benalcazar. villacres.deber6.1

Upload: cristhian-benalcazar

Post on 01-Mar-2016

215 views

Category:

Documents


0 download

DESCRIPTION

aswqwqsasa

TRANSCRIPT

  • Universidad de las Fuerzas ArmadasEcuaciones Diferenciales Ordinarias

    Deber 6: Ecuaciones no exactas - primer y segundo caso

    C. Benalcazar y T. Villacres

    Para las siguientes ecuaciones diferenciales, identifique el caso de factor integrante y

    encuentre una solucion general.

    1. (3x + 2y2)dx + 2xydy = 0

    My

    = 4y ; Nx

    = 2yPrimer Caso:My N

    x

    N

    f(x) =4y 2y

    2xy=

    1

    xu(x) = elnx = x

    Aplicamos u(x)(3x2 + 2xy2)dx + 2x2ydy = 0

    My

    = 4yx ; Nx

    = 4yx

    F (x, y)/F1 =

    (3x2 + 2xy2)dx = x3 + x2y2 y F2 =

    2x2ydy = x2y2

    F (x, y) = x3 + x2y2 = C

    3. ydx + (3 + 3x y)dy = 0My

    = 1 ; Nx

    = 3Segundo Caso:

    Nx M

    y

    M

    g(y) =3 1y

    =2

    yu(y) = eln(y

    2) = y2

    Aplicamos u(y)y3dx + (3y2 + 3xy2 y3)dy = 0

    My

    = 3y2 ; Nx

    = 3y2

    F (x, y)/F1 =

    y3dx = xy3 y F2 =

    (3y2 + 3xy2 y3)dy = y3 + xy3 y

    4

    4

    F (x, y) = y3 + xy3 y4

    4= C

    1

  • 4. (3x2 + y + 3x3y)dx + xdy = 0

    My

    = 1 + 3x3 ; Nx

    = 1Primer Caso:My N

    x

    N

    f(x) =1 + 3x3 1

    x= 3x2

    u(x) = ex3

    Aplicamos u(x)ex

    3(3x2 + y + 3x3y)dx + xex

    3dy = 0

    My

    = ex3

    + 3x3ex3

    ; Nx

    = ex3

    + 3x3ex3

    F (x, y)/F1 =

    (3x2ex

    3+ yex

    3+ 3x3yex

    3)dx

    = ex3

    + yex

    3dx + 3y

    x3ex

    3

    si u = x3; x = u

    1

    3 ; dx =du

    3u23

    = ex3

    +y

    3

    euduu

    23

    + y ueudu

    u23

    = ex3

    +y

    3

    euduu

    23

    + yu

    1

    3 eudu

    = yu

    1

    3 eu y euduu

    13

    + yu

    1

    3 eu

    F1 = ex3 + xyex

    3y

    F2 =xex

    3dy = xyex

    3

    F (x, y) = ex3(xy + 1) = C

    5. ydx (x3 3x)dy = 0My

    = 1 ; Nx

    = 3Segundo Caso:

    Nx M

    y

    M

    g(y) =3 1y

    =2

    yu(y) = eln(y

    2) = y2

    Aplicamos u(y)y3dx (y5 3y2x)dy = 0

    My

    = 3y2 ; Nx

    = 3y2

    F (x, y)/F1 =

    y3dx = y3x y F2 =

    (y5 + 3y2x) = y3x y

    6

    6

    F (x, y) = y3x y6

    6= C

    6. (x2y + y3)dy xdx = 0

    2

  • My

    = 0 ; Nx

    = 0Segundo Caso:

    Nx M

    y

    M

    g(y) =2xy

    x = 2yu(y) = ey

    2= x

    Aplicamos u(y)(xey2)dx + ey2(x2y + y3)dy = 0

    My

    = 2yxey2

    ; Nx

    = 2yxey2

    F (x, y)/F1 =

    (xey

    2)dx =

    xey22

    y

    u = y2 ; du = 2ydy ; dv =yey

    2; v =

    ey22

    F2 =ey

    2(x2y + y3)dy

    = x2ey

    2

    2 y

    2ey2

    +

    ydyey2

    =ey2

    2(x2 + y2 + 1) F (x, y) = e

    y2

    2(x2 + y2 + 1) = C

    7. (x + x3sen(2y))dy 2ydx = 0My

    = 2 ; Nx

    = 1 + 3x2sen(2y)Primer Caso:My N

    x

    N

    f(x) =2 1 3x2sen(2y)

    x + x3sen(2y)=3(1 + x2sen(2y))x(1 + x2sen(2y)

    =3x

    u(x) = e3lnx =1

    x3Aplicamos u(x)

    2yx3

    dx + (1

    x2+ sen(2y))dy = 0

    My

    =2x3

    ; Nx

    =2x3 F (x, y)/

    F1 = 2yx3dx =

    y

    x2y F2 =

    (

    1

    x2+ sen(2y))dy =

    y

    x2 cos(2y)

    2

    F (x, y) = yx2 cos(2y)

    2= C

    8. (y2cos(x) y)dx + (x + y2)dy = 0My

    = 2ycos(x) 1 ; Nx

    = 1Segundo Caso:

    Nx M

    y

    M

    g(y) =1 + 1 2ycos(x)y(ycos(x) 1) =

    2(ycos(x) 1)y(ycos(x) 1) =

    2y

    u(y) = e2lny =1

    y2

    3

  • Aplicamos u(y)

    (cos(x) 1y

    )dx + (x

    y2+ 1)dy = 0

    My

    =1

    y2; Nx

    =1

    y2

    F (x, y)/F1 =

    (cos(x) 1

    y)dx = sen(x) x

    yy F2 =

    2x2ydy = sen(x) x

    y+ y

    F (x, y) = sen(x) xy

    + y = C

    12. Una ecuacion diferencial puede tener mas de un factor integrante. Pruebe que u1 =1

    xy;u2 =

    1

    y2;u3 =

    1

    x2 + y2son factores integrantes de la ecuacion diferencial ydx + xdy = 0.

    Demuestre que las soluciones son formalmente equivalentes.

    Si aplicamos u1

    dx

    x dy

    y= 0

    My

    = 0 ; Nx

    = 0

    F (x, y)/Fa1 =

    dxx

    = ln|x| y Fb1 = dy

    = ln|y|

    F1(x, y) =x

    y= C

    Si aplicamos u2

    dx

    ydx xdy

    y2dy = 0

    My

    =1y2

    ; Nx

    =1y2

    F (x, y)/Fa2 =

    dxydx =

    x

    yy Fb2 =

    xdyy2

    dy =x

    y

    F2(x, y) =x

    y= C

    Si aplicamos u3

    ydx

    x2 + y2 xdyx2 + y2

    = 0

    My

    =x2 y2x2 + y2

    ; Nx

    =x2 y2x2 + y2

    F (x, y)/

    Fa3 = ydxx2 + y2

    = ln(x2 + y2)

    1

    2 y Fb3 = xdyx2 + y2

    = ln(x2 + y2)

    12

    F3(x, y) = ln(1) = 0 = CF1(x, y) = F2(x, y) = F3(x, y)

    4