“el láser ultra-intenso: una esperanza en la solución del ... · “el láser ultra-intenso:...

56
“El láser ultra-intenso: una esperanza en la solución del problema energético y el uso generalizado de los aceleradores de partículas” Dr. Iván Padrón Díaz CEADEN La Habana, Cuba

Upload: others

Post on 15-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

“El láser ultra-intenso: una esperanza en la solución del problema energético y el uso

generalizado de los aceleradores de partículas”

Dr. Iván Padrón DíazCEADEN

La Habana, Cuba

Evolución de la potencia del láser

Diagrama de la amplificación de la potencia láser aplicando la tecnología CPA

Evolución de la potencia del láser

Relativistic optics (vc)

LargeLarge ponderomotiveponderomotive pressurespressures

Inertial Confinement Fusion (ICF)

Inertial Confinement Fusion (ICF)

The interior of the NIF target chamber.

Target

Positioner Before each experiment, a positioner precisely centers the target inside

the target chamber and serves as a reference to align the laser beams.

NIF Hohlraum The hohlraum cylinder, which contains the NIF fusion fuel capsule, is

just a few millimeters wide, about the size of a pencil eraser, with beam entrance holes at either end. The fuel capsule is the size of a small pea.

NIF Hohlraum Design

Overview

of

Indirect

Drive Ignition

Facilities

Major

Laser

Fusion

Facilities

in the

World

Proton and ion acceleration with lasers

Target Normal Sheat Acceleration (TNSA)

Target Normal Sheat Acceleration (TNSA)

Target Normal Sheat Acceleration (TNSA)

Target Normal Sheat Acceleration (TNSA)

Target Normal Sheat Acceleration (TNSA)

Target Normal Sheat Acceleration (TNSA)

Target Normal Sheat Acceleration (TNSA)

Experimental results :quasi mono energetic spectra

0,0 0,5 1,0 1,5 2,0 2,5

0,0

0,2

0,4

0,6

0,8

1,0

1,2 SimulationExperiment

prot

on c

ount

s [a

.u.]

proton energy [MeV]

Schwoerer, H. et al., Nature, 439 (2006)

27

3D Simulations: Laser Piston Acceleration

I = 1023 W/cm2, Target thickness = 1m, Ne

= 5 x 1022 cm-3

COULOMB 09, ICFA workshop, Senigallia, Italia , June 8-12 (2009)

Esirkepov, Bulanov, PRL 2004

Chances

and

challenges

regarding

laser

driven hadron

cancer

therapy

Ion beam therapy: Treatment planning

Precision absolute beam positioning better than 1mm Dose control (local) 1%

Dose 40-80 Gray distributed over 10-20 fractions (109-1010 ions per fraction

and few minutes)

30

The raisons of a non satisfied medical need

2 2

6

10

2

21

7

1960-1970 1971-1980 1981-1990 1991-2000 2001-2010

protonsions carbone

5 centres protons et2 centres carbone(en projet : 1 centre protons)

7 centres protons (dont 1 au Canada)( en projet : 2 centres protons)

1 centre protons

1 centre protons( en projet : 1 centre protons)

en projet : 1 centre protons

12 centres protons et 1 centre carbone( en projet : 5 centres protons, 1 centre carbone et 4 centres associant protons et carbone)

5 centres protons et2 centres carbone(en projet : 1 centre protons)

7 centres protons (dont 1 au Canada)( en projet : 2 centres protons)

1 centre protons

1 centre protons( en projet : 1 centre protons)

en projet : 1 centre protons

12 centres protons et 1 centre carbone( en projet : 5 centres protons, 1 centre carbone et 4 centres associant protons et carbone)

Market in progress but still limited by the cost and the size of the installation Estimation of the needed protontherapy center in the world (based on the hypothesis that 15% of patients are treated by proton beam) :

In Europe : 300 In USA : 150

-2 protontherapy center in France (Orsay et Nice)

-30 centres in «

modern

»

countries

-Limitation due :–Cost of the installation : 80 à

140 M€–Size of the installation : 1000 to 2000 m²

31

Protontherapy center : large & expensive & performant

Costo estimado

200 Millones USD, Pacientes anuales

1000

How small could be a laser accelerator for ion beam therapy ?

are RF accelerators the ideal source ?or could laser plasma accelerators take over ?

Where are we now ?

biological effectiveness unknown available energies are high enough to start !!! ion energies are still too low, but promising

development (influencing future laser parameters)

online and offline dosimetry (remember % level) targetry and dedicated (safe) beamline design

How can we reach sufficient energies ?

1st approach: Reducing the target thickness

3rd approach: including the electron dynamics

High

power

laser

production

of short-lived

isotopes

for

positron

emission

tomography

PET ScansPositron Emission Tomography, or PET, scanning is an imaging technique that uses radioactive positrons (positively charged particles) to detect subtle changes in the body's metabolism and chemical activities.

There the tracer emits positrons, which collide with electrons, producing gamma rays, that are detected by a ringed-shaped PET scanner and analyzed by a computer to form an image of the target organ's metabolism or other functions.

Human Brain Performing

PET Scanner

Ion energy and conversion efficiency depend on laser energy

Conversion

efficiency

laser-ion

beam

energy:• < 1 J Laser:

0.1 %

• ~ 10 J Laser: 2 -

4 %

(1012-1013

ions)

• ~ 500 J Laser: 15-20 %

Total activity generated by a single laser shot for both 11C and18F as a function of

laser irradiance with pulse energies from 15 to 300 J

Are there enough Protons available?

Layer1 2 3 4

2 nm

5 nm

20 nm

100 nm

Begin of filamentation

Experiments at LULI show no beam degradationup to 100 nm CH coating at the rear of Au foils

PRST-AB, 5, 061301 (2002))

For 26 kJ @ 3 MeV electron Temperature

4 •

1016

Protons

Assuming

40 nm CH (ρ=0.93)

Consistent

with intensity requirement !!!!

Laser induced nuclear reactions

bbbbbbbbbbbbb

Nuclear Reactions Triggered by LasersJETI chamber

PW VULCAN target chamber

30 TW LOA laser

UHI10 target chamber at SLIC

Alternative way of producing 225Ac for alpha-immunotherapy ?

2n

p225Ac could be produced through two paths:

226 225

226 225 22515

, 2

( , ) 200 m @14 Mdays

Ra p n Ac

Ra n Ra Ac b eV

Laser induced neutron sources

Big Stationary Neutron Sources Flux [neutrons/cm2s] Traditional Reactor from 107 to 1013 High Flux Research Reactor up to 1015 Accelerator Driven Spallation up to 1014 Compact and Portable Neutron Sources Typical Source Strength

[neutrons/s] Radioactive Neutron Sources 105 to 107 Spontaneous Fission Sources around 1010 Portable Neutron Generators 108 to 1010 Lasers on Solid Targets Reaction(s)

Used Measured Source Strength [neutrons/shot]

Laser Energy [J/shot]

Lancaster 7Li(p,n)7Be 2×108 sr-1 69 Yang natZn(p,xn)Ga ≈ 1010 230 Yang 7Li(p,n)7Be 5×1010 230 Zagar natPb(p,xn)Bi 2×109 400

0 5 10 15 20 25 30 35104

105

106

107

108

109

10 20 30 40

109

1010

1011

1012 measured

Boltzmann fit (kT = 5 MeV)

Prot

ons

(1/M

eV)

Energy (MeV)

235U fission spectrum

Neu

trons

(1/M

eV)

Energy (MeV)

2x109 neutrons

Laser induced X rays and neutron sources

Some General Properties• Compact Table-Top Sources (!)• Forward Directed Beams• Pulsed Operation • Very Short Pulse Durations (!)• High Repetition Rates• Useful Source Strengths

Attosecond Science and Extreme Nonlinear Optics

Attosecond Science and Extreme Nonlinear Optics

Attosecond Science and Extreme Nonlinear Optics

Structural

BiologyNeutrons complement X rays in studying proteins for information of vital interest to the pharmaceutical, agricultural, and biotechnology industries.

The building blocks of DNA direct the synthesis of proteins, whose shape and structure will be determined by neutron scattering.

The power of neutron scattering to detect hydrogen atoms is shown in this image of hydrated carbon monoxide myoglobin. The space-filling stippled structures on the protein stick model are hydrating water molecules.

The superior ability of neutrons to precisely locate hydrogen (or deuterium) atoms-as well as carbon, oxygen, nitrogen, and phosphorus atoms-in macromolecular structures will likely be important to the pharmaceutical industry.

Structural

Biology

Road map for the Future of X-ray and Neutron Nanoscience