audesirk capítulo 02

89
Capítulo 2 Átomos, moléculas y vida Copyright © 2008 Pearson Prentice Hall, Inc. Teresa Audesirk • Gerald Audesirk • Bruce E. Byers Biología: la vida en la Tierra Octava Edición

Upload: sebastian

Post on 10-Jul-2015

2.748 views

Category:

Education


2 download

TRANSCRIPT

Page 1: Audesirk capítulo 02

Capítulo 2Átomos, moléculas y vida

Copyright © 2008 Pearson Prentice Hall, Inc.

Teresa Audesirk • Gerald Audesirk • Bruce E. Byers

Biología: la vida en la TierraOctava Edición

Page 2: Audesirk capítulo 02

El lagarto basilisco y los patinadores sobre hielo

aprovechan las propiedades

únicas del agua.

Page 3: Audesirk capítulo 02

Contenido del capítulo 2

• 2.1 ¿Qué son los átomos?

• 2.2 ¿Cómo interactúan los átomos para formar moléculas?

• 2.3 ¿Por qué el agua es tan importante para la vida?

Page 4: Audesirk capítulo 02

• 2.1 ¿Qué son los átomos? – Los átomos son unidades estructurales

fundamentales de la materia y se componen de partículas aún más pequeñas.

– Los electrones giran alrededor del núcleo atómico a distancias fijas.

– La vida depende de la capacidad de los electrones para captar y liberar energía.

Contenido de la sección 2.1

Page 5: Audesirk capítulo 02

Átomos

• Los átomos son las unidades estructurales fundamentales de la materia y se componen de tres tipos de partículas.

• En el núcleo central hay protones, que tienen carga positiva, y neutrones, que no tienen carga.

• Los electrones giran alrededor del núcleo atómico y son partículas con carga negativa.

Page 6: Audesirk capítulo 02

• Los átomos son eléctricamente neutros porque tienen el mismo número de electrones y protones.

Átomos

Page 7: Audesirk capítulo 02

FIGURA 2-1 Modelos atómicosRepresentaciones estructurales de los dos átomos más pequeños: a) hidrógeno y b) helio. En estos modelos simplificados, los electrones (en azul tenue) se muestran como planetas en miniatura, que giran en órbitas específicas alrededor de un núcleo que contiene protones (en café) y neutrones (en azul intenso).

Page 8: Audesirk capítulo 02

• El número de protones que hay en el núcleo se conoce como número atómico.

Átomos

Page 9: Audesirk capítulo 02

Elementos e isótopos

• Un elemento es una sustancia que no puede descomponerse mediante procesos químicos ordinarios.

• Todos los átomos pertenecen a uno de los 96 tipos de elementos que hay en la naturaleza.

Page 10: Audesirk capítulo 02

• El número atómico (cantidad de protones), es característico de cada elemento.– Todos los átomos de un elemento tienen el

mismo número atómico.

Por ejemplo, el carbono tiene 6 protones, y el nitrógeno 7.

Elementos e isótopos

Page 11: Audesirk capítulo 02
Page 12: Audesirk capítulo 02

• Los átomos de un mismo elemento pueden tener distintos números de neutrones en el núcleo.– Las diversas formas de un elemento se llaman

isótopos.– Algunos isótopos son radiactivos y se usan en

la investigación.

• Los elementos pueden ser sólidos, líquidos, o gases a temperatura ambiente.

Elementos e isótopos

Page 13: Audesirk capítulo 02

Capas de electrones

• Los átomos más grandes pueden dar cabida a muchos electrones.

• Los electrones se mueven dentro del núcleo de un átomo en capas de electrones.– La primera capa o nivel de energía contiene

2 electrones.– La segunda capa contiene hasta ocho

electrones.

Page 14: Audesirk capítulo 02

FIGURA 2-2 Capas de electrones en los átomosLa mayoría de los átomos importantes en biología tienen al menos dos capas de electrones. La primera y más cercana al núcleo puede contener dos electrones; la siguiente, un máximo de ocho. Capas más distantes pueden contener mayor número de electrones. PREGUNTA: ¿Por qué los átomos que tienden a reaccionar con otros átomos poseen capas externas que no están completamente llenas?

Page 15: Audesirk capítulo 02

FIGURA 2-2 (parte 2) Capas de electrones en los átomos

Page 16: Audesirk capítulo 02

FIGURA 2-2 (parte 3) Capas de electrones en los átomos

Page 17: Audesirk capítulo 02

FIGURA 2-2 (parte 4) Capas de electrones en los átomos

Page 18: Audesirk capítulo 02

• Papeles que desempeñan los núcleos y las capas de electrones:– Los núcleos ofrecen estabilidad.– Las capas de electrones permiten

interacciones (por ejemplo, para formar enlaces) con otros átomos.

Capas de electrones

Page 19: Audesirk capítulo 02

Captar y liberar energía

• La vida depende de la capacidad de los electrones para captar y liberar energía.– Las capas de electrones corresponden a

niveles de energía.– Cuando un átomo se excita usando energía

provoca que los electrones salten de una capa de electrones de menor energía a otra de mayor energía.

– Poco después, el electrón regresa espontáneamente a su capa de electrones original, liberando la energía.

Page 20: Audesirk capítulo 02

FIGURA 2-3 La energía se capta y se libera

Un electrón absorbe energía

energía

Page 21: Audesirk capítulo 02

FIGURA 2-3 La energía se capta y se libera

Un electrón absorbe energía

energía

La energía impulsa al electrónhacia un nivel de energía superior

Page 22: Audesirk capítulo 02

FIGURA 2-3 La energía se capta y se libera

Un electrón absorbe energía

energía

El electrón regresa a la capade menor nivel de energíay libera la energía en forma de luz

Luz

La energía impulsa al electrónhacia un nivel de energía superior

Page 23: Audesirk capítulo 02

Contenido de la sección 2.2

• 2.2 ¿Cómo interactúan los átomos para formar moléculas?

– Los átomos interactúan con otros átomos cuando hay vacíos en sus capas de electrones más externas.

– Los átomos con carga (iones) interactúan para formar enlaces iónicos.

– Los átomos sin carga pueden estabilizarse compartiendo electrones para formar enlaces covalentes.

– Casi todas las moléculas biológicas emplean enlaces covalentes.– El electrón que se comparte determina si un enlace covalente es

polar o no polar.– Los radicales libres son altamente reactivos y pueden dañar las

células.– Los puentes de hidrógeno son atracciones eléctricas entre las

moléculas que tienen enlaces covalentes polares o dentro de éstas.

Page 24: Audesirk capítulo 02

Interacción de los átomos

• Las moléculas constan de dos o más átomos que se mantienen unidos gracias a las interacciones en sus capas de electrones.

• Una sustancia cuyas moléculas están formadas por diferentes tipos de átomos se llama compuesto.

Page 25: Audesirk capítulo 02

• Las reacciones de los átomos dependen de la configuración de los electrones en la capa de electrones más externa.

Interacción de los átomos

Page 26: Audesirk capítulo 02

• Un átomo no reaccionará con otros átomos si su capa de electrones más externa está totalmente llena o vacía (tal átomo es inerte).

– Ejemplo: el neón, que tiene 8 electrones en su capa más externa (está llena).

Interacción de los átomos

Page 27: Audesirk capítulo 02

• Un átomo reaccionará con otros átomos si su capa de electrones más externa está sólo parcialmente llena (tal átomo es reactivo).

– Ejemplo: el oxígeno, que tiene 6 electrones en su capa más externa (y puede contener hasta 2 electrones).

Interacción de los átomos

Page 28: Audesirk capítulo 02

• Los átomos reactivos ganan estabilidad con las interacciones de los electrones (reacciones químicas).– Los electrones se pueden perder hasta vaciar

la capa externa.– Los electrones se pueden ganar hasta llenar

la capa externa.– Los electrones se pueden compartir entre los

átomos si ambos tienen capas externas llenas.

Interacción de los átomos

Page 29: Audesirk capítulo 02

• Los átomos de hidrógeno y oxígeno pueden ganar estabilidad reaccionando entre sí.

• Los únicos electrones de dos átomos de hidrógeno llenarían la capa externa del átomo de oxígeno.

Interacción de los átomos

Page 30: Audesirk capítulo 02

FIGURA 2-6 Los enlaces covalentes implican compartir electrones entre átomos

Al oxígeno le faltan dos electrones para llenar su capa externa, así que puede formar un enlace covalente polar con dos átomos de hidrógeno para formar agua. El oxígeno ejerce una mayor atracción que el hidrógeno sobre los electrones, así que el extremo de la molécula donde está el oxígeno posee una pequeña carga negativa (-), mientras que el extremo donde está el hidrógeno cuenta con una pequeña carga positiva (+). PREGUNTA: En los enlaces polares de agua, ¿por qué la atracción del oxígeno sobre los electrones es mayor que la del hidrógeno?

Page 31: Audesirk capítulo 02

• Las fuerzas de atracción (enlaces químicos) mantienen unidos a los átomos de las moléculas.

Interacción de los átomos

Page 32: Audesirk capítulo 02
Page 33: Audesirk capítulo 02

Iones y enlaces iónicos

• Los átomos que han perdido electrones se convierten en iones con carga positiva (por ejemplo, sodio: Na+).

• Los átomos que han captado electrones se convierten en iones con carga negativa (por ejemplo, cloruro: Cl-).

Page 34: Audesirk capítulo 02

• Los iones con cargas opuestas se mantienen unidos mediante enlaces iónicos.

Iones y enlaces iónicos

Page 35: Audesirk capítulo 02

FIGURA 2-4 Formación de iones y enlaces iónicosa) El sodio sólo tiene un electrón en su capa externa de electrones; el cloro, siete. b) El sodio logra estabilizarse perdiendo un electrón y el cloro puede estabilizarse ganando uno. Así, el átomo de sodio se convierte en un ion con carga positiva, y el de cloro, en un ion con carga negativa.

Page 36: Audesirk capítulo 02

• Los cristales de sal contienen disposiciones ordenadas repetitivas de iones sodio y cloruro.

Iones y enlaces iónicos

Page 37: Audesirk capítulo 02

FIGURA 2-4 Formación de iones y enlaces iónicosc) Como las partículas con carga opuesta se atraen mutuamente, los iones sodio (Na+) y cloruro (CI) resultantes se acomodan estrechamente en un cristal de sal, NaCI. (Imagen en recuadro). La organización de iones en la sal provoca la formación de cristales en forma de cubo.

Page 38: Audesirk capítulo 02

FIGURA 2-5 Enlace iónico

Page 39: Audesirk capítulo 02

Enlaces covalentes

• Un átomo con su capa de electrones externa parcialmente llena puede estabilizarse compartiendo electrones.

• Un enlace covalente comparten dos electrones (uno de cada átomo).

Page 40: Audesirk capítulo 02

FIGURA 2-6(a) Los enlaces covalentes implican compartir electrones entre átomos. En el gas hidrógeno se comparte un electrón de cada átomo de hidrógeno para formar un enlace covalente no polar sencillo.

Page 41: Audesirk capítulo 02

• Los enlaces covalentes se encuentran en H2 (un enlace), O2 (dos enlaces), N2 (tres enlaces) y H2O.

• Los enlaces covalentes son más fuertes que los enlaces iónicos, pero su estabilidad varía.

Enlaces covalentes

Page 42: Audesirk capítulo 02

• Casi todas las moléculas biológicas emplean enlaces covalentes.

Enlaces covalentes

Page 43: Audesirk capítulo 02
Page 44: Audesirk capítulo 02

Enlaces covalentes polares

• Los átomos de una molécula pueden tener diferentes cargas.

• Los átomos que tienen una mayor carga positiva atraen con mayor fuerza a los electrones en un enlace covalente.

Page 45: Audesirk capítulo 02

• En moléculas biatómicas como H2, ambos átomos atraen a los electrones con más fuerza, esto se llama enlace covalente no polar.

Enlaces covalentes polares

Page 46: Audesirk capítulo 02

FIGURA 2-7 Enlace covalente no polar

(sin carga)

Page 47: Audesirk capítulo 02

• En las moléculas donde hay átomos de diferentes elementos (H2O), los electrones no siempre se comparten equitativamente: estos enlaces covalentes son polares.

Enlaces covalentes polares

Page 48: Audesirk capítulo 02

• Una molécula con enlaces polares podría ser completamente polar.

• H2O es una molécula polar.

– El polo (ligeramente) positivo está cerca del átomo de hidrógeno.

– El polo (ligeramente) negativo está cerca del átomo de oxígeno.

Enlaces covalentes polares

Page 49: Audesirk capítulo 02

FIGURA 2-8 Enlaces covalentes polares en el agua

Page 50: Audesirk capítulo 02

• Los enlaces polares y no polares se ilustran en la Figura 2-6 (a) y (b), p, 26.

Enlaces covalentes polares

Page 51: Audesirk capítulo 02

FIGURA 2-6a Los enlaces covalentes implican compartir electrones entre átomos.

Page 52: Audesirk capítulo 02

FIGURA 2-6b Los enlaces covalentes implican compartir electrones entre átomos

Page 53: Audesirk capítulo 02

Radicales libres

• Algunas reacciones celulares producen radicales libres.– Radical libre: molécula que tiene átomos con

uno o más electrones impares en sus capas externas.

Page 54: Audesirk capítulo 02

• Los radicales libres son altamente inestables y reactivos.– Los radicales libres roban electrones y

destruyen a otras moléculas.– Los ataques de las radicales libres pueden

provocar la muerte celular.

Radicales libres

Page 55: Audesirk capítulo 02

• Las radicales libres contribuyen a una amplia gama de padecimientos humanos, como enfermedades del corazón, el mal de Alzheimer, cáncer y envejecimiento.

• Los antioxidantes, como las vitaminas E y C, pueden evitar el daño de las radicales libres.

Radicales libres

Page 56: Audesirk capítulo 02

Puentes de hidrógeno

• Las moléculas polares, como las de agua, tienen una carga parcial negativa.

• Los puentes de hidrógeno se forman cuando los átomos con carga parcial opuesta se atraen entre sí.– Los átomos de hidrógeno con carga parcial

positiva de una molécula de agua atraen a los átomos de oxígeno con carga parcial negativa de otra

Page 57: Audesirk capítulo 02

FIGURA 2-10 Puentes de hidrógeno

Al igual que los niños que se toman con las manos sudorosas, las cargas parciales en diferentes partes de las moléculas de agua producen fuerzas de atracción débiles llamadas puentes de hidrógeno (líneas punteadas) entre los átomos de oxígeno y de hidrógeno en moléculas de agua contiguas. Conforme el agua fluye, dichos puentes se rompen y se vuelven a formar una y otra vez.

Page 58: Audesirk capítulo 02

• Las moléculas biológicas polares pueden formar puentes de hidrógeno con el agua, entre sí, o incluso dentro de la misma molécula.

• Los puentes de hidrógeno son un tanto débiles, pero en conjunto pueden ser muy fuertes.

Puentes de hidrógeno

Page 59: Audesirk capítulo 02

Contenido de la sección 2.3

• 2.3 ¿Por qué el agua es tan importante para la vida?– El agua interactúa con muchas otras moléculas.

– Las moléculas de agua tienden a mantenerse unidas.– Las soluciones en agua pueden ser ácidas, básicas y

neutras.

– Los amortiguadores ayudan a mantener las soluciones en un pH relativamente constante.

– El agua modera los efectos de los cambios de temperatura.

– El agua forma un sólido singular: el hielo.

Page 60: Audesirk capítulo 02

El agua interactúa con muchas moléculas

• El agua es un excelente disolvente.– Puede disolver una amplia gama de sustancias

para formar soluciones.

Page 61: Audesirk capítulo 02

FIGURA 2-11 El agua como disolvente

Page 62: Audesirk capítulo 02

• Las moléculas que se disuelven en agua son hidrofílicas.– Las moléculas de agua, entre ellas los

azúcares y los aminoácidos, rodean a los iones o moléculas polares y los disuelven.

El agua interactúa con muchas moléculas

Page 63: Audesirk capítulo 02

FIGURA 3-3 Azúcar que se disuelve

Page 64: Audesirk capítulo 02

• Las moléculas que no se disuelven en agua son hidrofóbicas. – Las moléculas de agua repelen a las moléculas

no polares sin carga, como las grasas y los aceites.

– La tendencia, de las moléculas no polares, a agruparse se llama interacción hidrofóbica.

El agua interactúa con muchas moléculas

Page 65: Audesirk capítulo 02

FIGURA 2-12 El agua y el aceite no se mezclanSe vertió aceite amarillo en este vaso de precipitados con agua y el aceite sube hacia la superficie. El aceite flota porque es más ligero que el agua y forma gotitas debido a que es una molécula no polar hidrofóbica, la cual no es atraída hacia las moléculas polares del agua.

Page 66: Audesirk capítulo 02

Las moléculas de agua tienden a mantenerse unidas

• Los puentes de hidrógeno entre las moléculas de agua producen gran cohesión.– La cohesión del agua explica cómo las

moléculas de agua pueden formar una cadena para llevar la humedad a la parte superior de un árbol.

Page 67: Audesirk capítulo 02

FIGURA 2-13b Cohesión entre moléculas de aguaEn las secuoyas gigantes, la cohesión mantiene juntas las moléculas de agua en hilos continuos, que van de las raíces a las hojas más altas, las cuales pueden alcanzar hasta 90 metros de altura.

Page 68: Audesirk capítulo 02

• La cohesión entre las moléculas de agua en la superficie del líquido produce tensión superficial.– Algunas arañas y ciertos insectos acuáticos

dependen de la tensión superficial para caminar por la superficie de los estanques.

Las moléculas de agua tienden a mantenerse unidas

Page 69: Audesirk capítulo 02

FIGURA 2-13a Cohesión entre moléculas de agua. Manteniéndose a flote gracias a la tensión superficial, la araña pescadora corre sobre el agua para atrapar un insecto.

Page 70: Audesirk capítulo 02

• La propiedad de adhesión es la tendencia que tienen las moléculas de agua a pegarse a superficies polares o con cargas pequeñas.– La adhesión ayuda al agua a moverse dentro

de los delgados tubos de las plantas hasta llegar a las hojas.

Las moléculas de agua tienden a mantenerse unidas

Page 71: Audesirk capítulo 02

Soluciones ácidas, básicas, y neutras

• Una pequeña fracción de moléculas de agua se divide en iones:

H2O OH- + H+

Page 72: Audesirk capítulo 02

• Las soluciones en las que H+ > OH- son ácidas.– Por ejemplo, el ácido clorhídrico se ioniza en

agua:

HCl H+ + Cl-

– El jugo de limón y el vinagre son soluciones ácidas producidas de manera natural.

Soluciones ácidas, básicas, y neutras

Page 73: Audesirk capítulo 02

• Las soluciones en las que OH- > H+ son básicas.– Por ejemplo, el hidróxido de sodio se ioniza en

agua:

NaOH Na+ + OH-

– El bicarbonato de sodio, el blanqueador con cloro, y el amoniaco casero son soluciones básicas.

Soluciones ácidas, básicas, y neutras

Page 74: Audesirk capítulo 02

• El grado de acidez de una solución se expresa en la escala de pH. – pH 0-6 son ácidas (H+ > OH-)– pH 7 es neutra (H+ = OH-)– pH 8-14 es básica (OH- > H+)

Soluciones ácidas, básicas, y neutras

Page 75: Audesirk capítulo 02

FIGURA 2-15 La escala de pHLa escala de pH refleja la concentración de iones hidrógeno en una solución. El pH (escala superior) es el valor negativo de la concentración de H+ (escala inferior). Cada unidad de la escala representa un cambio de 10 veces. El jugo de limón; por ejemplo, es cerca de 10 veces más ácido que el jugo de naranja, en tanto que las lluvias ácidas más graves e intensas en el noreste de Estados Unidos son casi 1000 veces más ácidas que la lluvia normal. Con la excepción del interior de nuestro estómago, casi todos los fluidos del cuerpo humano están ajustados con gran precisión a un pH de 7.4.

Page 76: Audesirk capítulo 02

Los amortiguadores mantienen un pH constante

• Un amortiguador es un compuesto que tiende a mantener una solución a un pH constante captando o liberando H+, en respuesta a cambios pequeños en la concentración de H+.

• El amortiguador de bicarbonato de tu sangre evita que ocurran cambios en el pH.

Page 77: Audesirk capítulo 02

• Por ejemplo, si la sangre se vuelve demasiado ácida, el bicarbonato acepta H+ para formar ácido carbónico:

HCO3- + H+ H2CO3

bicarbonato ion hidrógeno ácido carbónico

Los amortiguadores mantienen un pH constante

Page 78: Audesirk capítulo 02

• Si la sangre se vuelve demasiado básica, el ácido carbónico libera iones hidrógeno, los cuales se combinan con los iones hidróxido en exceso para formar agua:

H2CO3 + OH- HCO3- + H2O

ácido carbónico ion hidróxido bicarbonato agua

Los amortiguadores mantienen un pH constante

Page 79: Audesirk capítulo 02

El agua modera la temperatura

• Las temperaturas muy altas o muy bajas llegan a dañar enzimas que dirigen las reacciones químicas indispensables para la vida.

Page 80: Audesirk capítulo 02

• El agua modera los efectos de los cambios de temperatura.– La temperatura refleja la rapidez de las

moléculas.– Una caloría de energía, eleva 1°C la

temperatura de 1 gramo de agua (calor específico); así que calienta muy lentamente.

El agua modera la temperatura

Page 81: Audesirk capítulo 02

• El agua requiere de mucha energía para convertir un líquido en gas (calor de vaporización).– Cuando el agua se evapora, utiliza el calor de

sus alrededores y los enfría (como ocurre cuando sudamos).

El agua modera la temperatura

Page 82: Audesirk capítulo 02

• Debido a que el cuerpo humano está compuesto en su mayoría por agua, una persona que toma un baño de sol puede absorber mucha energía del calor sin que su temperatura se eleve demasiado.

El agua modera la temperatura

Page 83: Audesirk capítulo 02

FIGURA 2-16 El alto calor específico y el calor de vaporización del agua influyen en la conducta humana

a) Como nuestros cuerpos están compuestos en su mayoría por agua, quienes toman el sol pueden absorber mucho calor sin aumentar drásticamente su temperatura corporal, como resultado del elevado calor específico del agua. b) El alto calor de vaporización del agua (enfriamiento por evaporación) y el calor específico, en conjunto, hacen que el agua sea un refrigerante muy efectivo para un día caluroso.

Page 84: Audesirk capítulo 02

• El agua debe extraer una cantidad considerablemente grande de energía de las moléculas de agua líquida, para poder congelarlas (calor de fusión).

• El agua se congela más lentamente que muchos otros líquidos.

El agua modera la temperatura

Page 85: Audesirk capítulo 02

El agua forma un sólido singular: el hielo

• Casi todos los líquidos se vuelven más densos al solidificarse.

• El hielo es un tanto peculiar porque es menos denso que el agua líquida.

Page 86: Audesirk capítulo 02

• Las moléculas de agua se mantienen ligeramente más alejadas durante el proceso de congelación.

El agua forma un sólido singular: el hielo

Page 87: Audesirk capítulo 02

FIGURA 2-17 Agua

Page 88: Audesirk capítulo 02

FIGURA 2-17 Agua (izquierda) y hielo (derecha).

Page 89: Audesirk capítulo 02

• El hielo flota en el agua líquida.

• Los estanques y lagos se congelan de abajo hacia arriba, pero nunca hasta el fondo.

– Por consiguiente, muchas plantas y peces no se congelan.

El agua forma un sólido singular: el hielo