brújula

20
Brújula De Wikipedia, la enciclopedia libre Saltar a navegación , búsqueda Para otros usos de este término, véase brújula (desambiguación) . Brújula magnética moderna. La brújula o compás magnético es un instrumento que sirve de orientación y que tiene su fundamento en la propiedad de las agujas magnetizadas. Por medio de una aguja imantada señala el Norte magnético , que es ligeramente diferente para cada zona del planeta, y distinto del Norte geográfico . Utiliza como medio de funcionamiento el magnetismo terrestre . La aguja imantada indica la dirección del campo magnético terrestre , apuntando hacia los polos norte y sur. Únicamente es inútil en las zonas polares norte y sur , debido a la convergencia de las líneas de fuerza del campo magnético terrestre . Téngase en cuenta que a mediados del siglo XX la brújula magnética comenzó a ser sustituida -principalmente en aeronaves- por la brújula giroscópica y que actualmente los giróscopos de tales brújulas están calibrados por haces de láser . En la actualidad la brújula está siendo reemplazada por sistemas de navegación más avanzados y completos, que brindan más información y precisión ; sin embargo, aún es muy popular en actividades que requieren alta movilidad o que impiden, debido a su naturaleza, el acceso a energía eléctrica , de la cual dependen los demás sistemas. Contenido

Upload: christian

Post on 30-Jun-2015

458 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Brújula

BrújulaDe Wikipedia, la enciclopedia libreSaltar a navegación, búsqueda Para otros usos de este término, véase brújula (desambiguación).

Brújula magnética moderna.

La brújula o compás magnético es un instrumento que sirve de orientación y que tiene su fundamento en la propiedad de las agujas magnetizadas. Por medio de una aguja imantada señala el Norte magnético, que es ligeramente diferente para cada zona del planeta, y distinto del Norte geográfico. Utiliza como medio de funcionamiento el magnetismo terrestre. La aguja imantada indica la dirección del campo magnético terrestre, apuntando hacia los polos norte y sur. Únicamente es inútil en las zonas polares norte y sur, debido a la convergencia de las líneas de fuerza del campo magnético terrestre.

Téngase en cuenta que a mediados del siglo XX la brújula magnética comenzó a ser sustituida -principalmente en aeronaves- por la brújula giroscópica y que actualmente los giróscopos de tales brújulas están calibrados por haces de láser.

En la actualidad la brújula está siendo reemplazada por sistemas de navegación más avanzados y completos, que brindan más información y precisión; sin embargo, aún es muy popular en actividades que requieren alta movilidad o que impiden, debido a su naturaleza, el acceso a energía eléctrica, de la cual dependen los demás sistemas.

Contenido

[ocultar]

1 Historia de la brújula o 1.1 Historia previa o 1.2 Mesoamérica o 1.3 China

1.3.1 Desarrollos y usos posteriores en China 1.3.2 Difusión 1.3.3 Posible invención independiente en Europa 1.3.4 Impacto en el Mediterráneo 1.3.5 Utilización en minería

o 1.4 La brújula seca 2 Brújulas modernas

Page 2: Brújula

3 Balanceo de una brújula 4 Sistemas de orientación y ubicación actuales 5 Véase también 6 Enlaces externos 7 Referencias

[editar] Historia de la brújula

Se cree que fue inventada en China, aproximadamente en el siglo IX, e inicialmente consistía en una aguja imantada flotando en una vasija llena de agua. Más adelante fue mejorada para reducir su tamaño e incrementar su practicidad, cambiándose la vasija de agua por un eje rotatorio, y añadiéndose una "rosa de los vientos" que sirve de guía para calcular direcciones. Actualmente las brújulas han recibido pequeñas mejoras que, si bien no cambian su sistema de funcionamiento, hacen más sencillas las mediciones a realizar. Entre estas mejoras se encuentran sistemas de iluminación para toma de datos en entornos oscuros, y sistemas ópticos para mediciones en las que las referencias son objetos situados en la lejanía.

[editar] Historia previa

Antes de la creación de la brújula, la dirección en mar abierto se determinaba con la posición de los cuerpos celestes. Algunas veces la navegación se apoyaba con el uso de sondas. Las dificultades principales que se presentaban con el uso de estos métodos eran las aguas demasiado profundas para el uso de sondas, y que muchas veces el cielo estaba demasiado nublado, o el clima era muy neblinoso. La brújula se usaba principalmente para paliar estos problemas, por lo que culturas que no los padecían adoptaron poco el uso de dicho instrumento. Tal es el caso de los árabes, que generalmente contaban con cielos despejados al navegar el Golfo Pérsico y el Océano Índico. Por su parte, los marineros del relativamente poco profundo Mar Báltico hicieron uso extensivo de las sondas. El astrolabio, antigua invención griega, también ayudaba en la navegación.

[editar] Mesoamérica

El descubrimiento de un artefacto Olmeca de hematita que funcionaba de forma similar a una brújula ha generado teorías de que "los Olmecas podrían haber descubierto y usado una brújula de magnetita desde antes del año 1000 AC".1

[editar] China

Page 3: Brújula

Diagrama de una brújula de la dinastía Ming.

Joseph Needham atribuye la invención de la brújula a China en Science and Civilization in China (Ciencia y Civilización en China),2 pero debido a que existen desacuerdos en la fecha de aparición del artefacto, es apropiado listar literatura antigua que hace referencia a su posible invención, en orden cronológico:

La más antigua referencia al magnetismo en la literatura china se encuentra en un libro del siglo IV llamado 鬼谷子: "Libro del jefe del valle de los demonios" (hasta ahora -julio de 2009 d. C.- más conocido por su transcripción al inglés como: Book of the Devil Valley Master): "La magnetita hace que el hierro venga, o lo atrae."3

La primera mención de la atracción magnética de una aguja se encuentra en un libro chino escrito entre los años 20 y 100 (Louen-heng): "Una magnetita atrae una aguja."4 En 1948, Wang Tchen-touo intentó construir una brújula en forma de cuchara que apuntaba hacia el sur, basándose en el texto. Sin embargo, apuntó que "no hay ninguna mención explícita de un magneto en el Louen-heng" y que "se deben asumir algunas hipótesis para poder llegar a alguna conclusión".5

La primera referencia a un dispositivo magnético usado como señalador de direcciones está en un libro de la Dinastía Song con fechas de 1040-44. Allí se encuentra una descripción de un "pez que señala al sur" en un tazón de agua, que se alineaba a sí mismo hacia el sur. En el escrito, el objeto se recomienda como método de orientación en "la oscuridad de la noche". No hay, sin embargo, ninguna mención a su uso en navegación, ni de cómo el pez fue magnetizado.6

La primera referencia indiscutible a una aguja magnetizada en escritos chinos aparece en 1086.7 El “Ensayo del tesoro de los sueños” escrito por Shen Kuo, de la dinastía Song, contenía una descripción detallada de cómo los geomantes magnetizaron una aguja frotando su punta con magnetita, y colgando la aguja magnética con una fibra de seda con un poco de cera pegada en el centro de la aguja. Shen Kuo señaló que una aguja preparada de este modo algunas veces apuntaba hacia el norte y otras hacia el sur.

El primer escrito que hace alusión al uso de una aguja magnetizada en navegación es el libro “Charlas de la mesa de Pingzhou” (por ahora más conocido fuera de China por su transliteración al inglés como Pingzhou Table Talks, de Zhu Yu, con fecha del año 1117: "El navegante conoce la geografía, él observa las estrellas en la noche, observa el sol en el día; cuando está oscuro y nublado, él observa la brújula". Esto, por supuesto, habría recibido una valiosa ayuda del descubrimiento de Shen Kuo del concepto del norte verdadero: la declinación magnética hacia el polo norte magnético.

Muchas de las antiguas brújulas chinas eran utilizadas en el marco conjunto de la magia y de la ciencia y la protociencia, por ejemplo la brújula magnética es un instrumento fundamental en la geomancia y el feng shui; las brújulas chinas tradicionales para el feng shui en lugar de los puntos cardinales (N-E-S-W/Ó) suelen tener por marco los

Page 4: Brújula

hexagramas binarios del I Ching, es decir tales brújulas chinas están en el centro del diagrama llamado Pa Kua y el punto cardinal que suelen utilizar de referencia es el Sur ya que para la tradición China el Norte era nefasto (por el frío se asociaba a la muerte) y por oposición el Sur era (como el Este) fasto o bienaventurado (de allí consideraban que venía el calor y con ello la vida).

[editar] Desarrollos y usos posteriores en China

El primer uso de una brújula de navegación de 48 posiciones en el mar está mencionado en un libro titulado "Las aduanas de Camboya", escrito por Zhou Daguan, diplomático de la dinastía Yuan. Allí se describe su viaje en 1296 desde Wenzhou hasta Angkor Thom, donde un marinero tomó una dirección de la aguja de "ding wei", equivalente a 22.5° SO. Luego de arribar en Baria, el marinero tomó un dato de la "Aguja (brújula) de Kun Shen", o 52.5° SO.8

El mapa de navegación de Zheng He, también conocido como el "Mapa Mao Kun", contiene una gran cantidad de detalladas tomas de aguja de viajes de Zheng He.9

Un manual de instrucciones titulado Shun Feng Xiang Song (Vientos propicios -o justos- para compañía) en la Biblioteca Bodleiana de contiene gran detalle acerca del uso de la brújula de navegación.

[editar] Difusión

Rosa de los vientos de una brújula de navegación.

Existe un gran debate acerca de qué ocurrió con la brújula luego de su aparición en China. Diferentes teorías incluyen:

Viaje de la brújula desde China hasta el Medio Este a través de la Ruta de la Seda, y luego a Europa.

Transferencia directa de la brújula de China a Europa, y luego de Europa al Medio Este.

Creación independiente de la brújula en Europa, y luego paso de ésta al Medio Este.

Page 5: Brújula

Las dos últimas teorías se soportan en evidencias de aparición de la brújula en trabajos europeos antes que en arábigos. La primera mención europea de una aguja magnetizada y su uso entre marineros ocurre en De naturis rerum (Las cosas naturales) , de Alexander Neckam, probablemente escrito en París en 1190.10 Otra evidencia para esto incluye la palabra árabe para "brújula" (al-konbas), similar al kompass o compass de las lenguas germánicas, posiblemente derivada de la antigua palabra italiana para "brujula".

En el mundo árabe, la más temprana referencia al dispositivo se encuentra en "El libro tesaurus de los mercaderes" (conocido por su transcripción al inglés como: The Book of the Merchant's Treasure), escrito en árabe por Baylak al-Kibjaki en El Cairo en 1282.11 Dado que el autor describe haber presenciado el uso de una brújula en un viaje en barco 40 años antes, algunos eruditos se inclinan a anteceder la posible fecha de aparición del objeto consecuentemente. También hay una mención musulmana a una brújula con forma de pez de hierro en un libro persa de 1232.12

En Europa la brújula o compás magnético es oficialmente conocida desde el Renacimiento, inicialmente se creyó que obraba por brujería de allí su nombre más común que es un diminutivo de bruja; desde fines de la Edad Media y hasta aproximadamente mediados del siglo XIX se creyó que la aguja imantada apuntaba hacia el Polo Norte y se creía que esto ocurría porque -se suponía- existía en el Polo Norte una gigantesca montaña de hierro o de magnetita en medio de una isla (imaginaria) a la que se llamó Rupes Nigra.

[editar] Posible invención independiente en Europa

Existen varios argumentos a favor o en contra de la teoría de que la brújula europea fue un invento independiente.

Argumentos a favor:

La brújula de navegación europea apunta al norte, contrario a la brújula china que siempre apunta al sur.

La brújula europea siempre ha tenido 16 divisiones básicas, no 24 como la china.13

La aparente imposibilidad de los árabes de servir como intermediarios entre este y oeste debido a la aparición más temprana de la brújula en Europa10 que en el mundo musulmán.11 12

El hecho de que la brújula europea evolucionó rápidamente de la aguja magnetizada (1190)10 a la brújula seca (alrededor de 1300)14 podría indicar que el anterior invento del artefacto de aguja y tazón fue hecho independientemente.

Argumentos en contra:

La prioridad temporal de la brújula de navegación china (1117) comparada con la europea (1190).10

La forma común de las primeras brújulas europeas con una aguja flotando en un tazón de agua.15

Page 6: Brújula

[editar] Impacto en el Mediterráneo

En el Mediterráneo, la introducción de la brújula de navegación, al principio sólo conocida como un señalador magnetizado flotando en un tazón de agua,16 generó, junto con las mejoras en los métodos de cálculos "a ojo" y el desarrollo de las cartas portulanas, un incremento en la navegación durante meses de invierno en la segunda mitad del siglo XIII.17 Mientras que la tradición hasta entonces evitaba realizar viajes marítimos entre octubre y abril, debido en parte a la falta de cielos despejados durante el invierno, la prolongación de las temporadas de navegación resultaron en un gradual pero sostenido incremento del tráfico marino: Alrededor de 1290, la temporada de navegación podía empezar a finales de enero o en febrero, y terminar en diciembre.18 Esos meses adicionales eran de considerable importancia económica. Por ejemplo, permitió a las flotas venecianas hacer dos viajes anuales al levante, en vez de uno sólo.19

Al mismo tiempo, el tráfico entre el norte de Europa y su zona mediterránea se incrementó notoriamente, con apariciones de viajes comerciales directos desde el Mediterráneo hasta el canal inglés en las décadas finales del siglo XIII. Un factor puede ser que la brújula hizo la travesía por el golfo de Vizcaya más fácil y segura.20

Algunos críticos como Kreutz opinan que no fue sino hasta 1410 que realmente el uso de la brújula como medio de orientación se popularizó.21

[editar] Utilización en minería

La brújula se utilizó por primera vez como herramienta de orientación bajo tierra en la ciudad minera de Massa, Italia, donde agujas magnetizadas flotantes se usaron como guías para determinar la dirección de los túneles a partir del siglo 13.22 En la segunda mitad del siglo 15, la brújula pertenecía al equipo básico que utilizaban los mineros de Tirol para sus trabajos y tener una ubicación de la ruta planeada, y poco tiempo después fue publicado un tratado que contenía los usos de la brújula en trabajos subterráneos, escrito por el minero alemán Rülein von Calw (1463-1525).23

[editar] La brújula seca

Aguja rotatoria de una brújula en una copia de la 'Epístola de magnete' de Peter Peregrinus (1269).

La brújula seca fue inventada en Europa alrededor del año 1300. Este artilugio consta de tres elementos: una aguja magnetizada, una caja con cubierta de vidrio y una carta náutica con la rosa de los vientos dibujada en una de sus caras. La carta se adhería en la aguja, que a su vez se encontraba sobre un eje de forma que podía rotar libremente.

Page 7: Brújula

Como la brújula se ponía en línea con la quilla del barco y la carta giraba siempre que el barco cambiaba de dirección, el aparato indicaba en todo momento el rumbo que llevaba el barco.24 A pesar de que el sistema de agujas en cajas ya había sido descrito por el erudito francés Peter Peregrinus en 1269,25 fue el italiano Flavio Gioja, piloto marino originario de Amalfi, quien perfeccionó la brújula de navegación suspendiendo la aguja sobre la carta náutica, dándole al aparato su apariencia familiar.14 Ese modelo de brújula, con la aguja atada a una tarjeta rotatoria, también se describe en un comentario de la Divina Comedia de Dante (1380), y en otra fuente se habla de una brújula portátil en una caja (1318),26 soportando la noción de que la brújula seca era conocida en Europa por esa época.27

[editar] Brújulas modernas

Brújula moderna con líquido.

Las brújulas de navegación actuales utilizan una aguja o disco magnetizados dentro de una cápsula llena con algún líquido, generalmente aceite, queroseno o alcohol; dicho fluido hace que la aguja se detenga rápidamente en vez de oscilar repetidamente alrededor del norte magnético. Fue en 1936 que Tuomas Vohlonen inventó la primera brújula portátil llena de líquido, diseñada para uso individual.28 Además, algunas brújulas incluyen un transportador incorporado que permiten tomar medidas exactas de rumbos directamente de un mapa.29 Algunas otras características usuales en brújulas modernas son escalas para tomar medidas de distancias en mapas, marcas luminosas para usar la brújula en condiciones de poca luz y mecanismos ópticos de acercamiento y observación (espejos, prismas, etc.) para tomar medidas de objetos lejanos con gran precisión.

Algunas brújulas especiales usadas en la actualidad incluyen la brújula de Quibla, usada por los musulmanes para obtener la dirección de la Meca al orar sus plegarias,30 y la brújula de Jerusalén, usada por los judíos para hallar la dirección a Jerusalén para realizar sus oraciones.31

[editar] Balanceo de una brújula

Page 8: Brújula

Debido a que la inclinación e intensidad del campo magnético terrestre varía a diferentes latitudes, las brújulas generalmente son balanceadas durante su fabricación. Este balanceo previene medidas erróneas de la brújula debido a las mencionadas variaciones de campo magnético. La mayoría de fabricantes balancean sus brújulas para una de 5 zonas terrestres, que van desde la zona 1, que cubre la mayor parte del hemisferio norte, a la zona 5, que cubre Australia y los océanos del sur. Suunto, fabricante de equipos para exploración, introdujo al mercado las primeras brújulas de 2 zonas, que pueden usarse en un hemisferio completo, e incluso usarse en el otro sin tener fallos importantes de precisión.32 33

Países representativos de cada zona

Zona 1: Hemisferio Norte (Estados Unidos, Norte de Europa y Asia) Zona 2: México, América central, Panamá, Colombia, Venezuela, Norte de

África Zona 3: Perú, Bolivia, Brasil, África central Zona 4: Paraguay, Uruguay, Sur de Argentina, Nueva Guinea, Sur de África Zona 5: Australia, Antártica, Nueva Zelanda

[editar] Sistemas de orientación y ubicación actuales

Hoy en día la tecnología y computación, además del avance satelital, han dejado muy de lado la brújula reemplazándola por el GPS (o, Global Position System - Sistema de Posicionamiento Global).

Este sistema da las coordenadas exactas la cual se calcula mediante una triangulación que realizan satélites de este sistema. Los equipos de posicionamiento tienen el tamaño de un teléfono móvil, o el de una calculadora científica. Estos proveen al instante, en cualquier rincón del globo, información de coordenadas, mientras que otros modelos adicionan mapas de la zona que incluyen rutas, gasolineras, puestos sanitarios, y hasta el relieve u hostelería.

En estas épocas toda nave, embarcación o aérea, equipo civil o militar puede estar al alcance de estos equipos.

Sin embargo, barcos y aviones siguen llevando brújulas mejoradas que pueden servir como guía ante desperfectos en sistemas más precisos. Las personas dedicadas a actividades como el senderismo o la exploración, también continúan utilizando la brújula, ya que no tiene partes frágiles y las posibilidades de desperfectos son menores. Además, no requieren pilas (lo cual es relevante desde un punto de vista ecológico y práctico) o acceso a una toma de electricidad.

En sus inicios el propio Departamento de Defensa programó errores de cálculo codificados en las transmisiones de los satélites GPS para limitarlo solamente a la actividad militar que sí contaba con decodificadores para interpretar correctamente las señales, pero a partir de mayo de 2000 esta práctica quedó cancelada y hoy en día el sistema GPS se utiliza ampliamente en muchas actividades de la vida civil, aunque no está exento de ser reprogramado de nuevo en caso de cualquier conflicto bélico.

Page 9: Brújula

Este sistema permite conocer la posición y la altura a la nos encontramos situados en cualquier punto de la Tierra en todo momento, ya sea que estemos situados en un punto fijo sin desplazarnos, e incluso en movimiento, tanto de día como de noche.

El sistema GPS permite rastrear también, en tiempo real, la ubicación de una persona, animal, vehículo, etc., desde cualquier sitio y prestar auxilio si fuera necesario, con la condición que estén equipados con un dispositivo que pueda emitir algún tipo de señal, ya sea de radio o telefónica, que permita su localización.

La primera prueba exitosa del sistema GPS desde el punto de vista práctico como instrumento de ayuda a la navegación, la realizó el trasbordador espacial Discovery en el propio año que se puso en funcionamiento el sistema. Actualmente los satélites GPS pertenecen a una segunda generación denominada Block II.

COMPOSICIÓN DEL SISTEMA GPS

El sistema GPS consta de tres partes principales: los satélites, los receptores y el control terrestre.

El sistema se compone de 24 satélites distribuidos en seis órbitas polares diferentes, situadas a 2 169 kilómetros (11 000 millas) de distancia de la Tierra. Cada satélite la circunvala dos veces cada 24 hora. Por encima del horizonte siempre están “visibles” para los receptores GPS por lo menos 4 satélites, de forma tal que puedan operar correctamente desde cualquier punto de la Tierra donde se encuentren situados.

Por norma general y para mayor exactitud del sistema, dentro del campo visual de cualquier receptor GPS siempre hay por lo menos 8 satélites presentes. Cada uno de esos satélites mide 5 m de largo y pesa 860 kg . La energía eléctrica que requieren para su funcionamiento la adquieren a partir de dos paneles compuestos de celdas solares adosadas a sus costados. Están equipados con un transmisor de señales codificadas de alta frecuencia, un sistema de computación y un reloj atómico de cesio, tan exacto que solamente se atrasa un segundo cada 30 mil años.

 

Page 10: Brújula

La posición que ocupan los satélites en sus respectivas órbitas facilita que el receptor GPS reciba, de forma constante y simultánea, las señales de por lo menos 6 u 8 de ellos, independientemente del sitio donde nos encontremos situado. Mientras más señales capte el receptor GPS, más precisión tendrá para determinar las coordenadas donde se encuentra situado.

Satélite GPS en órbita. Representación gráfica: NASATIPOS DE RECEPTORES GPS

Los receptores GPS detectan, decodifican y procesan las señales que reciben de los satélites para determinar el punto donde se encuentran situados y son de dos tipos: portátiles y fijos. Los portátiles pueden ser tan pequeños como algunos teléfonos celulares o móviles. Los fijos son los que se instalan en automóviles o coches, embarcaciones, aviones, trenes, submarinos o cualquier otro tipo de vehículo.

GPS portátil. Se puede utilizar moviéndonos a pié o dentro del coche.Control terrestre de los satélites

El monitoreo y control de los satélites que conforman el sistema GPS se ejerce desde diferentes estaciones terrestres situadas alrededor del mundo, que rastrean su trayectoria orbital e introducen las correcciones necesarias a las señales de radio que transmiten hacia la Tierra. Esas correcciones benefician la exactitud del funcionamiento del sistema, como por ejemplo las que corrigen las distorsiones que provoca la ionosfera en la recepción de las señales y los ligeros cambios que introducen en las órbitas la atracción de la luna y el sol.

Receptor GPS situado de forma fija en el salpicadero de un coche o automóvil. A la derecha se puede apreciar el< trazado de las calles de la urbanización por las que se desplaza el vehículo en esos momentos.

PRINCIPIO DE FUNCIONAMIENTO DEL GPSLos receptores GPS más sencillos están preparados para determinar con un margen mínimo de error la latitud, longitud y altura desde cualquier punto de la tierra donde nos encontremos situados. Otros más completos muestran también el punto donde hemos estado e incluso trazan de forma visual sobre un mapa la trayectoria seguida o la que vamos siguiendo en esos momentos. Esta es una capacidad que no poseían los dispositivos de posicionamiento anteriores

Page 11: Brújula

a la existencia de los receptores GPS.

El funcionamiento del sistema GPS se basa también, al igual que los sistemas electrónicos antiguos de navegación, en el principio matemático de la triangulación. Por tanto, para calcular la posición de un punto será necesario que el receptor GPS determine con exactitud la distancia que lo separa de los satélites.

Cálculo de la distancia entre el receptor y los satélites.

Como se explicó anteriormente, con la aplicación del principio matemático de la triangulación podemos conocer el punto o lugar donde nos encontramos situados, e incluso rastrear y ubicar el origen de una transmisión por ondas de radio. El sistema GPS utiliza el mismo principio, pero en lugar de emplear círculos o líneas rectas crea esferas virtuales o imaginarias para lograr el mismo objetivo.

Desde el mismo momento que el receptor GPS detecta una señal de radiofrecuencia transmitida por un satélite desde su órbita, se genera una esfera virtual o imaginaria que envuelve al satélite. El propio satélite actuará como centro de la esfera cuya superficie se extenderá hasta el punto o lugar donde se encuentre situada la antena del receptor; por tanto, el radio de la esfera será igual a la distancia que separa al satélite del receptor. A partir de ese instante el receptor GPS medirá las distancias que lo separan como mínimo de dos satélites más. Para ello tendrá que calcular el tiempo que demora cada señal en viajar desde los satélites hasta el punto donde éste se encuentra situado y realizar los correspondientes cálculos matemáticos. 

Cuando tiramos una piedra al agua se generan una serie de ondas concéntricas, que se amplían a partir del punto donde ésta cae, de forma similar a como lo hacen las ondas de radiofrecuencia.

Todas las señales de radiofrecuencias están formadas por ondas electromagnéticas que se desplazan por el espacio de forma concéntrica a partir de la antena transmisora, de forma similar a como lo hacen las ondas que se generan en la superficie del agua cuando tiramos una piedra. Debido a esa propiedad las señales de radio se pueden captar desde cualquier punto situado alrededor de una antena transmisora. Las ondas de radio viajan a la velocidad de la luz, es decir, 300 mil kilómetros por segundo (186 mil millas por segundo) medida en el vacío, por lo que es posible calcular la distancia existente entre un transmisor y un receptor si se conoce el tiempo que demora la señal en viajar desde un punto hasta el otro.Para medir el momento a partir del cual el satélite emite la señal y el receptor GPS la recibe, es necesario que tanto el reloj del satélite como el del receptor estén perfectamente sincronizados. El satélite utiliza un reloj atómico de cesio, extremadamente exacto, pero el receptor GPS posee uno normal de cuarzo, no tan preciso. Para sincronizar con exactitud el reloj del receptor GPS, el satélite emite cada cierto tiempo una señal digital o patrón de control junto con la señal de radiofrecuencia. Esa señal de control llega siempre al receptor GPS con más retraso que la señal normal de radiofrecuencia. El retraso entre ambas señales será igual al tiempo que demora la

Page 12: Brújula

señal de radiofrecuencia en viajar del satélite al receptor GPS.

La distancia existente entre cada satélite y el receptor GPS la calcula el propio receptor realizando diferentes operaciones matemáticas. Para hacer este cálculo el receptor GPS multiplica el tiempo de retraso de la señal de control por el valor de la velocidad de la luz. Si la señal ha viajado en línea recta, sin que la haya afectado ninguna interferencia por el camino, el resultado matemático será la distancia exacta que separa al receptor del satélite.

Las ondas de radio que recorren la Tierra lógicamente no viajan por el vacío sino que se desplazan a través de la masa gaseosa que compone la atmósfera; por tanto, su velocidad no será exactamente igual a la de la luz, sino un poco más lenta. Existen también otros factores que pueden influir también algo en el desplazamiento de la señal, como son las condiciones atmosféricas locales, el ángulo existente entre el satélite y el receptor GPS, etc. Para corregir los efectos de todas esas variables, el receptor se sirve de complejos modelos matemáticos que guarda en su memoria. Los resultados de los cálculos los complementa después con la información adicional que recibe también del satélite, lo que permite mostrar la posición con mayor exactitud.

CÓMO UBICA LA POSICIÓN EL RECEPTOR GPSPara ubicar la posición exacta donde nos encontramos situados, el receptor GPS tiene que localizar por lo menos 3 satélites que le sirvan de puntos de referencia. En realidad eso no constituye ningún problema porque normalmente siempre hay 8 satélites dentro del “campo visual” de cualquier receptor GPS. Para determinar el lugar exacto de la órbita donde deben encontrarse los satélites en un momento dado, el receptor tiene en su memoria un almanaque electrónico que contiene esos datos.

Tanto los receptores GPS de mano, como los instalados en vehículos con antena exterior fija, necesitan abarcar el campo visual de los satélites. Generalmente esos dispositivos no funcionan bajo techo ni debajo de las copas de los árboles, por lo que para que trabajen con precisión hay que situarlos en el exterior, preferiblemente donde no existan obstáculos que impidan la visibilidad y reduzcan su capacidad de captar las señales que envían a la Tierra los satélites.

Hacer clic aquí para ver

animación

El principio de funcionamiento de los receptores GPS es el siguiente:

Primero: cuando el receptor detecta el primer satélite se genera una esfera virtual o imaginaria, cuyo centro es el propio satélite. El radio de la esfera, es decir, la distancia que existe desde su centro hasta la superficie, será la misma que separa al satélite del receptor. Éste último asume

Page 13: Brújula

entonces que se encuentra situado en un punto cualquiera de la superficie de la esfera, que aún no puede precisar.

Segundo: al calcular la distancia hasta un segundo satélite, se genera otra esfera virtual. La esfera anteriormente creada se superpone a esta otra y se crea un anillo imaginario que pasa por los dos puntos donde se interceptan ambas esferas. En ese instante ya el receptor reconoce que sólo se puede encontrar situado en uno de ellos.

Tercero: el receptor calcula la distancia a un tercer satélite y se genera una tercera esfera virtual. Esa esfera se corta con un extremo del anillo anteriormente creado en un punto en el espacio y con el otro extremo en la superficie de la Tierra. El receptor discrimina como ubicación el punto situado en el espacio utilizando sus recursos matemáticos de posicionamiento y toma como posición correcta el punto situado en la Tierra.

Cuarto: una vez que el receptor ejecuta los tres pasos anteriores ya puede mostrar en su pantalla los valores correspondientes a las coordenadas de su posición, es decir, la latitud y la longitud.

Quinto: para detectar también la altura a la que se encuentra situado el receptor GPS sobre el nivel del mar, tendrá que medir adicionalmente la distancia que lo separa de un cuarto satélite y generar otra esfera virtual que permitirá determinar esa medición.

Si por cualquier motivo el receptor falla y no realiza las mediciones de distancias hasta los satélites de forma correcta, las esferas no se interceptan y en ese caso no podrá determinar, ni la posición, ni la altura.EL RECEPTOR GPSLa mayoría de los receptores GPS actuales tienen la posibilidad, como valor añadido, de guardar en memoria la información digitalizada de mapas, planos de calles de ciudades, red de carreteras y otras prestaciones que puede mostrar gráficamente en su pantalla con un alto nivel de detalle. Una vez que conocemos las coordenadas de nuestra posición es posible ampliar o reducir la escala de los mapas para podernos orientar mejor o seleccionar el camino más corto hasta nuestro destino.

Si usted es de las personas que se desorientan y extravían con facilidad cuando intenta llegar hasta un sitio cualquiera que no conoce, con un receptor GPS le será prácticamente imposible perderse aunque se encuentre en medio de una gran ciudad desconocida, una carretera solitaria, un descampado, el océano, el desierto o volando en un avión particular. En todo momento el receptor GPS muestra las coordenadas del punto donde éste se encuentra situado durante todo el tiempo que se encuentre funcionando y, además, bajo cualquier tipo de condiciones climatológicas que le rodee.

Por otra parte, ya no es necesario cargar con un montón de mapas a la hora de realizar un viaje, pues si el vehículo en que vamos a viajar lleva instalado un receptor GPS, se podrá seguir en su pantalla el trazado del recorrido que va siguiendo, la velocidad de desplazamiento y el tiempo que demora o demorará en trasladarse de un punto a otro.

Para que el receptor GPS realice todas esas operaciones sólo será necesario introducirle de antemano las coordenadas de los diferentes puntos de la ruta que se pretende seguir. Los receptores fijos que están dotados con esta posibilidad, así como algunos portátiles, permiten introducir en su memoria las coordenadas de diferentes puntos de interés. De esa forma se

Page 14: Brújula

puede organizar el trazado completo de una ruta, la que una vez introducida en la memora se podrá reutilizar otra vez en cualquier momento que se necesite. Así sólo será necesario indicarle al receptor GPS el trayecto que queremos recorrer y éste se encargará de guiarnos, mostrándonos las vías más idóneas, así como las distancias existentes entre un punto y otro a medida que nos desplazamos por la carretera.

Actualmente se fabrican receptores GPS que muestran directamente mapas de un área determinada. Otros aceptan también memorias conteniendo mapas detallados, incluso de ciudades, que le indican al usuario la forma de encontrar una dirección mientras conduce un vehículo.