el fluido portador del calor fluye de los colectores hasta el interior de un

depósito de drenaje: allí las bombas de circulación se paran para permitir al fluido en

el circuito volver al deposito de drenaje.

1.1.2.5.4. Algunos ejemplos

AGUA CALIENTE PARA LAS COMUNIDADES DE VECINOS

Debe prestarse una especial atención a la hora de proyectar los sistemas

para la producción de agua caliente para las comunidades de vecinos, sobretodo para

las que superan las tres plantas.

Page 60: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 60 -

Figura A

A partir del esquema de la figura A, en el que se han utilizado sistemas

de circulación natural, se intuye que los usuarios tendrán que esperar mucho antes de

recibir el agua caliente del boiler solar colocado en la azotea, con un consiguiente

inútil derroche de agua. Además, el coste de la instalación del sistema resulta elevado

por el gran número de tuberías (aisladas térmicamente) necesarias para conectar los

boiler de cada vivienda.

Además, cada panel solar proporciona agua caliente solo a una vivienda:

por lo tanto si ésta está vacía o el número de usuarios es inferior al que se ha

calculado en la fase de proyecto, su exceso de energía no se utiliza.

Para solucionar estos problemas se pueden utilizar otras dos tipologías de

instalaciones solares.

Page 61: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 61 -

Figura B

En la primera tipología, en la figura B, cada familia tiene en su piso un

boiler de 120-150 l., que eroga inmediatamente el agua caliente. Todos los boiler de

los diferentes pisos están conectados a sólo dos tubos, uno de ida y uno de vuelta, a

su vez conectados a los paneles solares colocados en la azotea.

El numero de paneles tiene que ser suficiente para que la superficie de

captación no sea inferior a 2 m2 por cada familia (se calcula sobre un modelo de

familia formado por cuatro personas).

Cada boiler tiene una centralita electrónica que mide continuamente la

temperatura del mismo y la de los paneles solares: en cuanto en el boiler haya una

diferencia de temperatura preestablecida, la centralita abre su electroválvula y activa

un sistema de circulación que transfiere el agua caliente producida por los paneles

del parque solar en su boiler.

Page 62: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 62 -

El sistema descrito en la figura C está formado por un único boiler para

todo el edificio y por un número de paneles solares dimensionados en función del

número de usuarios. El boiler se puede colocar tanto en la azotea como en la central

térmica.

La radiación solar calienta el liquido contenido en los paneles solares, el

aumento de temperatura es detectado por la centralita electrónica, que la compara

con la que viene del boiler y activa el sistema de circulación y el intercambio térmico

que calienta el agua del boiler.

Este sistema está dimensionado para proporcionar agua caliente de forma

autosuficiente en los meses de primavera, verano y otoño, mientras que en el periodo

invernal precalienta el agua que luego utiliza la caldera de gas, que incrementa su

temperatura solo del valor residual que falta para alcanzar la temperatura deseada.

Figura C

Page 63: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 63 -

Las ventajas de esta tecnología son:

• la presencia de un único anillo para la distribución del agua caliente

permite a todos los usuarios, incluso los de los bajos, utilizarla

inmediatamente;

• el boiler de acumulación de gran tamaño tiene una menor superficie de

contacto con los agentes atmosféricos y por lo tanto una menor dispersión

térmica;

• menores costes de instalación por la presencia de un único tubo de

alimentación del agua fría y uno de distribución del agua caliente;

• la no simultaneidad de la utilización del agua caliente por parte de los

usuarios, alarga el periodo de autosuficiencia;

• la presencia de uno dos boiler de capacidad adecuada, en vez de un boiler

por cada piso, hace más económico el sistema.

El uso de contadores especiales por sustracción, colocados en cada piso,

permiten medir y contabilizar la cantidad de agua caliente consumida por cada

familia.

Los sistemas se completan con una caldera de gas que interviene en los

días de lluvia o cuando hay muchas nubes, para asegurar al edificio el agua caliente

en cada momento.

CALENTAR LAS CASAS CON EL SOL

A. La calefacción de suelo

La calefacción solar de las habitaciones representa una gran

potencialidad de desarrollo de la energía solar térmica. Actualmente, las

Page 64: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 64 -

posibilidades prácticas están limitadas a la calefacción con sistemas de baja

temperatura: sistemas de suelo o de pared.

De hecho, en los sistemas de calefacción que utilizan los radiadores de

fundición o aluminio, la temperatura del agua que se pide es muy alta y no puede ser

proporcionada por paneles solares. Los sistemas de calefacción de suelo o pared, en

cambio, para calentar las habitaciones a 20° C, utilizan agua caliente a una

temperatura de alrededor de 40° C. Esta temperatura coincide con la que se puede

alcanzar con los sistemas térmicos solares, incluso en temporada de invierno.

En las calefacciones de baja temperatura los elementos que irradian el

calor, formados por tubos de polipropileno, se colocan debajo del suelo o en la pared,

de manera que cubran toda la superficie. Esta tecnología, además de representar un

gran ahorro energético, hace la casa menos seca y más salubre.

Page 65: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 65 -

Los colectores solares tienen que ir siempre acompañados por un sistema

térmico tradicional, por ejemplo una caldera de gas o a gasoil, para asegurar en cada

circunstancia el calor necesario.

B. Los paneles solares de aire caliente

Los paneles solares de aire caliente se pueden utilizar para integrar el

sistema de calefacción doméstica de una forma eficaz. Estos paneles tienen

características parecidas a las de los normales paneles solares, excepto por el hecho

de que en ellos circula aire, en vez de agua.

El aire se hace circular dentro del colector a través de recorridos sinuosos

que disminuyen la velocidad de su flujo y le permiten absorber de la mejor manera el

calor de la radiación solar, para que luego se canalice a las habitaciones que hay que

calentar.

Esta tecnología, integrada con un generador térmico tradicional que entra

en función cuando la irradiación solar no es suficiente, es apta no solo para calentar

las viviendas, sino también para la desecación de productos alimenticios.

Page 66: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 66 -

LOS PANELES SOLARES PARA USUARIOS ESTACIONALES

A. Calentamiento de las piscinas descubiertas

Una piscina descubierta no calentada tiene un ciclo anual de temperatura

que varía según el clima y la ubicación geográfica: sin embargo, en la mayor parte de

los casos, la actividad de las piscinas descubiertas se limita solamente a los tres

meses de verano. Calentando el agua con una instalación solar, se puede alargar la

utilización hasta cinco o seis meses.

Esta necesidad de calentamiento se manifiesta sobre todo en piscinas que

se encuentran en zonas de montaña, donde el enfriamiento nocturno del agua es

mayor.

Una piscina requiere generalmente que se mantenga la temperatura del

agua alrededor de los 25 - 28° C. Para mantener esta temperatura, el agua de la

piscina se hace circular por un intercambiador de calor donde entra en contacto

térmico con el fluido transportador del calor calentado por el sistema solar. En estas

instalaciones se utilizan sistemas de circulación forzada (mejor de vacío) con

colectores de superficie selectiva, para reducir la superficie de paneles solares

necesaria.

Page 67: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 67 -

Instalaciones solares parecidas se pueden instalar también para calentar

las piscinas cubiertas. Obviamente, ya que las piscinas cubiertas se utilizan todo el

año, es necesario que el sistema solar vaya siempre acompañado por un sistema de

calentamiento tradicional.

Ya que el agua de una piscina cubierta necesita ser calentada también en

los meses de verano, no pudiendo aprovechar el calor directo del sol, la integración

del sistema de calentamiento tradicional con un adecuado sistema térmico solar, es

seguramente siempre conveniente.

B. Duchas calientes en camping y balnearios

El suministro de agua caliente para las duchas en los camping y en los

balnearios es un servicio cada vez más solicitado, y que viene formando parte de la

oferta de estas instalaciones.

En estas situaciones es posible adoptar paneles solares muy especiales,

realizados de material plástico (polipropileno). Están formados por tubitos con

sección circular, donde circula el agua que es calentada por la acción del sol.

Page 68: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 68 -

La instalación solar es bastante simple: está formada por un sistema de

circulación forzada y por un depósito de acumulación. El agua fría es enviada por

una bomba al interior de los paneles, calentada y acumulada en el depósito, lista para

ser utilizada.

1.1.2.6.- Mantenimiento de los paneles solares

En las instalaciones solares de circulación forzada es necesario realizar

periódicamente tareas de mantenimiento, que deben ser desarrolladas por empresas

especializadas.

La bomba y la centralita electrónica que regula el flujo del líquido en el

circuito primario tienen que estar siempre en perfectas condiciones. El bloqueo de la

circulación puede provocar la ebullición del líquido primario con daños, incluso

graves, para el panel solar.

En caso de avería en la centralita o de bloqueo de la bomba hidráulica,

deben cubrirse las superficies de los colectores solares y llamar al técnico. También

se aconseja cubrir los paneles en caso de largas ausencias.

Es menos probable que las instalaciones solares de circulación natural

sufran averías. Sólo hay que realizar controles periódicos, que pueden ser llevados a

cabo directamente por el dueño mismo de la instalación, para comprobar el correcto

funcionamiento del sistema.

El circuito primario de un sistema solar, aunque esté oculto, está sujeto a

filtraciones accidentales (defectos de carga, escapes por exceso de presión,

Page 69: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 69 -

aflojamiento de las juntas por el hielo o el sobrecalentamiento, etc.). En este caso es

necesario rellenar el líquido con una mezcla anticongelante.

Hace falta controlar también que la circulación natural no encuentre

obstáculos en el circuito. Si, por ejemplo, el líquido del circuito primario

disminuyera por evaporación tras un largo periodo de no utilización del agua caliente

(vacaciones de verano), se puede formar una burbuja de aire que obstruye el circuito.

En este caso es necesario intervenir, directamente o llamando un técnico, para

eliminar el obstáculo.

CONSEJOS PRÁCTICOS DE MANTENIMIENTO

• Controlar a menudo el nivel del líquido del circuito

primario y, si hubiera filtraciones accidentales, rellenar con

una mezcla de anticongelante diluido con agua (la dosis está

indicada en los recipientes).

• En caso de largas temporadas de ausencia, es oportuno

cubrir los paneles para protegerlos de los rayos solares.

• Inspeccionar los paneles solares tras largas temporadas

en las que no se han utilizado y controlar su funcionamiento.

• Cambiar totalmente el líquido anticongelante por lo

menos cada 5 años.

• Una vez al año quitar el polvo de las superficies de los

colectores solares.

• Evitar que se forme vapor condensado dentro de los

paneles con cubierta, practicando eventualmente pequeños

agujeros en la parte superior e inferior del panel.

• Verificar cada 3 años el ánodo de magnesio del

Page 70: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 70 -

depósito.

• En caso de rotura accidental de la cubierta del panel, en

tanto se produce la sustitución, es preciso proteger en

seguida el panel con una manta transparente, ya que la lluvia

provoca un rápido y grave daño al panel.

• Las instalaciones solares de circulación forzada tienen

que ser controladas por lo menos una vez al año por un

técnico especializado, para que realice las operaciones de

mantenimiento necesarias.

Page 71: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 71 -

1.1.3.-Energía solar fotovoltaica

A. La célula fotovoltaica: cómo funciona

La palabra fotovoltaico procede de photo = luz y voltaico = electricidad

y significa electricidad producida a través de la luz. El efecto fotovoltaico se basa

sobre la capacidad de algunos semiconductores, como el silicio, de generar

directamente energía eléctrica cuando se exponen a la radiación solar.

La conversión de la radiación solar en energía eléctrica tiene lugar en la

célula fotovoltaica, que es el elemento base del proceso de transformación de la

radiación solar en energía eléctrica.

La luz está formada por partículas, los fotones, que trasportan energía.

Cuando un fotón con suficiente energía golpea la célula, es absorbido por los

materiales semiconductores y libera un electrón. El electrón, una vez libre, deja

detrás de sí una carga positiva llamada hueco.

Por lo tanto, cuanto mayor será la cantidad de fotones que golpean la

célula, tanto más numerosas serán las parejas electrón-hueco producidas por efecto

fotovoltaico y por lo tanto más elevada la cantidad de corriente producida.

Page 72: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 72 -

B. Cómo está hecha la célula fotovoltaica

La célula fotovoltaica es un dispositivo formado por una delgada lámina

de un material semi-conductor, muy a menudo de silicio. Se trata del mismo silicio

utilizado en la industria electrónica, cuyo coste es todavía más alto.

Actualmente el material más utilizado es el silicio mono-cristalino, que

presenta prestaciones y duración en el tiempo superiores a cualquier otro tipo de

silicio:

• Silicio Mono-cristalino: Rendimiento energético hasta 15 – 17 %.

• Silicio Poli-cristalino: Rendimiento energético hasta 12 – 14 %.

• Silicio Amorfo: Rendimiento energético menos del 10 %.

La célula fotovoltaica está hecha por una placa de silicio, normalmente

de forma cuadrada, con aproximadamente 10 cm de lado y con un grosor que varía

entre los 0,25 y los 0,35mm, con una superficie de más o menos 100 cm2.

Page 73: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 73 -

C. El módulo fotovoltaico

Las células solares constituyen un producto intermedio: proporcionan

valores de tensión y corriente limitados en comparación a los requeridos

normalmente por los aparatos usuarios, son extremadamente frágiles, eléctricamente

no aisladas y sin un soporte mecánico. Se ensamblan de la manera adecuada para

formar una única estructura: el módulo fotovoltaico, que es una estructura sólida y

manejable.

Los módulos pueden tener diferentes tamaños: los más utilizados están

formados por 36 células conectadas eléctricamente en serie, con una superficie que

oscila entre los 0,5 m2 a los 1,3 m2. Las células están ensambladas entre un estrato

superior de cristal y un estrato inferior de material plástico (Tedlar). El producto

preparado de esta manera se coloca en un horno de alta temperatura, con vacío de

alto grado. El resultado es un bloque único laminado en el que las células están

“ahogadas” en el material plástico fundido.

Luego se añaden los marcos, normalmente de aluminio; de esta manera

se confiere una resistencia mecánica adecuada y se garantizan muchos años de

funcionamiento. En la parte trasera del módulo se añade una caja de unión en la que

se ponen los diodos de by-pass y los contactos eléctricos.

Page 74: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 74 -

D. El generador fotovoltaico

Más módulos fotovoltaicos ensamblados mecánicamente entre ellos

forman el panel, mientras que un conjunto de módulos o paneles conectados

eléctricamente en serie, forman la rama. Más ramas conectadas en paralelo, para

obtener la potencia deseada, constituyen el generador fotovoltaico. Así el sistema

eléctrico puede proporcionar las características de tensión y de potencia necesarias

para las diferentes aplicaciones.

Los módulos fotovoltaicos que forman el generador, están montados

sobre una estructura mecánica capaz de sujetarlos y orientada para optimizar la

radiación solar. La cantidad de energía producida por un generador fotovoltaico varía

en función de la insolación y de la latitud del lugar.

La producción de energía eléctrica fotovoltaica, al depender de la luz del

sol, no es constante, sino que está condicionada por la alternancia del día y de la

noche, por los ciclos de las estaciones y por la variación de las condiciones

meteorológicas. Además, el generador fotovoltaico proporciona corriente eléctrica

continua.

A menudo estas características no se adaptan a las necesidades de los

usuarios que, normalmente, necesitan corriente eléctrica alterna, con valores

constantes de tensión. Por lo tanto, el envío de la energía del sistema fotovoltaico al

usuario se realiza a través de otros dispositivos necesarios para transformar y adaptar

la corriente continua producida por los módulos a las exigencias de utilización: el

Page 75: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 75 -

más significativo es un dispositivo estático (Inverter), que transforma la corriente

continua en corriente alterna.

Algunos tipos de inversores

E. Cuánta energía produce un sistema fotovoltaico

La cantidad de energía eléctrica producida da un sistema fotovoltaico

depende básicamente de la eficiencia de los módulos y de la irradiación solar, o de la

radiación solar incidente.

La radiación solar incidente en la tierra tiene un valor variable en función

de la distancia entre la Tierra y el Sol, o de la latitud de la localidad donde están

instalados los módulos fotovoltaicos. También es importante la inclinación de los

módulos: una correcta inclinación influye mucho en la cantidad de energía solar

captada y por lo tanto en la cantidad de energía eléctrica producida.

La presencia de la atmósfera, finalmente, implica una serie de fenómenos

sobre la radiación incidente, entre los cuales el efecto de filtro que reduce

considerablemente la intensidad de la radiación en el suelo y la fragmentación de la

luz.

Page 76: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 76 -

Se calcula aproximadamente que un metro cuadrado de módulos

fotovoltaicos de buena calidad, puede producir de media 180 KWh al año (0,35 KWh

al día en periodo invernal, y 0,65 KWh. al día en periodo estiva. :

1.1.3.1.-Los sistemas fotovoltaicos

Se define el sistema fotovoltaico como un conjunto de componentes

mecánicos, eléctricos y electrónicos que concurren a captar y transformar la energía

solar disponible, transformándola en utilizable como energía eléctrica.

Estos sistemas, independientemente de su utilización y del tamaño de

potencia, se pueden dividir en dos categorías:

• sistemas conectados a la red (grid connected )

• sistemas aislados (stand alone )

A. Sistemas conectados a la red (grid connected)

Los sistemas conectados a la red están permanentemente conectados a la

red eléctrica nacional. En las horas de irradiación solar escasa o nula, cuando el

generador fotovoltaico no produce energía suficiente para cubrir la demanda de

electricidad, es la red que proporciona la energía necesaria. Viceversa, si durante las

Page 77: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 77 -

horas de irradiación solar el sistema fotovoltaico produce más energía eléctrica de la

que se gasta, el exceso se transfiere a la red.

Por decisión administrativa se permite a los operadores que gestionan

sistemas fotovoltaicos conectarse a la red eléctrica nacional. Gracias a las mediciones

realizadas por un contador y a los precios establecidos por la Autoridad misma, se

puede vender a la red eléctrica la energía producida en exceso y coger energía de la

red cuando la cantidad de energía auto producida es insuficiente.

B. Sistemas aislados (stand alone)

Los sistemas aislados se utilizan normalmente para proporcionar

electricidad a los usuarios con consumos de energía muy bajos para los cuales no

compensa pagar el coste de la conexión a la red, y para los que sería muy difícil

conectarlos debido a su posición poco accesibles: ya a partir de distancia de más de 3

Km de la red eléctrica, podría resultar conveniente instalar un sistema fotovoltaico

para alimentar una vivienda.

Page 78: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 78 -

En los sistemas fotovoltaicos aislados es necesario almacenar la energía

eléctrica para garantizar la continuidad de la erogación incluso en los momentos en

los que no es producida por el generador fotovoltaico.

La energía se acumula en una serie de acumuladores recargables

(baterías), dimensionados de la manera que garanticen una suficiente autonomía para

los periodos en los que el sistema fotovoltaico no produce electricidad. La tecnología

actual permite usar baterías de plomo ácido de larga duración (más de 6 años), con

exigencias de mantenimiento casi nulas.

En los sistemas aislados hace falta instalar también un regulador de

carga, que fundamentalmente sirve para preservar las baterías de un exceso de carga

del generador fotovoltaico y de un exceso de descarga debido a la utilización. Ambas

condiciones son nocivas para la correcta funcionalidad y la duración de los

acumuladores.

En los sistemas aislados es necesario que el generador fotovoltaico esté

dimensionado de la manera que permita, durante las horas de irradiación solar, tanto

la alimentación de la cantidad de energía necesaria, como la recarga de las baterías

de acumulación.

Page 79: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 79 -

Regulador de carga

1.1.3.2.-Costes y perspectivas

Un sistema fotovoltaico requiere un fuerte desembolso de capital inicial,

pero luego los gastos de gestión y de mantenimiento son muy reducidos.

El análisis de todos los aspectos económicos relativos a un sistema

fotovoltaico es muy complejo. En especial, cada aplicación tiene que ser evaluada en

su especifico contexto, teniendo en cuenta sobre todo la energía eléctrica producida,

la duración del sistema (se calcula alrededor de 25 años), las dificultades de conexión

a la red eléctrica, los incentivos disponibles, etc.

Indicaciones generales de los costes de un sistema fotovoltaico

(por kWp instalado)

• Sistemas integrados en los edificios (o conectados a la

red) » € 8.000 / kWp (IVA excluido)

• Sistemas para usuarios aislados » € 10.000 /kWp (IVA

excluido)

En algunos casos la inversión inicial se amortiza al principio, ya

que el coste de la conexión a la red eléctrica sería superior al de la

Page 80: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 80 -

instalación de un sistema solar fotovoltaico.

Pero en la mayoría de los casos un sistema fotovoltaico tiene un

coste por Kwh. producido mucho mayor del coste del Kwh.

comprado de la red eléctrica. Por lo tanto lo que puede hacer

compensar la instalación de un sistema fotovoltaico son los

incentivos públicos.

Para poder obtener un coste por Kwh. producido de un sistema

fotovoltaico, comparado con el coste del Kwh. comprado de la red,

es necesario intervenir con contribuciones financieras superiores al

70–80 % de la inversión.

En cualquier caso, el desarrollo del fotovoltaico va unido a una

drástica reducción de los costes actuales.

EL MANTENIMIENTO

• El fotovoltaico es un sistema estático, esto es, sin partes mecánicas en

movimiento.

• El generador fotovoltaico generalmente no requiere mantenimiento,

excepto una limpieza periódica con un paño mojado de la superficie anterior

de los módulos. Esta limpieza sirve para devolver la transparencia originaria

al cristal que puede haberse reducido por culpa de unas capas de polvo.

• El regulador de carga no requiere ningún mantenimiento.

• Si la batería de acumulación es del tipo de Pb-ácido no sellada, debe

controlarse el nivel del líquido una vez al año. Hace falta también mantener

una buena limpieza de los contactos entre los bornes y los terminales de los

Page 81: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 81 -

cables de conexión, aplicando periódicamente una capa de vaselina. Hay que

instalar la batería en lugares suficientemente sombreados y ventilados.

• Debe controlarse periódicamente que los cables de conexión entre el

generador fotovoltaico, la batería y el regulador estén en perfecto estado, así

como que posibles causas accidentales no provoquen incisiones en el aislante

externo.

Page 82: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 82 -

1.1.4.-Descripción del modelo desarrollado

1.1.4.1.-Objetivos y especificación

LAS APLICACIONES DE LA ENERGÍA SOLAR TÉRMICA DE BAJA

TEMPERATURA

Tal y como se ha dicho en la introducción, las instalaciones solares

térmicas de baja temperatura son las que tienen una aplicación más extendida en el

ámbito doméstico e industrial. Esto es debido a que la tecnología es mucho más

simple (y por lo tanto más barata) que las instalaciones de media y alta temperatura,

que todavía están en desarrollo y un poco lejos de introducirse en el circuito

comercial.

En la tabla siguiente se muestran algunas aplicaciones de la energía solar

de baja temperatura que pueden cubrir necesidades en distintos sectores:

- Producción de ACS:

El aprovechamiento de la energía solar térmica a baja temperatura para

generar agua caliente sanitaria (ACS), es la aplicación más usada y rentable de las

soluciones que nos aporta la energía solar. La sencillez y la fiabilidad de estos

sistemas es lo que da a este tipo de instalaciones las características mencionadas,

proporcionándonos una cobertura de nuestras necesidades superior al 60%. Y esto se

Page 83: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 83 -

traduce en un ahorro considerable de combustible, y por lo tanto reducción de

nuestros gastos.

En función de las dimensiones del sistema de captación de la energía

solar y el volumen de acumulación, podemos cubrir las necesidades de agua caliente

sanitaria de una vivienda de 2 personas, hasta las de un bloque de pisos o un hotel.

- Calefacción:

Aunque para mucha gente le pueda parecer una contradicción, el hecho

de usar la energía solar para alimentar la calefacción de una vivienda durante el

invierno (la estación en que menos horas de sol tenemos), con un buen diseño

podemos cubrir entre un 30 y un 50% de las necesidades de calefacción de una

vivienda.

No obstante hay que tener en cuenta algunas cuestiones si se quiere

conseguir un buen rendimiento de la instalación solar. Debido a que el rendimiento

óptimo de los colectores solares térmicos (ver partes del sistema) se consigue

trabajando en régimen de bajas temperaturas, es necesario que el sistema de

calefacción de la vivienda trabaje también a un régimen de temperaturas bajo. Y los

sistemas de calefacción que mejor se complementan con la energía solar son el suelo

radiante, calefacción por zócalo y los fancoils.

Hace falta remarcar que en esta aplicación es necesario un sistema

convencional de calentamiento de agua para cubrir el 100% de las necesidades de

calefacción de la vivienda.

Page 84: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 84 -

- Calentamiento de piscinas:

Otra aplicación posible consiste en aprovechar la radiación solar para

calentar el agua de piscinas. Los colectores que pueden ser utilizados para conseguir

este objetivo son además los colectores de polipropileno (ver partes del sistema).

Esta aplicación nos permite alargar la temporada de baño durante unos meses sin

gasto alguno en combustible.

- Precalentamiento de fluidos:

En todo proceso industrial en que sea necesario el uso de un fluido a

cierta temperatura, la energía solar puede ofrecernos un ahorro energético

considerable. Según el rango de temperaturas del proceso, la instalación solar nos

permitirá calentar o precalentar el fluido de trabajo (ya sea agua, solución acuosa,

aceite, lodos…), haciendo que el equipo encargado de elevar hasta temperatura de

trabajo tenga que aportar menos energía para alcanzarla.

Estas son cuatro posibles aplicaciones distintas de la energía solar

térmica de baja temperatura. Sin embargo pueden combinarse entre ellas,

consiguiendo un mayor aprovechamiento de la energía que nos proporciona el sol.

En nuestro caso, haremos uso de la primera y tercera de las

aplicaciones anteriormente expuestas, es decir, el proyecto consiste en

aprovechar la energía solar térmica para cubrir la demanda de agua caliente

sanitaria de nuestro polideportivo.

De este modo conseguiremos un ahorro importante en la factura

correspondiente a la energía térmica. En ningún caso se conseguirá un ahorro

total (prescindir de la contratación de energía térmica a través de gas natural),

ya que para ello necesitaríamos tener una potencia térmica instalada mucho

mayor de la demanda que se quiere cubrir, lo que supondría una inversión

Page 85: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 85 -

desproporcionada, una amortización a muy largo plazo, y un desperdicio

enorme de energía.

En líneas generales, los objetivos que se pretenden alcanzar son los

siguientes:

• Descubrir las ventajas que tiene aprovechar una energía tan limpia,

gratuita e inagotable como es la solar. • Ver los distintos modos que existen de usar esta energía y a que fines

pueden estar destinados. • Obtener el máximo ahorro económico en la factura del consumo

térmico del polideportivo, intentando cubrir la mayor parte de la demanda de agua caliente sanitaria mediante la energía solar térmica.

• Adquirir conocimientos sobre las ordenanzas y reglamentos que hay

que tener en cuenta para desarrollar los puntos anteriores (RITE, RD 436/04, ordenanzas municipales de la comunidad de Madrid,…).

• Adquirir igualmente conocimiento de las distintas subvenciones y

ayudas que organismos como el IDAE o la Comunidad de Madrid pueden conceder para este tipo de instalaciones solares.

Información sobre el polideportivo en el que se realiza la instalación

El uso del polideportivo se cifra en 5000 personas al día, entre escuelas

deportivas y curso, colegios, uso individual, entrenamiento de clubes, etc…

ACTIVIDADES:

Atletismo. Baloncesto. Balonmano. Frontón. Fútbol. Hockey sobre patines. Natación, Rugby, Tenis. Petanca. Bolos. Esgrima. Gimnasia. Kárate. Taekwondo. Badminton. Frontenis. Tenis de Mesa. Squash. Voleibol. Billar. Patinaje Artístico. Padel. Musculación. Ludoteca. Juegos infantiles. Fútbol Sala. Judo.

Page 86: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 86 -

INSTALACIONES:

-Pabellón A

-Piscina Climatizada

-Jacuzzi

-Sala termal

-Gimnasio de fitness y musculación

-Pabellón B

-Piscina cubierta con cubierta móvil

-Piscina de verano

-Otras Instalaciones

Page 87: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 87 -

1.1.4.2.-Funcionamiento básico y partes del sistema

El funcionamiento básico de nuestra instalación térmica se puede resumir

en tres conceptos:

captación de la energía solar, circulación y distribución del fluido

caloportador y acumulación.

Estos tres conceptos están representados por los elementos más

significativos de una instalación solar térmica, que son:

Page 88: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 88 -

1.-Captadores o colectores solares:

Son los elementos de la instalación que tienen como función absorber la

radiación solar y trasformarla en calor. Esta energía será transmitida (mediante el

fluido de trabajo) al agua que va a ser calentada, ya sea para ACS, calefacción,

climatización de piscinas, calentamiento de fluidos industriales, etc…

Fundamentalmente hay tres tipos de colectores solares:

- Colectores planos: Son los mas comunes, vienen formados por una

superficie absorbedora (junto a la que circula el fluido) dentro de una carcasa

rectangular y tapada por una cubierta de vidrio. La superficie absorbedora suele estar

tratada para absorber la mayor cantidad de energía, a su vez, la carcasa está aislada

para tener las menores pérdidas posibles de calor.

- Colectores de vacío: Formados por unos tubos dentro de los cuales esta

la superficie absorbente y en la que se ha realizado el vacío, de esta manera las

pérdidas de calor se reducen al mínimo. Son ideales para zonas donde se

alcanzan temperaturas ambientales bajas durante periodos considerables y

cuando queremos integrar la instalación arquitectónicamente, ya que no es

necesario que los coloquemos inclinados a un ángulo determinado, pudiendo

colocarlos como cerramientos horizontales, verticales o inclinados.

- Colectores de polipropileno: Son colectores mas baratos pero mucho

menos eficientes absorbiendo energía. Se suelen usar para climatizar piscinas

descubiertas y ampliar su periodo de uso, aunque en épocas de heladas deben

estar inactivos.

En nuestro caso, usaremos colectores planos y haremos el estudio del

ahorro conseguido para dos alternativas distintas, es decir, dos modelos

concretos de paneles solares: el primero, el Cr12 de la marca Chromagen (más

barato pero con peor rendimiento), y el segundo, el Vitosol 100 de la marca

Viessman (más caro pero con un rendimiento superior).

Page 89: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 89 -

2.-Circulación y distribución del fluido calo-portador:

El fluido de trabajo es una mezcla de aguay anticongelante, permitiendo

su uso durante todo el año, que es el que transporta el calor que le ha cedido los

captadores solares, hacia el depósito de acumulación. La circulación de la mezcla

puede ser natural o forzada, según si la instalación solar es del tipo termosifónico o

con circulación con bomba. Es necesario que los conductos estén bien aislados, para

evitar cualquier tipo de perdidas de calor en el circuito. Ya que es necesario

optimizar las perdidas a mínimo posible. Se incluye aquí la regulación y control de la

instalación mediante sensores de temperatura.

3.-Depósito acumulador:

Éste es el elemento que almacena el agua calentada por los colectores,

hasta que tiene que ser consumida. Por esto también es imprescindible que

tenga un buen aislamiento para evitar pérdidas de calor no deseadas, y así tener

disposición de agua caliente solar durante la noche, o en días en que las condiciones

climáticas no son las óptimas. Hay distintos tipos de acumuladores, según la

aplicación que se desee satisfacer (ACS, calefacción…).

Para terminar con las partes que componen una instalación, cabe

mencionar el sistema de apoyo (que no es mas que un sistema convencional de

aporte de energía) y el sistema de control. Y es que no hay que olvidar que el objeto

de una instalación solar térmica no es mas que el ahorro de energía, lo cual no

significa que no debamos instalar un sistema convencional, es mas, debemos

dimensionarlo para ser capaz de aportar el 100% de las necesidades, por si en

determinadas condiciones el sistema solar apenas aporta energía o tenemos un

periodo de mantenimiento.

Apoyo energético: Para prevenir las posibles faltas derivadas de la

ausencia de

Page 90: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 90 -

insolación, casi la totalidad de los sistemas de energía solar térmica cuentan con un

sistema de apoyo basado en energías "convencionales" (eléctricos, calderas de gas ó

gasoleo).

Sistema de Control: Normalmente toma medidas de temperatura del agua

en el colector y en el deposito de acumulación, decidiendo si debe activar o no la

bomba de circulación del circuito primario.

Tuberías y conducciones

Vasos de expansión

Bombas

Purgadores

Válvulas

1.1.4.3.-Inversión, costes y subvenciones

Para que nos podamos hacer una idea del costo económico de este tipo de

instalaciones pasaremos a exponer un par de ejemplos donde se ve claramente la

inversión a realizar así como sus costes / ahorros y periodo de amortización.

Las subvenciones que reciben estos sistemas solares térmicos,

independientemente de la aplicación, se resumen de la siguiente manera:

Actualmente, el Instituto para la Diversificación y Ahorro de la Energía

(IDAE) tiene abierta una línea de financiación y ayudas para proyectos de energías

renovables y eficiencia energética que permite a los usuarios beneficiarse de

subvenciones a fondo perdido y créditos bancarios a interés bonificado, ambas

compatibles.

Page 91: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 91 -

Para el caso de la energía solar térmica, en el presente año (2005), el

IDAE en colaboración con el ICO (Instituto de Crédito Oficial) está proporcionando

una subvención a fondo perdido del 30% del presupuesto (con un máximo de 710,5

€/m2 en sistemas diseñados de mas de 20 m2 y 812 €/m2 en sistemas compactos y

sistemas diseñados hasta 20 m2) y pudiendo solicitar un crédito bancario preferencial

(al Euribor +1) de hasta el 80% del coste elegible del proyecto.

A estas subvenciones se suman a las ayudas locales y autonómicas que se

puedan obtener en función de la localización de la instalación.

En el caso que nos ocupa, por ahora sólo tendremos en cuenta la

subvención del IDAE a fondo perdido (30%), y las ayudas locales y autonómicas

en Madrid, que son de 175 €/m2 de superficie de captación. Más adelante, en la

parte correspondiente al estudio económico, consideraremos la opción de

solicitar el crédito bancario preferencial.

A continuación pasamos a exponer dos ejemplos de instalaciones solares

térmicas situadas en la zona de la Comunidad Valenciana con sus datos económicos.

Ejemplo 1:

. Datos de partida: Vivienda unifamiliar de 4 personas. Consumo aprox. de 160 l/día.

. Demanda de ACS.

. Datos de instalación: Equipo compacto termosifónico con depósito de acumulación

de

150L y superficie de colector de unos 2 m2

. Equipo de apoyo auxiliar eléctrico.

. Vida útil de la instalación: + 20 años

. Datos económicos:

- Coste de instalación: 2080 €

Page 92: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 92 -

- Subvenciones: IDAE + autonómicas ˜ 1000 €

- Coste a cliente: ˜ 1080 €

- Ahorro energético solar anual: ~ 150 €

- Costo mantenimiento anual: ~ 50 €

- Beneficio anual: ~ 100 €

- Amortización: ˜ 11 años

Ejemplo 2:

. Datos de partida: Hotel con 100 habitaciones dobles. Ocupación media del 60%

Consumo aprox. de 5000 l/día.

. Demanda de ACS.

. Datos de instalación: Instalación con 25 colectores de 2,5 m2

. Depósito de acumulación de

5000 l. Equipo de apoyo auxiliar: caldera de gasoil.

. Vida útil de la instalación: + 20 años

. Datos económicos:

- Coste de instalación: ~ 40000 €

- Subvenciones: IDAE + autonómicas ˜ 20000 €

- Coste a cliente: ˜ 20000 €

- Ahorro energético solar anual: ˜ 3000 €

- Costo mantenimiento anual: ~ 300 €

- Beneficio anual: ˜ 2700 €

- Amortización: ˜ 7,4 años

Page 93: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 93 -

1.1.5.-Análisis de resultados

Para realizar los cálculos partimos de la superficie disponible en el

polideportivo para instalar nuestros paneles solares, que es de 200 m2. A partir de

ahí, veremos que potencia térmica podemos conseguir para esa superficie con cada

uno de los paneles a considerar, y por tanto, el ahorro energético y económico anual,

así como el plazo de amortización de la instalación. Para ello usamos unas tablas de

Intensidad útil en un día medio de cada mes, en función de la localización (Madrid),

unos factores de corrección para superficies inclinadas (30º), los rendimientos de los

paneles, etc..., todo ello en función del mes del año, así como la tarifa de gas natural

contratada.

De este modo, obtenemos los resultados siguientes:

Paneles CR Paneles Vitosol

Coste Total de la Instalación (sin subvención) (€) 108.708,00 131.570,00 Subvención del IDAE(30%) 32.612,40 39.471,00 Subvención de la Com Madrid (200 €/m2) 40.000,00 40.000,00 Coste Total de la Instalación (con subvención) (€) 36.095,60 52.099,00 Ahorro anual (sin contar el coste mantenim) (€) 4.587,12 6.376,49 Coste de mantenimiento anual €) 1.000,00 1.000,00 Ahorro anual (contando el mantenimiento anual) (€) 3.587,12 5.376,49 Plazo de amortización (años) 10,06 9,69

Observando los resultados para ambos modelos de paneles, nos damos

cuenta en primer lugar de varias cosas:

-Con ambos obtenemos un ahorro energético y económico anual

importante ( de miles de euros).

-El coste total de ambas instalaciones es demasiado elevado.

Page 94: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 94 -

-Las diferentes subvenciones, reducen considerablemente dicho coste.

-Los diferentes plazos de amortización (en torno a 10 años), son

interesantes, y están dentro de los valores típicos para instalaciones de este tipo.

-El ahorro energético en ningún caso es tan grande como para poder

sustituir por completo la contratación de gas natural, ni siquiera como para cambiar

de tarifa.

Esto último es debido a que la superficie ocupada por los paneles no es

tan grande como la que se necesitaría para cubrir toda la demanda de agua caliente

sanitaria por medio de la energía solar térmica. Los tejados a cuatro aguas de la

mayor parte de las construcciones del polideportivo son los que limitan la superficie

disponible para una correcta ubicación de los paneles. Por tanto nuestra instalación

significaría únicamente un ahorro energético, y nunca una sustitución del gas natural

como fuente de energía principal que cubre la demanda de agua caliente sanitaria.

En cuanto a qué panel elegir para llevar a cabo la instalación, hay que

tener en cuenta varias cosas:

Por una parte, los paneles CR12, tienen un coste unitario menor, y por

tanto se consigue con ellos un coste total menor de la instalación, siendo además el

ahorro anual que se obtiene con ellos del mismo orden que con los Vitosol 100,

auque algo menor.

Por otra parte, a pesar de ser más caros los paneles Vitosol 100, y obtener

por tanto un coste de instalación mayor, su mayor rendimiento, y su menor superficie

bruta, (con la que se consigue tener un área neta de captación total mayor), hacen que

el ahorro económico anual, sea algo mayor que con los otros paneles; no demasiado,

pero tanto como para obtener un plazo de amortización de la instalación varios meses

menor.

Page 95: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 95 -

Esto hace que se conviertan en la mejor opción a la hora de elegir un

modelo de panel para nuestra instalación, sobre todo si lo que buscamos son

beneficios a largo plazo, ya que el ahorro total que conseguiremos con dichos

paneles a lo largo de los años, una vez amortizada la instalación, será bastante mayor

que con los otros paneles.

Hay que señalar por otra parte, que si fuera otra la superficie disponible,

los cálculos variarían, pudiendo ser mejor la elección de un panel u otro. Es decir,

habría que calcular de nuevo el número de paneles necesarios de cada modelo, coste,

ahorro, amortización, etc…y ver si aún siendo mejor el rendimiento de los paneles

Vitosol 100, en nuestro caso los elegidos, no supondrían un plazo de amortización

mayor que con los paneles CR12. Con esto queremos decir que la combinación de

algunos factores que dependen de la superficie disponible para ubicar paneles, son

los que en cualquier otro caso determinarían la mejor opción a elegir.

En cuanto al tema de las subvenciones, nos damos cuenta viendo los

resultados, de que sin ellas, el plazo de amortización de las instalaciones, sería de

casi el doble, con lo que nuestra instalación no empezaría a producir beneficios

reales, o mejor dicho, a suponer un ahorro real, hasta dentro de al menos 20 años, lo

cual no sería de mucho interés. Es por eso que estas subvenciones existen. Si se

quieren potenciar las energías renovables para empezar a prescindir, aunque sea un

poco, de las no renovables, tienen que darse ayudas de este tipo. En caso contrario,

no sería económicamente ni rentable ni viable optar por instalar energía solar

térmica, ya que sería un gasto al que muy pocos podrían hacer frente.

Page 96: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 96 -

1.1.6.-Conclusiones

La energía solar es la fuente de energía más abundante de la Tierra:

renovable, disponible, gratuita y en cantidad muy superior a las necesidades

energéticas de la población mundial.

Sin embargo, su aprovechamiento presenta problemas técnicos y

económicos que hacen difícil utilizarla en la práctica. Hoy en día utilizamos solo una

pequeña parte de la enorme cantidad de energía que nos llega del sol, por lo que el

camino a recorrer es todavía largo para poder aprovechar la energía solar a gran

escala.

La energía solar no puede sustituir la energía producida con los

combustibles fósiles pero, como demuestra la experiencia, puede completar

eficazmente la necesidad energética.

El calor recogido en los colectores puede destinarse a satisfacer

numerosas necesidades. Por ejemplo, se puede obtener agua caliente para consumo

doméstico o industrial, o bien para dar calefacción a nuestros hogares, hoteles,

colegios, fábricas, etc. Incluso podemos climatizar las piscinas y permitir el baño

durante gran parte del año.

La justificación racional de una instalación solar procede de

consideraciones económicas y ecológicas. La menor contaminación del

medioambiente y el ahorro energético que se obtiene utilizando la energía solar

representan ventajas para todos, pero esta valoración queda a la sensibilidad

individual de cada uno.

Cada instalación de paneles solares presenta problemas específicos, todos

solucionables, pero hay que enfrentarse a ellos pidiendo distintos presupuestos a

empresas e instaladores cualificados.

Page 97: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 97 -

ANTES DE COMPRAR UN SISTEMA SOLAR

• Consultar una empresa solvente. • Pedir una declaración por escrito sobre cuanta agua caliente

puede producir el panel. • Pedir siempre que el presupuesto incluya los costes de

instalación.

MISIÓN DE LAS ADMISTRACIÓNES

Las administraciones públicas tienen el deber de evaluar cuales son las

tendencias sociopolitico-económicas que rodean a su legislatura para poder actuar en

consecuencia y poder proveer a sus ciudadanos de los mejores servicios.

Social:

Desde finales del s.XX el respeto por el medio ambiente está cobrando

especial importancia; los grupos autocalificados como los “verdes” están

movilizando a una masa de gente cada vez más significativa la cual no es posible

despreciar hoy en día, e incluso algunos países como Alemania están gobernados por

partidos cuyo principal objetivo es el respeto por el medio ambiente.

Política:

Según se firmó en el pacto de Kyoto, los países tienen unas cuotas de

emisión máximas que van a ser difíciles de mantener. Las consecuencias que puede

causar el incumplimiento del pacto de Kyoto pueden llegar a ser devastadoras. Como

todos sabemos, cada país tiene unos límites de emisión de CO2, que si incumplen

repercutirá en cuantiosas multas para el país infractor, por ello las industrias

generadoras de CO2 tienen asignadas unas cuotas máximas de emisión.

Page 98: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 98 -

Económicas:

Cualquier tendencia económica como por ejemplo, los tipos de interés

que fija el BCE, el PIB, etc.., afectan a tanto a las empresas como a la administración

pública, y repercute tanto en la demanda de productos industriales como en el precio

para el cliente final. Ejemplo de ello es lo que se está viviendo ahora con la subida

del precio de los barriles de petróleo.

En definitiva las administraciones tienen el deber de buscar soluciones

que creen un beneficio social hacia sus ciudadanos y obviamente un beneficio

económico y medio ambiental, que pueda repercutirse nuevamente en este beneficio

social, como por ejemplo construcciones que den nuevos servicios, alumbrado,

reducción de la tasa impositiva, etc… A tal efecto, los ayuntamientos pueden tomar

la iniciativa en proyectos como: ordenanzas Municipales que obliguen a implantar

energía solar térmica en edificios, para que cubran en un 60% las necesidades de

Agua Caliente Sanitaria (ACS).

Page 99: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 99 -

1.1.7.-Bibliografía

[FRAN85] Adolfo de Francisco y Manuel Castillo, “Energía Solar Diseño y

Dimensiones de Instalaciones”, publicaciones del Monte de

Piedad y Caja de Ahorros de Córdoba, 1985

[DELE91] J.B. Deleage y C. Souchon, “La Energía: Tema Interdisciplinar

para la Educación Ambiental”, Ministerio de Obras Públicas y

Transportes, 1991

[VVAA89] VV:AA,“Tecnología de las Energías: Solar, Hidraulica,

Geotérmica y Combustibles Químicos)”,publicaciones

Marcombo, S. A ,1989.

[CENS92] CENSOLAR,“Instalaciones de Energía Solar. Tomo 2:

Energética Solar”, Promotora general de Estudios S.A.,

(PROGENSA), 1992.

[CENS92] CENSOLAR,“Instalaciones de Energía Solar. Tomo 3:

Sistemas de aprovechamiento térmico I y II”, Promotora general

de Estudios S.A., (PROGENSA), 1992.

Direcciones de Internet:

www.cne.es www.censolar.es www.idae.es www.madrid.org/ceconomia/dir_gen/estruct/industria/industria.htm

Page 100: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 100 -

1.2.-CÁLCULOS

ÍNDICE

Capítulo Página 1.2.1.- Elementos necesarios para realizar los cálculos……………............101 1.2.2.- Cálculos previos….…………….......................................................102 1.2.3.-Cálculo del coste de la instalación…….……………………...……..104 1.2.4.-Procedimiento a seguir con cada tipo de panel……………..……….105 1.2.5.- Tablas de resultados…………………………………………….…..107

Page 101: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 101 -

Para llevar a cabo nuestro objetivo, en un principio necesitaríamos hacer

un estudio de las facturas de períodos anteriores del consumo térmico de gas natural

anual (en kw/h), y a partir de éste, determinar la potencia térmica a instalar y la

superficie (en m2) de los paneles solares necesarios. Esta superficie, sería variable

también en función del espacio físico disponible para su instalación, lo que podría

desembocar en una disminución de la misma y una nueva previsión para la factura

del consumo térmico.

En nuestro caso, como la potencia térmica a instalar requeriría una

superficie mucho mayor de la disponible, no vamos a tomar como dato de partida las

facturas de períodos anteriores del consumo térmico de gas natural, sino que

partiremos de la superficie disponible en el polideportivo para instalar nuestros

paneles solares, que es de 200 m2. A partir de ahí, veremos que potencia térmica

podemos conseguir para esa superficie con cada uno de los paneles a considerar, y

por tanto, el ahorro energético y económico anual, así como el plazo de amortización

de la instalación.

1.2.1-Elementos necesarios para realizar los cálculos

-Tabla de intensidad media útil (en W/m2), sobre horizontal en un día

medio de cada mes. Esta tabla está en función de los meses del año y las ciudades de

España.

-Tablas de k, que es el factor de corrección para superficies inclinadas.

Estas tablas están en función de los meses del año y de la inclinación de la superficie

de captación, y existen para distintas latitudes.

-Tabla de temperatura ambiente media durante las horas de sol (ºC).

Esta tabla está en función de los meses del año y las ciudades de España.

Page 102: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 102 -

-Tabla de número de horas de sol en un día medio de cada mes. Esta

tabla está en función de los meses del año y las ciudades de España.

-Fórmula del rendimiento de cada panel:

rend = coef opt - coef perd x T*

donde T* es (Te - Ta)/I, donde Te es la Tª a la que entra el agua al

colector, Ta es la Tª ambiente e I es la radiación solar.

-Tarifa de gas natural contratada por el polideportivo.

-Ayudas y subvenciones procedentes del IDAE y de la Comunidad de

Madrid.

1.2.2.-Cálculos previos

-Factor de corrección para superficies inclinadas K

Ya sabemos que las tablas que nos dan su valor están en función de los

meses del año y de la inclinación de la superficie de captación, y existen para

distintas latitudes. La inclinación de los paneles para que el aprovechamiento térmico

sea óptimo suele ser de 30º orientados hacia el sur. Por otra parte, la latitud para la

cuidad de Madrid es de 40,4º, y tenemos tablas de k para latitud, 40º y 41º, luego

interpolando, podemos sacar una nueva tabla con valores de k, para la latitud de

Madrid, y para inclinación de 30º. Para comprobar que esto es correcto, se puede ver

que el valor medio de k para esa latitud, es mayor para 30º que para cualquier otra

inclinación.

Page 103: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 103 -

-Rendimiento de los paneles solares

Los rendimientos de nuestros paneles responden a la fórmula:

rend = coef opt - coef perd x T*

siendo:

T* = (Te - Ta)/I

donde:

Te = Tª media del fluido caloportador.

Ta = Tª ambiente del aire.

I = radiación solar según el ensayo Iso = 800 W/m2

La Ta, la obtenemos de tablas que están en función de la ciudad y del

mes del año, y para Te, hemos considerado tres temperaturas medias en función de la

época del año: 30, 50, y 70. Esta consideración se basa en la hipótesis de que la

máxima temperatura que conseguimos en el fluido que sale del colector (en verano)

es de 80º, la mínima (invierno) es de 40º, y que el salto térmico aproximado entre la

temperatura de salida y de entrada al colector del fluido caloportador es de 20º.

Así, para cada panel tenemos:

Panel Cr12 de Chromagen: Rend=0,71-4,2*T*

Panel Vitosol 100 de Viessman : Rend=0,84-3,36*T*

Que estará en función de cada mes del año.

Page 104: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 104 -

1.2.3.-Cálculo del coste de la instalación

Para calcular el coste correspondiente a los paneles, antes hemos de

conocer el número de paneles a colocar. Teniendo en cuenta que queremos cubrir

una superficie total de 200m2, y que la superficie en horizontal ocupada por cada

panel será su superficie bruta (distinta para cada modelo de panel), multiplicada por

el cos 30º (ángulo de inclinación), dividimos la superficie total entre dicha superficie

en horizontal ocupada por cada panel. De esta manera obtenemos el número de

paneles a colocar para cada modelo de panel. Para los paneles de marca Chromagen,

el número de paneles a colocar será de 82, mientras que para los paneles Viessmann,

el número de paneles será 85.

Una vez que tenemos el número de paneles necesarios de cada modelo

para cubrir la superficie de captación disponible, lo multiplicamos por su coste

unitario y así obtenemos el coste total correspondiente a los paneles solares.

A esto hay que sumar otros costes de la instalación correspondiente a otros elementos

como bombas, válvulas, intercambiadores, depósito acumulador, anclajes, etc…Estos

costes los estimamos en 300 € /m2.

De este modo, el coste de las dos posibles instalaciones será:

Número de paneles (85 u 82)*Coste unitario panel (594 u 842 €)+60.000 €

Page 105: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 105 -

1.2.4.-Procedimiento de cálculo a seguir para cada

modelo de panel

Partimos de la Intensidad media útil (W/m2) en un día medio de cada

mes para superficie horizontal. Si multiplicamos estos valores por la superficie

disponible (200 m2), por el número de días de cada mes, por el factor de corrección k

para superficies inclinadas obtenido anteriormente (para latitud 40,4º e inclinación

30º), y dividimos todo entre 1000, obtenemos los KW de potencia térmica que se

consiguen para cada mes.

*NOTA: Hay que aclarar, que para que estos cálculos sean correctos del

todo, la superficie disponible no es de 200 m2, ya que esa es la superficie bruta

ocupada por todos los paneles. La superficie disponible real, será igual al área neta

de captación de cada panel (2,5 m2), por el número de paneles a colocar. Con esto

tenemos para cada panel, un área de captación próxima a 200 m2, pero algo

inferior, y que en el caso de los paneles Vitosol, es algo mayo que en el de los

Chromagen, ya que contamos con más paneles de esta marca, al tener aquellos

menos superficie bruta que éstos.

Como queremos saber los KWh que obtenemos, y por tanto que nos

ahorramos del consumo de gas natural, esa cantidad, habrá que multiplicarla por el

número de horas de sol de un día medio de cada mes, y por el rendimiento de los

paneles. De esta forma tenemos en cuenta ya las pérdidas de potencia del panel.

Si sumamos las potencias en KWh obtenidas de este modo para cada

mes, tenemos el ahorro energético anual en términos de potencia que conseguimos

con cada panel.

Para ver el ahorro en términos económicos, solamente tenemos que

multiplicar los KWh obtenidos cada mes gracias a los paneles, por el término

variable de la tarifa de gas natural correspondiente a la tarifa 3.4, que es la contratada

Page 106: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 106 -

por el polideportivo, cuyas unidades son (€/KWh), ya que el término fijo no influye.

Es decir, los KWh que consigamos cada mes gracias a la energía solar térmica, serán

los que no gastaremos de gas natural, y por tanto los que supondrán un ahorro

energético y económico.

Si sumamos las cantidades en € obtenidas de este modo para cada mes,

tenemos el ahorro económico anual que conseguimos para cada panel.

Una vez que tenemos el ahorro económico anual y el coste de la

instalación para cada uno de los dos modelos de paneles, aplicamos a éste último la

subvención. Ésta era de un 30% a fondo perdido, procedente de ayudas del IDAE, y

de 200 €/m2 de ayudas por parte de la comunidad de Madird, es decir, unos 40.000 €

. Si restamos al ahorro económico anual, el coste de mantenimiento anual de la

instalación, tenemos el ahorro económico anual real.

Ya solo nos queda dividir el coste real de la instalación (es decir,

descontando el correspondiente a las subvenciones), entre el ahorro económico anual

real, para obtener el plazo de amortización, que nos vendrá dado en años, y será

distinto para cada modelo de panel usado en la instalación.

1.2.5.-Tablas de resultados

A continuación presentamos los cálculos realizados para cada tipo de

panel, en el orden explicado anteriormente:

Page 107: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 107 - PANELES CR

Enero Febrero Marzo Abril Mayo Junio Julio Agosto S eptiembre Octubre Noviembre Diciembre Im útil

(w/m2*dia) 220 307 394 516 574 645 714 636 491 330 245 206

Superficie (m2) 177,535 177,535 177,535 177,535 177,535 177,535 177,535 177,535 177,535 177,535 177,535 177,535

Días mes 31 28 31 30 31 30 31 31 30 31 30 31

K (latitud 40º) 1.34 1.26 1.17 1.07 1.01 0.98 1.01 1.09 1.2 1.34 1.43 1.41

K (latitud 41º) 1.35 1.27 1.18 1.08 1.01 0.99 1.02 1.09 1.21 1.35 1.44 1.42

K (Latitud 40.4º) 1,344 1,264 1,174 1,074 1,010 0,984 1,014 1,090 1,021 1,344 1,434 1,414

Potencia (kw) 1.627,300 1.928,979 2.545,716 2.951,612 3.190,648 3.380,337 3.984,574 3.815,305 2.670,007 2.440,950 1.871,201 1.603,106

Te (media en el colector) 30 30 30 50 70 70 70 70 70 50 50 30 Ta (ambiente) 6 8 11 13 18 23 28 26 21 15 11 7 I (w/m2) 800 800 800 800 800 800 800 800 800 800 800 800 T* 0,03 0,0275 0,02375 0,04625 0,065 0,05875 0,0525 0,055 0,06125 0,04375 0,04875 0,02875 Rend=0,71-4,2*T* 0,584 0,5945 0,61025 0,51575 0,437 0,46325 0,4895 0,479 0,45275 0,52625 0,50525 0,58925

TOTAL (anual)

Rend panel 0,584 0,5945 0,61025 0,51575 0,437 0,46325 0,4895 0,479 0,45275 0,52625 0,50525 0,58925 Horas de Sol (h) 8,5 9,5 11 12,5 13 13,5 14 13 12 10,5 9 8 Potencia (kwh) 8.077,917 10.894,390 17.088,757 19.028,672 18.126,073 21.140,208 27.306,282 23.757,906 14.506,150 13.487,774 8.508,819 7.557,043 189.479,9925Ahorro (€) 195,558 263,742 413,702 460,665 438,814 511,783 661,058 575,155 351,179 326,526 205,990 182,948 4.587,1211

Page 108: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 108 -

Término fijo (Tfij)

Término variable

(Tvij) Tarifa Consumo Q(kWh /año) €/ cliente/mes €/ kWh

3.1

Q < 5.000 2,29 0,04165

3.2

5.000 < Q < 50.000 5,12 0,034854

3.3

50.000< Q 100.000 39,71 0,026553

3.4

100.000< Q 59,25 0,024209

Superficie Disponible (m2) 200 Superficie bruta de cada panel (m2) 2,8 Superficie en horizontal ocupada por cada panel (m2) 2,8*cos30 2,4248 Número de paneles a colocar 200/2,4248 82 Coste de cada panel (€) 594 Coste de todos los paneles (€) 594*82 48.708 Otros Costes (300 e x m2) (€) 60.000 Coste Total de la Instalación (sin subvención) (€) 108.708,0000 Subvención del IDAE(30%) 32.612,400 Subvención de la Com Madrid (200 €/m2) 40.000 Coste Total de la Instalación (con subvención) (€) 36.095,6000 Ahorro anual (sin contar el coste mantenim) (€) 4.587,1211 Coste de mantenimiento anual €) 1.000,0000 Ahorro anual (contando el mantenimiento anual) (€) 3.587,1211 Plazo de amortización (años) 10,0626

Page 109: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 109 -

PANELES Vitosol

100

Enero Febrero Marzo Abril Mayo Junio Julio Agosto S eptiembre Octubre Noviembre Diciembre Im útil (w/m2*dia) 220 307 394 516 574 645 714 636 491 330 245 206

Superficie (m2) 184,03 184,03 184,03 184,03 184,03 184,03 184,03 184,03 184,03 184,03 184,03 184,03

Días mes 31 28 31 30 31 30 31 31 30 31 30 31

K (latitud 40º) 1.34 1.26 1.17 1.07 1.01 0.98 1.01 1.09 1.2 1.34 1.43 1.41

K (latitud 41º) 1.35 1.27 1.18 1.08 1.01 0.99 1.02 1.09 1.21 1.35 1.44 1.42

K (Latitud 40.4º) 1,344 1,264 1,174 1,074 1,010 0,984 1,014 1,090 1,021 1,344 1,434 1,414

Potencia (kw) 1.686,834 1.999,549 2.638,850 3.059,594 3.307,376 3.504,005 4.130,347 3.954,886 2.767,688 2.530,251 1.939,658 1.661,755

Te (media en el colector) 30 30 30 50 70 70 70 70 70 50 50 30 Ta (ambiente) 6 8 11 13 18 23 28 26 21 15 11 7 I (w/m2) 800 800 800 800 800 800 800 800 800 800 800 800 T* 0,03 0,0275 0,02375 0,04625 0,065 0,05875 0,0525 0,055 0,06125 0,04375 0,04875 0,02875 Rend=0,84-3,36*T* 0,7392 0,7476 0,7602 0,6846 0,6216 0,6426 0,6636 0,6552 0,6342 0,693 0,6762 0,7434

TOTAL(anual)Rend panel 0,739 0,748 0,760 0,685 0,622 0,643 0,664 0,655 0,634 0,693 0,676 0,743 Horas de Sol (h) 8,500 9,500 11,000 12,500 13,000 13,500 14,000 13,000 12,000 10,500 9,000 8,000 Potencia (kwh) 10.598,714 14.201,199 22.066,588 26.182,479 26.726,245 30.397,592 38.372,571 33.686,134 21.063,212 18.411,368 11.804,369 9.882,788 263.393,260

Ahorro (€) 256,584 343,797 534,210 633,852 647,016 735,895 928,962 815,508 509,919 445,721 285,772 239,252 6.376,487

Page 110: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 110 -

Término fijo (Tfij)

Término variable

(Tvij) Tarifa Consumo Q(kWh /año) €/ cliente/mes €/ kWh

3.1

Q < 5.000 2,29 0,04165

3.2

5.000 < Q < 50.000 5,12 0,034854

3.3

50.000< Q 100.000 39,71 0,026553

3.4

100.000< Q 59,25 0,024209

Superficie Disponible (m2) 200 Superficie bruta de cada panel (m2) 2,71 Superficie en horizontal ocupada por cada panel (m2) 2,71*cos30 2,3469 Número de paneles a colocar 200/2,3469 85 Coste de cada panel (€) 842 Coste de todos los paneles (€) 842*85 71.570 Otros Costes (300 e x m2) (€) 60.000 Coste Total de la Instalación (sin subvención) (€) 131.570,0000 Subvención del IDAE(30%) 39.471,000 Subvención de la Com Madrid (175 €/m2) 40.000 Coste Total de la Instalación (con subvención) (€) 52.099,0000 Ahorro anual (sin contar el coste mantenim) (€) 6.376,4874 Coste de mantenimiento anual €) 1.000,0000 Ahorro anual (contando el mantenimiento anual) (€) 5.376,4874 Plazo de amortización (años) 9,6902

Page 111: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 111 -

1.3.-ESTUDIO ECONÓMICO

ÍNDICE

Capítulo Página 1.3.1- Objetivo, método y desarrollo………………………………...........112 1.3.2.- Conclusiones….………………........................................................114 1.3.3.-Tablas de resultados…………………………………………...……116

Page 112: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 112 -

1.3.1- Objetivo, método y desarrollo

En el documento memoria hemos hablado de las subvenciones del IDAE,

pero sólo tuvimos en cuenta la correspondiente al 30% a fondo perdido. Para llevar a

cabo nuestro estudio económico, vamos a tener en cuenta también otra opción que

presenta este organismo, que es un crédito bancario preferencial (al Euribor +1) de

hasta el 80% del coste elegible del proyecto.

Por lo tanto, El objetivo del estudio económico posterior a los cálculos es

comprobar la rentabilidad de nuestra instalación, y ver de qué forma afecta a los

fondos propios el crédito del IDAE, es decir, como repercutiría en nuestro ahorro

anual a largo plazo. Para ello, estudiamos qué rentabilidad obtendríamos sobre la

inversión realizada a 20 años, es decir, calcularemos la TIR (tasa interna de retorno)

a 20 años. Por una parte evaluaremos la TIR de proyecto, y por otra la TIR de fondos

propios.

-TIR de proyecto

En este caso, nuestra aportación A, sería el coste de la instalación

contando con la subvención a fondo perdido del IDAE más la subvención de la

comunidad de Madrid, es decir 52099 €. El flujo de caja anual Qi, que corresponde al

ahorro anual, se obtendría restando el coste de mantenimiento anual de la instalación

(1000 € ) al ahorro bruto anual que obtenemos con nuestra instalación (6376,4874 €).

Con estos datos bien ordenados, ya podemos aplicar la fórmula del TIR. El resultado

es que obtenemos una rentabilidad sobre inversión del 8%.

Page 113: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 113 -

-TIR de fondos propios

En este caso, nuestra aportación A, sería el coste de la instalación

contando con la subvención a fondo perdido del IDAE más la subvención de la

comunidad de Madrid, y con el préstamo con intereses del IDAE, es decir 12628 €.

Como sabemos que el préstamo es de hasta el 80% de 375 € por cada

1000 € de coste total de la Instalación, multiplicamos dicho coste por 375, por 0.8 y

dividimos entre1000, obteniendo un préstamo de 39471 €.

Este préstamo se tiene que devolver en un plazo de 10 años, por lo que

para ver que cantidad tenemos que devolver cada año, dividimos el préstamo entre

10. A esto le llamamos principal. Por otra parte a dicha cantidad hay que sumarle el

interés anual, que es del EURIBOR +1, sobre el capital vivo, es decir, sobre la

cantidad total que queda por devolver, con lo cual lo normal es que cada año tenga

que devolver en total una cantidad menor.

Para ver cuanto vale el EURIBOR, como no se pueden encontrar

estimaciones para 10 años, nos fijamos en la estimación hasta dentro de 12 meses,

que viene reflejada en la página web www.euribor.org, y consideraremos que nuestro

préstamo tiene un EURIBOR a tipo fijo, con lo cual, cada año su valor será de 2,22.

El flujo de caja anual Qi, que corresponde al ahorro anual, se obtendría

restando el coste de mantenimiento anual de la instalación (1000 € ) y la cantidad

total a devolver (intereses más principal, que es variable con el tiempo), al ahorro

bruto anual que obtenemos con nuestra instalación (6376,4874 €). Con estos datos

bien ordenados, ya podemos aplicar la fórmula del TIR. El resultado es que

obtenemos una rentabilidad sobre inversión del 12%.

Page 114: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 114 -

1.3.2.- Conclusiones

A la vista de los resultados, podemos observar que con la TIR de fondos

propios obtenemos una mayor rentabilidad sobre inversión. ¿Por qué? Muy sencillo:

por una parte cabría pensar, que estamos ahorrando más a la larga viendo la TIR de

proyecto, y así es, ya que el ahorro total en 20 años se estima en unos 55.500 €,

mientras que en el otro caso sería de unos 48.000 €. Esto es debido a los intereses

que hay que pagar anualmente, además de devolver el préstamo. Pero ocurre una

cosa; los intereses son tan bajos, que el ahorro anual puede cubrir sin ningún

problema lo que hay que devolver (principal más intereses), de modo que se sigue

ahorrando, y cada año más, hasta llegar al año 10, en el que ya se ha devuelto todo

(el capital vivo es nulo), y se ahorra anualmente lo mismo que en el caso de la TIR

de proyecto, todo ello, habiendo realizado un desembolso inicial mucho más bajo.

Por eso obtenemos una TIR mayor de fondos propios (12% frente al 8%),

porque es la rentabilidad sobre la inversión realizada. En dicho caso, aunque el

ahorro anual es menor que en el otro, cada vez se le va igualando más, mientras que

el desembolso inicial es mucho menor.

Hay que señalar, por otra parte, que esta opción es viable mientras las

condiciones sean tan buenas, es decir, las de un interés tan bajo.

Por lo tanto, y de este modo, hemos comprobado tanto la viabilidad

económica del proyecto, como su rentabilidad, siendo positiva en ambos casos.

Page 115: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 115 -

1.3.3.-Tablas de resultados

En la página 116 se muestra una primera tabla, que refleja los valores del

EURIBOR, así como el valor que alcanza el préstamo, y los intereses y el principal a

devolver cada año.

En la página 117 se muestra una segunda tabla con los datos necesarios

para calcular el TIR en los dos casos comentados, así como el resultado de los

mismos.

Page 116: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 116 -

años 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 principal 39471 3947,1 3947 3947,1 3947,1 3947,1 3947,1 3947 3947 3947,1 3947,1 0 0 0 0 0 0 0 0 0 0 intereses 1263,07 1137 1010,5 884,15 757,84 631,54 505,2 378,9 252,61 126,31 0 0 0 0 0 0 0 0 0 0 Total a devolver 5210,17 5084 4957,6 4831,3 4704,9 4578,6 4452 4326 4199,7 4073,4 0 0 0 0 0 0 0 0 0 0 Capital vivo 35523,9 31577 27630 23683 19736 15788 11841 7894 3947,1 0 0 0 0 0 0 0 0 0 0 0 Año 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Euribor 2,2% 2,2% 2,2% 2,2% 2,2% 2,2% 2,2% 2,2% 2,2% 2,2% 2,2% 2,2% 2,2% 2,2% 2,2% 2,2% Coste Instalación 131.570 Préstamo 39.471 El préstamo es el 80% de 300 por cada 1000€ de coste de la instalación

Page 117: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 117 -

A Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 TOTAL

Ingreso 6376,5 6376 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5 6376,5

intereses 1263,1 1137 1010,5 884,15 757,84 631,54 505,23 378,92 252,61 126,31 0 0 0 0 0 0 0 0 0 0

principal 3947,1 3947 3947,1 3947,1 3947,1 3947,1 3947,1 3947,1 3947,1 3947,1 0 0 0 0 0 0 0 0 0 0

mantenimiento 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Flujo de caja (con

préstamo) -

12628 166,32 292,6 418,93 545,24 671,54 797,85 924,16 1050,5 1176,8 1303,1 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 48483,9

Flujo de caja (sin

préstamo) -

52099 5376,5 5376 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 5376,5 55430,7

Total instalacion 131.570 Instalación (con ayudas) 52.099

Prestamo 39.471 Aportación (con

préstamo) 12.628 Aportación (sin

préstamo) 52.099

Tir 12% (de fondos

propios) Tir 8% (de proyecto)

Page 118: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 118 -

1.4.-ANEXOS

ÍNDICE

Capítulo Página 1.4.1- Tablas usadas en los cálculos………………………………...........119 1.4.2.-Características de los paneles….......................................................124 1.4.3.-Subvenciones y ayudas….…………………………………...……129 1.4.3.1.-Subvenciones del IDAE……………………………………..…...129

1.4.3.2.-Subvenciones de la Comunidad de Madrid………………………131

Page 119: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 119 -

1.4.1- Tablas usadas en los cálculos

Page 120: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 120 -

Page 121: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 121 -

Page 122: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 122 -

Page 123: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 123 -

Page 124: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 124 -

1.4.2.-Características de los paneles

Page 125: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 125 -

Page 126: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 126 -

Page 127: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 127 -

Page 128: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 128 -

Page 129: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 129 -

1.4.3.-Subvenciones y ayudas

1.4.3.1.-Subvenciones del IDAE

INTENSIDADES DE AYUDAS POR ÁREAS Y TIPOLOGÍAS

ÁREAS Y TIPOLOGÍAS

AYUDA IDAE / COSTES DE

REFERENCIA

INTENSIDAD MÁXIMA DE AYUDA

BRUTA/ GASTOS SUBVENCIONABLES

ENERGÍAS RENOVABLES

S-4 SOLAR FOTOVOLTAICA CONECTADA A RED > 10 KWP

E-5 EÓLICA CON POTENCIA INFERIOR A 2 MW

E-7 MINIHIDRÁULICA DE POTENCIA INSTALADA HASTA 1 MW

E-8 APROVECHAMIENTO ENERGÉTICO DEL BIOGÁS

10 %

S-7 SOLAR DE CONCENTRACIÓN 15 %

S-3 SOLAR FOTOVOLTAICA CONECTADA A RED DE HASTA DE 10 KWP

E-6 APLICACIÓNES ENERGÉTICAS DE LA BIOMASA

E-10 TRANSFORMACIONES DE LA BIOMASA PARA USO ENERGÉTICO

E-11 TRANSFORMACIONES DE OTRAS FUENTES DE ENERGÍA

E-12 PILAS DE COMBUSTIBLE

20 %

S-1 INSTALACIONES EÓLICO-SOLARES (MIXTAS)

S-2 SOLAR FOTOVOLTAICA AISLADA

S-5 SOLAR TÉRMICA SISTEMAS PREFABRICADOS

S-6 SOLAR TÉRMICA POR ELEMENTOS

30 %

EFICIENCIA ENERGÉTICA

E-1 AHORRO MEJORA DE LA EFICIENCIA Y SUSTITUCIÓN EN LA INDUSTRIA

E-2 EFICIENCIA ENERGÉTICA EN EDIFICIOS

E-3 EFICIENCIA ENERGÉTICA EN EL SECTOR PÚBLICO

E-4 COGENERACIÓN NO INDUSTRIAL

E-9 VALORIZACIÓN ENERGÉTICA DE RESIDUOS

40%

Intensidad máxima =

40 % coste subvencionable

+ bonificación regiones

asistidas +

bonificación PYMES

(Apartados E.1.3 y E.1.4 y E.1.5 de las Directrices.

2001/C 37/03)

Page 130: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 130 -

GRUPOS DE FINANCIACIÓN Y TIPOLOGÍAS

GRUPO DE FINANCIA

CIÓN

AYUDA/ PRÉSTAMO TIPOLOGÍAS

1

125 €/1.000 €

E-2 EFICIENCIA ENERGÉTICA EN EDIFICIOS

E-4 COGENERACIÓN NO INDUSTRIAL

E-5 EÓLICA CON POTENCIA INFERIOR A 2 MW

E-7 MINIHIDRÁULICA DE POTENCIA INSTALADA HASTA 1 MW

S-4 SOLAR FOTOVOLTAICA CONECTADA A RED DE MAS DE 10 KWP

E-8 APROVECHAMIENTO ENERGÉTICO DEL BIOGÁS

E-9 VALORIZACIÓN ENERGÉTICA DE RESIDUOS

2 187,5 €/1.000 €

E-1 AHORRO MEJORA DE LA EFICIENCIA Y SUSTITUCIÓN EN LA INDUSTRIA

S-7 SOLAR DE CONCENTRACIÓN

3

250 €/1.000 €

E-3 EFICIENCIA ENERGÉTICA EN EL SECTOR PÚBLICO

E-6 APLICACIÓNES ENERGÉTICAS DE LA BIOMASA

S-3 SOLAR FOTOVOLTAICA CONECTADA A RED DE HASTA DE 10 KWP

E-10 TRANSFORMACIONES DE LA BIOMASA PARA USO ENERGÉTICO

E-11 TRANSFORMACIONES DE OTRAS FUENTES DE ENERGÍA

E-12 PILAS DE COMBUSTIBLE

4

375 €/1.000 €

S-1 INSTALACIONES EÓLICO-SOLARES (MIXTAS)

S-2 SOLAR FOTOVOLTAICA AISLADA

S-5 SOLAR TÉRMICA SISTEMAS PREFABRICADOS

S-6 SOLAR TÉRMICA POR ELEMENTOS

En todos los casos la financiación máxima será del 80 % de la inversión, con un plazo de amortización de 8 o 10 años, incluido 1 de carencia.

Page 131: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 131 -

1.4.3.2.-Subvenciones de la Comunidad de Madrid

Orden 98/2005,de 13 de enero, de la Consejería de Economía e Innov ación Tecnológica, por la que se regula la concesión de ayudas para la promoci ón de las energías renovables y el ahorro y la eficiencia energética p ara el periodo 2005-2007

Promoción de las energías renovables y ahorro y eficiencia energética.

Beneficiarios − Corporaciones locales, así como sus agrupaciones o Mancomunidades − Otras entidades públicas o con participación pública − Instituciones sin ánimo de lucro − Comunidades de propietarios o agrupaciones de la misma − Empresas y otras personas jurídicas no incluidas en los apartados anteriores. −Personas físicas

Conceptos Promover actuaciones de uso racional de la energía y utilización de fuentes de energía renovables en el ámbito de la Comunidad de Madrid incentivando el autoabastecimiento y protección del medio ambiente.

Cuantía A)Proyectos de ahorro y eficiencia energética. Ayuntamientos: 30% de la inversión subvencionable. Comunidades de propietarios, sustitución de calderas a gas: 25% carbón y 15% gasóleo. Resto: 20% B) Energías renovables: Solar térmica (excepto piscinas privadas, instalaciones ΣΣΣΣ obligatorias por Ordenanzas municipales o instalaciones de superficie inferior a 10 m2, salvo que tengan carácter demostrativo): 35 a 225 euros/m2, según tipo de colector. Solar fotovoltaica (sistemas aislados o sistemas conectados a redΣ de más de 5 kWp, o de potencia inferior que tengan carácter demostrativo): 4 euros/Wp en sistemas aislados, 2 euros/Wp conectados a red para Ayuntamientos, entidades públicas, comunidades de propietarios e instituciones sin ánimo de lucro y 1 euro/Wp para el resto. − Eólica: 30% de la inversión subvencionable. − Biomasa y residuos: 30%. − Hidráulica (instalaciones nuevas o rehabilitación, hasta 10 MW): 30% − Geotérmica: 40% Σ Instalaciones mixtas: cuantía proporcional. C) Diagnósticos, auditorías, proyectos y estudios previos de instalaciones tipos A) y B): 30% de la inversión subvencionable. D) Proyectos de investigación, desarrollo y demostración: 40% de la inversión subvencionable. E) Planes energéticos, estudios, consultorías, actividades divulgativas y actuaciones de carácter general: 40% de la inversión subvencionable para Ayuntamientos y 60% para

Page 132: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 132 -

instituciones sin ánimo de lucro.

CUANTÍA MÁXIMA DE LAS AYUDAS 70% de la inversión en todos los casos, y - 100.000 euros para personas físicas. - 100.000 euros en tres años para empresas. - 300.000 euros para resto beneficiarios.

Requisitos - Realizar la inversión en el ámbito territorial de la Comunidad de Madrid. - No tener deudas contraídas con la Comunidad de Madrid en período ejecutivo de pago, salvo que estuvieran debidamente garantizadas.

Información complementaria

El procedimiento de concesión de las audas será el de concurrencia no competitiva.

Organismo responsable

Servicio de Programas Industriales y de Energía de la Dirección General de Industria, Energía y Minas de la Consejería de Economía e Innovación Tecnológica.

Presentación de solicitudes

*RECOGIDA DE SOLICITUD: - Dirección General de Industria, Energía y Minas. C/ Cardenal Marcelo Spínola 14, Edificio F-4

* PRESENTACIÓN DE SOLICITUD Y DOCUMENTACIÓN: - Registro de la Dirección General de Industria, Energía y Minas. C/ Cardenal Marcelo Spínola 14, Edificio F-4 - En cualquier Registro Oficial de la Comunidad de Madrid.

Documentación a Presentar ---

Fecha de inicio 19/01/2005

Fecha de finalización 28/02/2005

Plazo solicitud Cerrado

Impresos Solicitud general no disponible

Normativa aplicable

Orden 98/2005, de 13 de enero de la Consjería de Economía e Innovación Tecnológica (BOCM 18/01/2005)

(*) Estos documentos están almacenados en formato PDF © versión 4.05C, si necesita un visor de este tipo de documento puede descargarlo desde aquí

Jerarquía 040104 - D.G. de Industria, Energía y Minas

Objeto de subvención 99 - Otras Ayudas

Page 133: Capítulo Página360 espejos con un foco común e hizo una demostración en los jardines del Palacio de Versalles, encendiendo una pila de leña a 60 m. El primer colector solar plano

- 133 -

Sector de ayuda 01 - Industria

Beneficiario 14 - 14

Número de ayuda 00002353

Esta información es meramente orientativa. el texto completo y válido de la norma lo puede descargar desde el icono de "Normativa aplicable".