analisis en albañileria confinada

54
CARACTERISTICAS DEL MURO "X4" H libre= 2.5 m f'm= 65 kg/cm2 H piso 2.6 m f'c= 210 kg/cm2 N° Pisos= 2 fy= 4200 kg/cm2 Dxx= 6 m fs= 2100 kg/cm2 Dyy= 20.8 m t= 0.15 m L= 2.95 m Area s 3,835.00 cm2 t= 0.13 m Inerci 27,811,740 cm4 P= 18.32 tn V= 7.08 tn Pm= 21.52 tn M= 27.91 tn.m Pd= 17.25 tn Ps= 7.39 tn Columna b= 0.3 m 217370.6512 h= 0.15 m 6.79283285 Área (col) 0.045 m2 DATOS DEL EDIFICIOS - Suelo de buena calidad - 4 pisos destinados a vivienda, con 2 departamentos por piso - area de cada departamento 72m2 m - Altura total del edifi 10.28 El peso de la azotea es igual al peso del piso tipico Z= 0.3 (zona 1) U= 1 (Categoria 3) S= 1.4 (flexible) R= 6 (Reduccion) Ts= 0.3 seg C= 2.5 T= 0.17 seg Periodo T= 0.05h/raiz(D) Txx= 0.2123 Tyy= 0.1140 ambos son menores al periodo fundamental del suelo Ts=0.3seg entonces el coeficiente C= 0.4 C= 0.4 Cortante Basal V= 0.175 x P P=peso total, considerando 25% s/c

Upload: jair-chileno

Post on 17-Feb-2016

82 views

Category:

Documents


8 download

DESCRIPTION

Analisis en albañileria confinada con ayuda de Etabs, comparar resultados porciacaso

TRANSCRIPT

Page 1: Analisis en albañileria confinada

CARACTERISTICAS DEL MURO "X4"

H libre= 2.5 m f'm= 65 kg/cm2

H piso 2.6 m f'c= 210 kg/cm2

N° Pisos= 2 fy= 4200 kg/cm2

Dxx= 6 m fs= 2100 kg/cm2

Dyy= 20.8 m t= 0.15 m

L= 2.95 m Area se 3,835.00 cm2

t= 0.13 m Inercia= 27,811,740 cm4

P= 18.32 tn V= 7.08 tn

Pm= 21.52 tn M= 27.91 tn.m

Pd= 17.25 tn

Ps= 7.39 tn

Columna

b= 0.3 m 217370.6512

h= 0.15 m 6.79283285

Área (col)= 0.045 m2

DATOS DEL EDIFICIOS

- Suelo de buena calidad

- 4 pisos destinados a vivienda, con 2 departamentos por piso

- area de cada departamento 72m2 (desc m

- Altura total del edificios 10.28

El peso de la azotea es igual al peso del piso tipico

Z= 0.3 (zona 1)

U= 1 (Categoria 3)

S= 1.4 (flexible)

R= 6 (Reduccion)

Ts= 0.3 seg

C= 2.5

T= 0.17 seg

Periodo T= 0.05h/raiz(D)

Txx= 0.2123

Tyy= 0.1140

ambos son menores al periodo fundamental del suelo Ts=0.3seg

entonces el coeficiente C= 0.4

C= 0.4

Cortante Basal

V= 0.175 x P

P=peso total, considerando 25% s/c

B2
Altura de piso a techo.
D6
espesor efectivo del muro
A8
Espesor de muro
A9
Carga Axial 25% de s/c=
D9
Cortante Basal
A10
Axial con 100% de s/c
D10
Momento basal
A11
axial permanente
A12
Axial sismica
Page 2: Analisis en albañileria confinada

CARGA PROVENIENTE DE LA LOSA EN PISO TIPICO

Muro Lxx Ac Muro lyy Ac

X1 2.02 0.30 Y1 5.00 0.75 Muro

X2 1.32 0.20 Y2 2.05 0.31 X1

X3 2.90 0.43 Y3 3.65 0.55 X2

X4 2.03 0.30 Y4 2.65 0.40 X3

X5 2.94 0.44 Y5 2.15 0.32 X4

X6 2.9 0.44 Y6 2.93 0.44 X5

X7 2.95 0.44 Y7 5.00 0.75 X6

Y8 3.65 0.55 X7

Σ1/2 edif 17.05 2.56 Y9 1.68 0.25

Σ total 34.104 5.1156 Y10 3.56 0.53

Ap= 124.80 m2 Y11 1.60 0.24

ZUSN/56= 0.015 Y12 1.67 0.25

Area de Muros= 4.43352 Y13 5.00 0.75

ΣLt/Ap= 0.036 Y14 2.05 0.31

Densidad: Densidad Conforme Y15 3.65 0.55

Y16 2.65 0.40

Y17 2.15 0.32

Y18 5.00 0.75

Muro

Σ1/2 edif 56.09 8.41 Y1

Σ total 112.18 16.827 Y2

Ap= 124.80 m2 Y3

ZUSN/56= 0.015 Y4

Area de Muros= 14.5834 Y5

ΣLt/Ap= 0.117 Y6

Densidad: Densidad Conforme Y7

Y8

METRADO DE CARGAS Y9

Concreto 2.4 tn/m2 Y10

Piso Terminado 0.1 tn/m2 Y11

Albañileria 0.27 tn/m2 Y12

Parapeto Tab 0.21 tn/m2 Y13

S/C 0.05 tn/m2 Y14

Ventanas 0.02 tn/m2 Y15

Y16

CARGAS DIRECTAS Y17

Corte AA (ventanas 0.34 tn/m Y18

Vigas peraltadas ( 0.14 tn/m

Corte BB (S.H) 0.44 tn/m

Corte CC (muros c 0.70 tn/m

Escalera (1 tramo) 1.6 tn/m

P. Albañ(tn/m3)=1.8

Alfeizar h L t γ Peso

A entre 1 y 2 0.95 1.2 0.13 1.8 0.26676 0.40884

A entre 2 y 3 0.95 3 0.13 1.8 0.6669 1.0221 X1

A entre 3 y 6 0.95 0.13 1.8 0 0 X2

M10
corresponde a medio muro
M35
25% CV
M39
se calcula con alturas
Page 3: Analisis en albañileria confinada

D entre 1 y 2 0.95 1.07 0.13 1.8 0.237861 0.364549 X3

D entre 2 y 3 0.95 2.63 0.13 1.8 0.584649 0.896041 X4

1 entre B y C 1.85 1.25 0.13 1.8 0.541125 0.554625 X5

Peso Alfeizar= 2.30 3.246155 X6

Peso de alfeizer en toda la edificacion X7

N° Pisos= 2 X8

Peso = 4.59 tn

6.49231 tn X9

X10

Page 4: Analisis en albañileria confinada

CARGA PROVENIENTE DE LA LOSA EN PISO TIPICO

según autoCAD según la hoja

A.T. CAD LOSA ACAB 25% S/C P.LOSA A.T. Losa Acab. 25% S/C

3.65 0.20 0.37 0.18 0.75 2.90 0.84 0.29 0.15

3.36 0.19 0.34 0.17 0.69 2.77 0.80 0.28 0.14

3.78 0.21 0.38 0.19 0.78 1.65 0.48 0.17 0.08

3.31 0.19 0.33 0.17 0.68 5.34 1.54 0.53 0.27

4.39 0.25 0.44 0.22 0.90 1.81 0.52 0.18 0.09

1.00 0.06 0.10 0.05 0.21 7.02 2.02 0.70 0.35

1.19 0.07 0.12 0.06 0.25 5.54 1.60 0.55 0.28

según autoCAD según la hoja

A.T. CAD LOSA ACAB 25% S/C P.LOSA A.T. Losa Acab. 25% S/C

5.89 0.33 0.59 0.29 1.21 2.25 0.65 0.23 0.11

0.90 0.05 0.09 0.05 0.19 3.56 1.03 0.36 0.18

2.92 0.16 0.29 0.15 0.60 7.76 2.23 0.78 0.39

3.70 0.21 0.37 0.19 0.76 6.83 1.97 0.68 0.34

2.91 0.16 0.29 0.15 0.60 1.64 0.47 0.16 0.08

9.35 0.52 0.94 0.47 1.93 5.14 1.48 0.51 0.26

9.81 0.55 0.98 0.49 2.02 3.26 0.94 0.33 0.16

8.69 0.49 0.87 0.43 1.79 3.61 1.04 0.36 0.18

8.11 0.45 0.81 0.41 1.67 3.26 0.94 0.33 0.16

1.21 0.07 0.12 0.06 0.25 3.61 1.04 0.36 0.18

2.28 0.13 0.23 0.11 0.47 3.26 0.94 0.33 0.16

5.00 0.28 0.50 0.25 1.03 3.61 1.04 0.36 0.18

5.11 1.47 0.51 0.26 2.24 3.26 0.94 0.33 0.16

3.83 1.10 0.38 0.19 1.68 3.61 1.04 0.36 0.18

0.00 0.00 0.00 0.00 0.00 3.26 0.94 0.33 0.16

4.96 1.43 0.50 0.25 2.17 3.61 1.04 0.36 0.18

2.60 0.75 0.26 0.13 1.14 3.61 1.04 0.36 0.18

3.61 1.04 0.36 0.18 1.58 3.61 1.04 0.36 0.18

h (m) AreaMuro t (m) A.muro L (m) h (m) AreaMuro

2.25 4.55 0.13 0.26 Y1 5.00 2.25 11.25

2.25 2.97 0.13 0.17 Y2 2.05 2.25 4.61

Page 5: Analisis en albañileria confinada

2.25 6.51 0.13 0.38 Y3 3.65 2.25 8.21

2.25 4.56 0.13 0.26 Y4 2.65 2.25 5.96

2.25 13.24 0.13 0.76 Y5 2.15 2.25 4.84

2.25 6.52 0.13 0.38 Y6 2.93 2.25 6.59

2.25 6.64 0.13 0.38 Y7 5.00 2.25 11.25

2.25 0.00 0.13 0.00 Y8 7.30 2.25 16.43

2.25 0.00 0.13 0.00

2.25 0.00 0.13 0.00

Page 6: Analisis en albañileria confinada

según la hoja CRITERIO 1: CONSIDERANDO (S/C) A CADA ELEMENTOP.Losa (tn) Muro Col (tn) Acab (tn) 25% S/C P.Col (tn) p.Muro Acab (tn) P.Muro (tn)

1.27 X1 0.27 0.0045 0.108 0.38 0.08 0.4545 0.54

1.21 X2 0.27 0.0045 0.108 0.38 0.05 0.297 0.35

0.72 X3 0.27 0.0045 0.108 0.38 0.12 0.651375 0.77

2.34 X4 0.27 0.0026 0.108 0.38 0.08 0.455625 0.54

0.79 X5 0.27 0.0045 0.108 0.38 0.12 1.3239 1.44

3.07 X6 0.27 0.0045 0.108 0.38 0.12 0.6525 0.77

2.43 X7 0.27 0.0045 0.108 0.38 0.12 0.66375 0.78

Muro Col (tn) Acab (tn) P.Col (tn) p.Muro Acab (tn) P.Muro (tn)

Y1 0.27 0.0045 0.108 0.38 0.20 0.075 0.28

Y2 0.27 0.0045 0.108 0.38 0.08 0.03075 0.11

Y3 0.27 0.0045 0.108 0.38 0.15 0.05475 0.20

según la hoja Y4 0.27 0.0026 0.108 0.38 0.11 0.03975 0.15

P.Losa (tn) Y5 0.27 0.0045 0.108 0.38 0.09 0.03225 0.12

0.99 Y6 0.27 0.0045 0.108 0.38 0.12 0.04395 0.16

1.56 Y7 0.27 0.0045 0.108 0.38 0.20 0.075 0.28

3.40 Y8 0.27 0.0045 0.108 0.38 0.15 0.05475 0.20

2.99 Y9 0.27 0.0045 0.108 0.38 0.07 0.0252 0.09

0.72 Y10 0.27 0.0045 0.108 0.38 0.14 0.0534 0.20

2.25 Y11 0.27 0.0045 0.108 0.38 0.06 0.024 0.09

1.43 Y12 0.27 0.0045 0.108 0.38 0.07 0.02505 0.09

1.58 Y13 0.27 0.0045 0.108 0.38 0.20 0.075 0.28

1.43 Y14 0.27 0.0045 0.108 0.38 0.08 0.03075 0.11

1.58 Y15 0.27 0.0045 0.108 0.38 0.15 0.05475 0.20

1.43 Y16 0.27 0.0045 0.108 0.38 0.11 0.03975 0.15

1.58 Y17 0.27 0.0045 0.108 0.38 0.09 0.03225 0.12

1.43 Y18 0.27 0.0045 0.108 0.27 0.20 0.075 0.28

1.58

1.43

1.58

1.58

1.58

t (m) A.muro

0.13 0.65

0.13 0.27

AE8
Corresponden a medio muro
AE11
Corresponden a medio muro
Page 7: Analisis en albañileria confinada

0.13 0.47

0.13 0.34

0.13 0.28

0.13 0.38

0.13 0.65

0.13 0.95

Page 8: Analisis en albañileria confinada

CRITERIO 1: CONSIDERANDO (S/C) A CADA ELEMENTOL de viga (m) Vg.Sol ACAB 25% S/C P.Vg (tn) PD Muro Peso P.tip P.Acum 2pisos

2.90 0.42 0.006 0.003 0.43 2.10 X1 2.10 4.19

2.40 0.35 0.006 0.003 0.35 1.78 X2 1.78 3.56

2.90 0.42 0.006 0.003 1.93 X3 1.93 3.86

2.43 0.35 0.006 0.003 0.36 1.96 X4 1.96 3.92

3.66 0.53 0.006 0.003 0.54 3.27 X5 3.27 6.53

2.90 0.42 0.006 0.003 1.36 X6 1.36 2.72

2.95 0.42 0.006 0.003 0.43 1.84 X7 1.84 3.69

El muro más esforzado es X2 =

L de viga (m) Vg.Sol ACAB 25% S/C P.Vg (tn) PD Muro Peso P.tip P.Acum

5.00 0.72 0.006 0.003 0.73 2.60 Y1 2.60 5.20

2.05 0.30 0.006 0.003 0.30 0.99 Y2 0.99 1.97

3.65 0.53 0.006 0.003 0.53 1.72 Y3 1.72 3.44

2.65 0.38 0.006 0.003 0.39 1.68 Y4 1.68 3.36

0.00 0.00 0.006 0.003 0.01 1.11 Y5 1.11 2.22

4.00 0.58 0.006 0.003 0.59 3.06 Y6 3.06 6.11

6.03 0.87 0.006 0.003 0.88 3.56 Y7 3.56 7.12

4.68 0.67 0.006 0.003 0.68 3.06 Y8 3.06 6.12

3.73 0.54 0.006 0.003 0.55 2.69 Y9 2.69 5.39

4.63 0.67 0.006 0.003 0.68 1.51 Y10 1.51 3.01

0.00 0.00 0.006 0.003 0.01 0.95 Y11 0.95 1.90

0.00 0.00 0.006 0.003 0.01 1.51 Y12 1.51 3.03

5.00 0.72 0.006 0.003 0.73 3.63 Y13 3.63 7.25

2.05 0.30 0.006 0.003 0.30 2.48 Y14 2.48 4.96

3.65 0.53 0.006 0.003 0.53 1.12 Y15 1.12 2.24

2.65 0.38 0.006 0.003 0.39 3.09 Y16 3.09 6.19

2.15 0.31 0.006 0.003 0.32 1.96 Y17 1.96 3.92

5.15 0.74 0.006 0.003 0.75 2.88 Y18 2.88 5.77

PESO DEL PISO TIPICO

Muros "X" = 53.83 tn

PESO TOTAL DEL EDIFICIO

P= 107.66 tn

AR4
Long a partir del A.T.
AS17
viga de 0.4*0.15
Page 9: Analisis en albañileria confinada

σ kg/cm2 Fa (kg/cm2) 0.15*f'm Xi (m) Yi (m)

1.38 10.05 9.75 1.13 5.08

1.80 10.05 9.75 0.8 7.130

0.89 10.05 9.75 1.53 10.780

1.29 10.05 9.75 1.16 15.580

1.48 10.05 9.75 2.32 19.130

0.62 10.05 9.75 1.5 20.730

0.83 10.05 9.75 2.93 20.730

1.80 14.17

σ kg/cm2 Fa (tn/m2) 0.15*f'm Xi (m) Yi (m)

0.69 10.05 9.75 0.075 2.54

0.64 10.05 9.75 0.075 6.1

0.63 10.05 9.75 0.075 8.95

0.85 10.05 9.75 0.075 12.1

0.69 10.05 9.75 0.075 14.5

1.39 10.05 9.75 0.075 19.24

0.95 10.05 9.75 2.98 2.54

1.12 10.05 9.75 2.98 8.95

2.14 10.05 9.75 2.98 11.61

0.56 10.05 9.75 2.98 17.35

0.79 10.05 9.75 2.32 19.96

1.21 10.05 9.75 4.57 19.86

0.97 10.05 9.75 5.93 2.54

1.61 10.05 9.75 5.93 6.1

0.41 10.05 9.75 5.93 8.95

1.56 10.05 9.75 5.93 12.1

1.22 10.05 9.75 5.93 14.5

0.77 10.05 9.75 5.93 18.15

9.37

BD3
0.2*f'm*(1-(h/35e)*2)
BF3
del plano
BG3
del plano
BG14
Ycg
BD16
0.2*f'm*(1-(h/35e)*2)
BF16
del plano
BG16
del plano
Page 10: Analisis en albañileria confinada

ANALISIS SISMICOParámetros Sismicos

Z = 0.3

U = 1

S = 1

N = 4

C = 2.5

R = 6

Calculo del

C = 2.5

tp= 0.4

T= 0.0833

V = 0.13

P = 107.66

V = 13.46

Distribucion en altura del corte Basal:

Piso Peso (tn) Hi (m)

2 53.8 5

1 53.8 2.5

La posición de la cortante Basal será:

Y cg = 14.17 m

X cg = 3 m (por simetria en este sentido)

Para comprobar el valor de Ycg se calcula de la siguiente manera:

Ycgi Fi

14.17 9.0

14.17 4.5

14.17 #REF!

14.17 0.0

para el analisis sísmico, se consideró en la evaluacion del momento de Inercia de los muros, el

crterio de la sección trasnformada (transformando el concreto de las columnas en albañileria),

y se agregó el 25% de la longitud del muro transversal

Se asumió como Módulo de elasticidad de la albañileria 500 f'm = 32,000 kg/cm2 y como Módulo

de Corte G = 0.4 E , mientras que para el concreto se tomó Ec = 200,000 kg/cm2

Se efectuaron 2 tipos de análisis: un computacional y un analisis manual

BS3
este valor no corresponde a las tablas (esta en la hoja)
BS7
se considera asi (según la hoja)
BS14
coeficiente Basal
BR27
La simetria indica que la coordenada "X" será la mitad de su longitud desde el origen de coordenada hasta la cara interna del muro extremo
Page 11: Analisis en albañileria confinada

ANALISIS SISMICO COMPUTACIONAL (ETABS)

Zona 1

Vivienda

(Roca= 1) Tp=0.4

4 pisos TABLE: Centers of Mass and Rigidity

Coef. Amplif. Sismica Story Mass X Mass Y XCM

Coef. Reduccion kgf-s²/cm kgf-s²/cm m

PISO 4 D1 103.84 103.84 9.58

PISO 3 D1 138.64 138.64 9.58

12.000 PISO 2 D1 138.64 138.64 9.58

hn= 5 PISO 1 D1 139.05 139.05 9.58

El peso total es menor según ETABS al calculo manual expresado anteriormente

P Para hallar el coeficiente de reducción de la cortante Basal (V=0.16xP)se debe confirmar el valor de C

tn para lo cual ETABS nos muestra la siguiente tabla

tn TABLE: Modal Participating Mass Ratios

Case Mode Period UX UY

Distribucion en altura del corte Basal: seccond

Peso. Hi % Fi (tn) Vi (tn) Modal 1 0.16 0.8054 8E-06

269 66.67% 9.0 8.97 Modal 2 0.128 1.56E-06 0.8308

135 33.33% 4.5 13.46 Modal 3 0.125 0.0074 0.0005404 13.46 Modal 4 0.08 0 0

Modal 5 0.08 0 0.0016

Modal 6 0.08 0 9E-06

Modal 7 0.08 0 0.001

Modal 8 0.078 0 0

m (por simetria en este sentido) Modal 9 0.078 0 0.0004

Modal 10 0.055 0.0009 0

Para comprobar el valor de Ycg se calcula de la siguiente manera: Modal 11 0.055 0 0

Fi.Ycgi Fi.Ycgi/Basal Modal 12 0.05 0.1427 5E-07

127.09 9.4438095238

63.54 4.7219047619 C = 2.5

#REF! #REF! tp= 0.3

0.00 0 R = 6 Simo moderado

Ycg= #REF! m C/R = 0.417

para el analisis sísmico, se consideró en la evaluacion del momento de Inercia de los muros, el

crterio de la sección trasnformada (transformando el concreto de las columnas en albañileria),

y se agregó el 25% de la longitud del muro transversal Confirmación del Coeficiente Basal=

Se asumió como Módulo de elasticidad de la albañileria 500 f'm = 32,000 kg/cm2 y como Módulo ZUCN/R= 0.167 Se Aproxima al coeficiente manual

de Corte G = 0.4 E , mientras que para el concreto se tomó Ec = 200,000 kg/cm2 Basal (V)= 86.69

TABLE: Auto Seismic - User Coefficients

Se efectuaron 2 tipos de análisis: un computacional y un analisis manual Type Direction

Sismo X+e Seismic X + Ecc. Y 5 No

Sismo X-e Seismic X - Ecc. Y 5 No

Sismo Y+e Seismic Y + Ecc. X 5 No

Sismo Y-e Seismic Y - Ecc. X 5 No

Considerando 3 grados de libertad por piso (traslacion en 2 direcciones y una rotación torsional), Para el modelaje de los ejes se supone un sistema de barras deformables por flexión, corte y fuerza axial. Adicionalmente, se contempla el aporte de la losa del techo sobre la flexión en las vigas de borde, agregando a cada lado de la viga un ancho efectivo igual a 4 veces el espesor de la losa. ETABS nos muestra una tabla de Centros de masa y Rigideces donde se puede apreciar el peso acumulado del edificio:

Diaphragm

Load Pattern

Eccentricity%

Ecc. Overrid

den

CA19
Se usa este valor x ser el mayor
Page 12: Analisis en albañileria confinada
Page 13: Analisis en albañileria confinada

ANALISIS ESTATICO Luego de nombrar "Piers" a cada muro según direccion, ETABS te muestra la siguiente tabla

TABLE: Pier Forces

Story Pier Load Case/ComboLocation

PISO 1 X1 Sismo X+e Bottom

PISO 1 X2 Sismo X+e Bottom

YCM Cumulative XCumulative YXCCM YCCM PISO 1 X3 Sismo X+e Bottom

m kgf-s²/cm kgf-s²/cm m m PISO 1 X4 Sismo X+e Bottom

4.322 103.84 103.84 9.581 4.322 PISO 1 X5 Sismo X+e Bottom

4.32 242.48 242.48 9.578 4.321 PISO 1 X6 Sismo X+e Bottom

4.32 381.11 381.11 9.577 4.32 PISO 1 X7 Sismo X+e Bottom

4.323 520.16 520.16 9.576 4.321 PISO 1 X8 Sismo X+e Bottom

El peso total es menor según ETABS al calculo manual expresado anteriormente PISO 1 X9 Sismo X+e Bottom

Para hallar el coeficiente de reducción de la cortante Basal (V=0.16xP)se debe confirmar el valor de C PISO 1 X10 Sismo X+e Bottom

TABLE: Pier Forces

Sum UX Sum UY RX RY RZ Sum RX Sum RY Sum RZ Story Pier Location

0.8054 7.568E-06 5.23E-06 0.2823 0.0078 0.000005234 0.2823 0.0078 PISO 1 X1 Sismo X-e Bottom

0.8054 0.8308 0.2624 0 0.0006 0.2624 0.2823 0.0083 PISO 1 X2 Sismo X-e Bottom

0.8128 0.8313 0.0002 0.0027 0.8266 0.2626 0.285 0.835 PISO 1 X3 Sismo X-e Bottom

0.8128 0.8313 0 0 0.0024 0.2626 0.285 0.8373 PISO 1 X4 Sismo X-e Bottom

0.8128 0.8329 0.0063 0 0 0.2689 0.285 0.8373 PISO 1 X5 Sismo X-e Bottom

0.8128 0.8329 3.77E-05 0 0.0015 0.2689 0.285 0.8389 PISO 1 X6 Sismo X-e Bottom

0.8128 0.8339 0.0039 0 0.00001475 0.2728 0.285 0.8389 PISO 1 X7 Sismo X-e Bottom

0.8128 0.8339 0 0 0.0004 0.2728 0.285 0.8392 PISO 1 X8 Sismo X-e Bottom

0.8128 0.8343 0.0016 0 0 0.2745 0.285 0.8392 PISO 1 X9 Sismo X-e Bottom

0.8137 0.8343 0 0.0036 0.0002 0.2745 0.2886 0.8394 PISO 1 X10 Sismo X-e Bottom

0.8137 0.8343 0 0 0 0.2745 0.2886 0.8394

0.9564 0.8343 1.48E-05 0.578 0.0018 0.2745 0.8666 0.8413 TABLE: Pier Forces

Story Pier Load Case/ComboLocation

Z = 0.4

U = 1 PISO 1 Y1 Sismo Y+e Bottom

Simo moderado S = 1 PISO 1 Y2 Sismo Y+e Bottom

C = 2.5 PISO 1 Y3 Sismo Y+e Bottom

R = 6 PISO 1 Y4 Sismo Y+e Bottom

PISO 1 Y5 Sismo Y+e Bottom

PISO 1 Y6 Sismo Y+e Bottom

Se Aproxima al coeficiente manual PISO 1 Y7 Sismo Y+e Bottom

PISO 1 Y8 Sismo Y+e Bottom

C K Weight Used Base Shear

kgf kgf TABLE: Pier Forces

PISO 4 BASE 0.16 1 519,945.66 83,191.31 Story Pier Load Case/ComboLocation

PISO 4 BASE 0.16 1 519,945.66 83,191.31

PISO 4 BASE 0.16 1 519,945.66 83,191.31 PISO 1 Y1 Sismo Y-e Bottom

PISO 4 BASE 0.16 1 519,945.66 83,191.31 PISO 1 Y2 Sismo Y-e Bottom

PISO 1 Y3 Sismo Y-e Bottom

Considerando 3 grados de libertad por piso (traslacion en 2 direcciones y una rotación torsional), Para el modelaje de los ejes se supone un sistema de barras deformables por flexión, corte y fuerza axial. Adicionalmente, se contempla el aporte de la losa del techo sobre la flexión en las vigas de borde, agregando a cada lado de la viga un ancho efectivo igual a 4 veces el espesor de la losa. ETABS nos muestra una tabla de Centros de masa y Rigideces donde se puede apreciar el peso acumulado del edificio:

Load Case/Combo

Top Story

Bottom Story

CE12
Peso del edificio según ETABS (sin alfeizers)
CI42
se reparte en los muros y elementos de C°A°
CI44
Cortante basal
Page 14: Analisis en albañileria confinada

PISO 1 Y4 Sismo Y-e Bottom

PISO 1 Y5 Sismo Y-e Bottom

PISO 1 Y6 Sismo Y-e Bottom

PISO 1 Y7 Sismo Y-e Bottom

PISO 1 Y8 Sismo Y-e Bottom

Page 15: Analisis en albañileria confinada

Luego de nombrar "Piers" a cada muro según direccion, ETABS te muestra la siguiente tabla ANALISIS SISMICO COMPUTACIONAL (ANALISIS DINÁMICO

T (seg) C C/R ZUCS/R

P V2 V3 T M2 M3 0.0 2.5000 0.4167 0.1667

kgf kgf kgf kgf-m kgf-m kgf-m 0.2 2.5000 0.4167 0.1667

-21.2 5,104.30 0.77 -18.57 0.87 4362.16 0.4 1.8703 0.3117 0.1247

-22.68 2,682.56 0.27 7.83 0.19 -5649.47 0.6 1.2479 0.2080 0.0832

-21.89 2,935.00 0.28 -11.66 0.2 30067.28 0.8 0.9363 0.1561 0.0624

37.02 12,942.61 1.1 -21.25 1.37 -44867.2 1.0 0.7493 0.1249 0.0500

-140.95 7,752.17 -1.4 5.94 -1.69 19183.33 1.4 0.5353 0.0892 0.0357

13.96 9,315.95 0.82 17.25 1.01 62281.04 1.8 0.4164 0.0694 0.0278

-33.32 12,977.00 1.08 47.25 1.35 -54721.8 2.2 0.3408 0.0568 0.0227

-40.34 6,269.84 0.63 -5.05 0.77 23273.37 2.6 0.2884 0.0481 0.0192

136.34 12,214.70 1.19 23.57 1.44 -4983.24 3.0 0.2499 0.0417 0.0167

26.45 2,796.75 0.28 21.98 0.2 23544.14 3.5 0.2142 0.0357 0.0143

74,990.88 4.0 0.1875 0.0312 0.0125

4.5 0.1666 0.0278 0.0111

P V2 V3 T M2 M3 5.0 0.1500 0.0250 0.0100

kgf kgf kgf kgf-m kgf-m kgf-m 6.0 0.1250 0.0208 0.0083

-20.91 5,442.54 0.82 -10.56 0.93 4153.06 7.0 0.1071 0.0179 0.0071

-21.85 2,993.75 0.28 26.13 0.21 -11064.8 8.0 0.0937 0.0156 0.0062

-21.24 2,940.87 0.29 46.71 0.21 19595.92 9.0 0.0833 0.0139 0.0056

47.41 13,037.92 1.2 222.84 1.51 -26225.1 10.0 0.0750 0.0125 0.0050

-137.79 7,742.74 -1.27 11.9 -1.58 19285.7

12.99 9,335.34 0.87 47.72 1.09 64468.84 Las columnas T(seg) y ZUCS/R se inserta al ETABS para crear la funcion "Spectrum Response"

-44.33 13,155.98 1.17 288.65 1.48 -73940.6

-42.43 5,925.56 0.65 -2.01 0.81 22116.44

80 11,532.62 1.3 167.19 1.58 3951.36

24.88 2,805.08 0.29 81.82 0.21 34076.66

74,912.40

P V2 V3 T M2 M3

kgf kgf kgf kgf-m kgf-m kgf-m

5543.91 10,870.70 -17.29 21585.25 2166.03 30336.47

-6014.2 14,023.33 10.25 27949.23 -6003.6 43850.29

8590.55 16,644.53 -21.94 11114.24 9508.88 55233.32

712.3 10,546.31 11.42 6840.39 -3163.39 26190.08

2783.64 2,065.90 -2.87 254.25 -455.44 3325.45

1487.18 8,680.65 -5.57 1183.42 -42.23 20013.95

15151.9 7,447.76 5.6 545.95 -62.68 20756.01

-7262.63 8,958.32 10.42 -25.63 12.98 14664.67

79,237.50

P V2 V3 T M2 M3

kgf kgf kgf kgf-m kgf-m kgf-m

5519.86 10,860.01 13.54 -20750.27 64.54 30331.14

-5982.08 14,010.67 -13.47 -26940.07 5702.17 43844.82

8606.89 16,634.34 17.94 -10821.59 -10685.69 55193.03

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.00.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800

ESPECTRO RESPUESTA

CR15
tiene q aproximarse a la Basal, son parecidas entre si(con las demas tablas)
Page 16: Analisis en albañileria confinada

833.29 10,552.09 -13.67 -7246.13 -2259.79 26117.07

2782.8 2,064.36 2.23 -239.69 477.99 3323.41

1485.86 8,673.94 3.2 -1140.09 67.87 20003.36

15127.66 7,377.70 24.88 35.96 10.31 20727.22

-7261.52 9,009.65 -4.67 -46.38 -9.45 14684.56

79,182.76

Page 17: Analisis en albañileria confinada

ANALISIS DINÁMICO ANALISIS SISMICO MANUAL

Los muros se comportan como elementos en voladizo, interconectados por bielas axialmente rigidas usadas

como elementos que compatibilizan el desplazamiento lateral

La rigidez latereal de cada muro (ki) se calcula suponiendo que los muros del primer entrepiso actuan en voladizo

(h=2.47m)

Em= 32,500 kg/cm2 G= 13,000

Cálculo de la rigidez lateral de muros dirección "X"

Muro L t Xi (m) Yi (m) Em.t

X1 202 13 1.13 5.08 422,500

X2 132 13 0.8 7.130 422,500

X3 290 13 1.53 10.780 422,500

X4 203 13 1.16 15.580 422,500

X5 294 13 2.32 19.130 422,500

X6 290 13 1.5 20.730 422,500

X7 295 13 2.93 20.730 422,500

Y1 500 13 0.075 2.540 16,250,000

Y2 205 13 0.075 6.100 6,662,500

Y3 365 13 0.075 8.950 11,862,500

Y4 265 13 0.075 12.100 8,612,500

Y5 215 13 0.075 14.500 6,987,500

Y6 293 13 0.075 19.240 9,522,500

Y7 500 13 2.980 2.540 16,250,000

Y8 365 13 2.980 8.950 11,862,500

Las columnas T(seg) y ZUCS/R se inserta al ETABS para crear la funcion "Spectrum Response" Y9 168 13 2.980 11.610 5,460,000

Y10 356 13 2.980 17.350 11,570,000

Y11 160 13 2.320 19.960 5,200,000

Y12 167 13 4.570 19.860 5,427,500

Y13 500 13 5.930 2.540 16,250,000

Y14 205 13 5.930 6.100 6,662,500

Y15 365 13 5.930 8.950 11,862,500

Y16 265 13 5.930 12.100 8,612,500

Y17 215 13 5.930 14.500 6,987,500

Y18 500 13 5.930 18.150 16,250,000

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.00.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800

ESPECTRO RESPUESTA

DN8
del plano
DO8
del plano
Page 18: Analisis en albañileria confinada

Calcula la Rigidez torsional (RT):

Page 19: Analisis en albañileria confinada

Los muros se comportan como elementos en voladizo, interconectados por bielas axialmente rigidas usadas

como elementos que compatibilizan el desplazamiento lateral

La rigidez latereal de cada muro (ki) se calcula suponiendo que los muros del primer entrepiso actuan en voladizo

kg/cm2 h(libre)= 270.00 cm Em= 32500 kg/cm2 G=

Cálculo de la rigidez lateral de muros dirección "Y"

3(h/L) 4(h/L)^3 Σ Kx Kx/Em Ki.Yi Muro L t Xi (m) Yi (m)

4.0099 9.5521 13.5620 31,153.31 0.009586 158,258.79 X1 13 202 1.13 5.08

6.1364 34.2318 40.3681 10,466.17 0.003220 74,623.82 X2 13 132 0.8 7.130

2.7979 3.2449 6.0429 69,917.23 0.021513 753,707.77 X3 13 290 1.53 10.780

4.0000 9.4815 13.4815 31,339.29 0.009643 488,266.07 X4 13 203 1.16 15.580

2.7532 3.0919 5.8451 72,282.60 0.022241 1,382,766.08 X5 13 294 2.32 19.130

2.7931 3.2282 6.0213 70,167.80 0.021590 1,454,578.57 X6 13 290 1.5 20.730

2.7458 3.0668 5.8126 72,687.41 0.022365 1,506,809.95 X7 13 295 2.93 20.730

62.3077 35836.1 35898.4 452.67 0.000139 1,149.77 Y1 13 500 0.075 2.540

62.3077 35836.1 35898.4 185.59 0.000057 1,132.12 Y2 14 205 0.075 6.100

62.3077 35836.1 35898.4 330.45 0.000102 2,957.49 Y3 15 365 0.075 8.950

62.3077 35836.1 35898.4 239.91 0.000074 2,902.95 Y4 16 265 0.075 12.100

62.3077 35836.1 35898.4 194.65 0.000060 2,822.37 Y5 17 215 0.075 14.500

62.3077 35836.1 35898.4 265.26 0.000082 5,103.64 Y6 18 293 0.075 19.240

62.3077 35836.1 35898.4 452.67 0.000139 1,149.77 Y7 19 500 2.980 2.540

62.3077 35836.1 35898.4 330.45 0.000102 2,957.49 Y8 20 365 2.980 8.950

62.3077 35836.1 35898.4 152.10 0.000047 1,765.83 Y9 21 168 2.980 11.610

62.3077 35836.1 35898.4 322.30 0.000099 5,591.87 Y10 22 356 2.980 17.350

62.3077 35836.1 35898.4 144.85 0.000045 2,891.27 Y11 23 160 2.320 19.960

62.3077 35836.1 35898.4 151.19 0.000047 3,002.64 ###Y12 24 167 4.570 19.860

62.3077 35836.1 35898.4 452.67 0.000139 1,149.77 Y13 25 500 5.930 2.540

62.3077 35836.1 35898.4 185.59 0.000057 1,132.12 Y14 26 205 5.930 6.100

62.3077 35836.1 35898.4 330.45 0.000102 2,957.49 Y15 27 365 5.930 8.950

62.3077 35836.1 35898.4 239.91 0.000074 2,902.95 Y16 28 265 5.930 12.100

62.3077 35836.1 35898.4 194.65 0.000060 2,822.37 Y17 29 215 5.930 14.500

62.3077 35836.1 35898.4 452.67 0.000139 8,215.88 Y18 30 500 5.930 18.150

Σ= 363,091.81 0.11172

DS6
De piso a piso hn+losa
DS8
3(h/L)+4(h/L)^3
EA8
del plano
EB8
del plano
Page 20: Analisis en albañileria confinada

13,000 kg/cm2 h(libre)= 270 PRIMER PISO

Cálculo de la rigidez lateral de muros dirección "Y" V= 13.46

Em.t 3(h/t) 4(h/L)^3 Σ Ky/Em Ky Ki.Yi Muro Kxi (kg/cm)

6,565,000 62.3077 35,836.14 35,898.45 0.000056 1.8288 9.2902 X1 31,153.31

4,290,000 62.3077 35,836.14 35,898.45 0.000037 1.1950 8.5206 X2 10,466.17

9,408,750 62.3077 35,836.14 35,898.45 0.000081 2.6209 28.2537 X3 69,917.23

6,581,250 62.3077 35,836.14 35,898.45 0.000056 1.8333 28.5628 X4 31,339.29

9,561,500 62.3077 35,836.14 35,898.45 0.000082 2.6635 50.9525 X5 72,282.60

9,425,000 62.3077 35,836.14 35,898.45 0.000081 2.6255 54.4258 X6 70,167.80

9,587,500 62.3077 35,836.14 35,898.45 0.000082 2.6707 55.3642 X7 72,687.41

16,250,000 1.6200 0.6299 2.2499 0.057781 1877.8980 183456 Y1 452.67

6,662,500 3.9512 9.1388 13.0900 0.010695 347.5928 31047 Y2 185.59

11,862,500 2.2192 1.6191 3.8383 0.039080 1270.1020 276607 Y3 330.45

8,612,500 3.0566 4.2307 7.2873 0.021956 713.5684 143004 Y4 239.91

6,987,500 3.7674 7.9220 11.6895 0.014543 472.6480 86675 Y5 194.65

9,522,500 2.7645 3.1300 5.8945 0.030537 992.4448 310818 Y6 265.26

16,250,000 1.6200 0.6299 2.2499 0.084450 2744.6201 183456 Y7 452.67

11,862,500 2.2192 1.6191 3.8383 0.052107 1693.4693 276607 Y8 330.45

5,460,000 4.8214 16.6044 21.4258 0.009801 318.5406 29586 Y9 152.10

11,570,000 2.2753 1.7450 4.0203 0.054722 1778.4723 499314 Y10 322.30

5,200,000 5.0625 19.2217 24.2842 0.009471 307.8136 42741 Y11 144.85

5,427,500 4.8503 16.9045 21.7548 0.011032 358.5419 49548 Y12 151.19

16,250,000 1.6200 0.6299 2.2499 0.111118 3611.3422 183456 Y13 452.67

6,662,500 3.9512 9.1388 13.0900 0.019862 645.5294 31047 Y14 185.59

11,862,500 2.2192 1.6191 3.8383 0.070344 2286.1836 276607 Y15 330.45

8,612,500 3.0566 4.2307 7.2873 0.038423 1248.7448 143004 Y16 239.91

6,987,500 3.7674 7.9220 11.6895 0.024809 806.2818 86675 Y17 194.65

16,250,000 1.6200 0.6299 2.2499 0.133342 4333.6107 1310917 Y18 452.67

Σ= 0.794549 ### TOTALES 363,091.81

EF8
3(h/L)+4(h/L)^3
EM8
K=Em.t/[(4.(h/L)^3)+3(h/L)]
EN8
% de absorcion
EO8
V=(Ki/Σki)*Vn
ER8
K=Em.t/[(4.(h/L)^3)+3(h/L)]
ES8
% de absorcion
ET8
V=(Ki/Σki)*Vn
EW8
K=Em.t/[(4.(h/L)^3)+3(h/L)]
EO34
Basal
ET34
Basal
Page 21: Analisis en albañileria confinada

PRIMER PISO SEGUNDO PISO PRIMER PISO

tn Cte Directo V= 8.97 tn Cte Directo V=Vmi x (kg) Muro Kxi (kg/cm) Vmi x (kg) Muro

8.58% 1.15 X1 31,153.31 8.58% 0.77 X1

2.88% 0.39 X2 10,466.17 2.88% 0.26 X2

19.26% 2.59 X3 69,917.23 19.26% 1.73 X3

8.63% 1.16 X4 31,339.29 8.63% 0.77 X4

19.91% 2.68 X5 72,282.60 19.91% 1.79 X5

19.33% 2.60 X6 70,167.80 19.33% 1.73 X6

20.02% 2.69 X7 72,687.41 20.02% 1.80 X7

0.12% 0.02 Y1 452.67 0.12% 0.01 Y1

0.05% 0.01 Y2 185.59 0.05% 0.00 Y2

0.09% 0.01 Y3 330.45 0.09% 0.01 Y3

0.07% 0.01 Y4 239.91 0.07% 0.01 Y4

0.05% 0.01 Y5 194.65 0.05% 0.00 Y5

0.07% 0.01 Y6 265.26 0.07% 0.01 Y6

0.12% 0.02 Y7 452.67 0.12% 0.01 Y7

0.09% 0.01 Y8 330.45 0.09% 0.01 Y8

0.04% 0.01 Y9 152.10 0.04% 0.00 Y9

0.09% 0.01 Y10 322.30 0.09% 0.01 Y10

0.04% 0.01 Y11 144.85 0.04% 0.00 Y11

0.04% 0.01 Y12 151.19 0.04% 0.00 Y12

0.12% 0.02 Y13 452.67 0.12% 0.01 Y13

0.05% 0.01 Y14 185.59 0.05% 0.00 Y14

0.09% 0.01 Y15 330.45 0.09% 0.01 Y15

0.07% 0.01 Y16 239.91 0.07% 0.01 Y16

0.05% 0.01 Y17 194.65 0.05% 0.00 Y17

0.12% 0.02 Y18 452.67 0.12% 0.01 Y18

100.00% 13.46 TOTALES 363,091.81 100.00% 8.97 TOTALES

Kxi/Σkxi (%) Kxi/Σkxi (%)

EX8
% de absorcion
EY8
V=(Ki/Σki)*Vn
FB8
K=Em.t/[(4.(h/L)^3)+3(h/L)]
FC8
% de absorcion
FD8
V=(Ki/Σki)*Vn
FG8
K=Em.t/[(4.(h/L)^3)+3(h/L)]
FH8
% de absorcion
FI8
V=(Ki/Σki)*Vn
FL8
K=Em.t/[(4.(h/L)^3)+3(h/L)]
FM8
% de absorcion
FN8
V=(Ki/Σki)*Vn
FI27
Basal
FN27
Basal
EY34
Basal
FD34
Basal
Page 22: Analisis en albañileria confinada

PRIMER PISO SEGUNDO PISO

13.46 tn Cte Directo V= 8.97 tn Cte Directo

Kyi (kg/cm) Vmi y (kg) Muro Kyi (kg/cm) Vmi y (kg)

1.83 0.01% 0.00 X1 1.83 0.02% 0.00

1.20 0.00% 0.00 X2 1.20 0.01% 0.00

2.62 0.01% 0.00 X3 2.62 0.03% 0.00

1.83 0.01% 0.00 X4 1.83 0.02% 0.00

2.66 0.01% 0.00 X5 2.66 0.03% 0.00

2.63 0.01% 0.00 X6 2.63 0.03% 0.00

2.67 0.01% 0.00 X7 2.67 0.03% 0.00

1,877.90 7.27% 0.98 Y1 1,877.90 18.54% 1.66

347.59 1.35% 0.18 Y2 347.59 3.43% 0.31

1,270.10 4.92% 0.66 Y3 1,270.10 12.54% 1.13

713.57 2.76% 0.37 Y4 713.57 7.05% 0.63

472.65 1.83% 0.25 Y5 472.65 4.67% 0.42

992.44 3.84% 0.52 Y6 992.44 9.80% 0.88

2,744.62 10.63% 1.43 Y7 2,744.62 27.10% 2.43

1,693.47 6.56% 0.88 Y8 1,693.47 16.72% 1.50

318.54 1.23% 0.17 Y9 318.54 3.15% 0.28

1,778.47 6.89% 0.93 Y10 1,778.47 17.56% 1.58

307.81 1.19% 0.16 Y11 307.81 3.04% 0.27

358.54 1.39% 0.19 Y12 358.54 3.54% 0.32

3,611.34 13.99% 1.88 Y13 3,611.34 35.66% 3.20

645.53 2.50% 0.34 Y14 645.53 6.37% 0.57

2,286.18 8.85% 1.19 Y15 2,286.18 22.57% 2.03

1,248.74 4.84% 0.65 Y16 1,248.74 12.33% 1.11

806.28 3.12% 0.42 Y17 806.28 7.96% 0.71

4,333.61 16.78% 2.26 Y18 4,333.61 42.79% 3.84

25,822.84 100.00% 13.46 TOTALES 10,127.78 100.00% 8.97

Kyi/Σkyi (%) Kyi/Σkyi (%)

FQ8
K=Em.t/[(4.(h/L)^3)+3(h/L)]
FR8
% de absorcion
FS8
V=(Ki/Σki)*Vn
FV8
K=Em.t/[(4.(h/L)^3)+3(h/L)]
FW8
% de absorcion
FX8
V=(Ki/Σki)*Vn
FS34
Basal
FX34
Basal
Page 23: Analisis en albañileria confinada

CORRECCION POR TORSION

Cálculo del centro de Rigidez

Muro Kix Kiy Kx/Em Ky/Em x y Kiy.XiX1 31,153.31 1.83 0.009586 0.000056 1.13 5.08 2.07

X2 10,466.17 1.20 0.003220 0.000037 0.80 7.13 0.96

X3 69,917.23 2.62 0.021513 0.000081 1.53 10.78 4.01

X4 31,339.29 1.83 0.009643 0.000056 1.16 15.58 2.13

X5 72,282.60 2.66 0.022241 0.000082 2.32 19.13 6.18

X6 70,167.80 2.63 0.021590 0.000081 1.50 20.73 3.94

X7 72,687.41 2.67 0.022365 0.000082 2.93 20.73 7.83

Y1 452.67 1,877.90 0.000139 0.057781 0.08 2.54 140.84

Y2 185.59 347.59 0.000057 0.010695 0.08 6.10 26.07

Y3 330.45 1,270.10 0.000102 0.039080 0.08 8.95 95.26

Y4 239.91 713.57 0.000074 0.021956 0.08 12.10 53.52

Y5 194.65 472.65 0.000060 0.014543 0.08 14.50 35.45

Y6 265.26 992.44 0.000082 0.030537 0.08 19.24 74.43

Y7 452.67 2,744.62 0.000139 0.084450 2.98 2.54 8178.97

Y8 330.45 1,693.47 0.000102 0.052107 2.98 8.95 5046.54

Y9 152.10 318.54 0.000047 0.009801 2.98 11.61 949.25

Y10 322.30 1,778.47 0.000099 0.054722 2.98 17.35 5299.85

Y11 144.85 307.81 0.000045 0.009471 2.32 19.96 714.13

Y12 151.19 358.54 0.000047 0.011032 4.57 19.86 1638.54

Y13 452.67 3,611.34 0.000139 0.111118 5.93 2.54 21415.26

Y14 185.59 645.53 0.000057 0.019862 5.93 6.10 3827.99

Y15 330.45 2,286.18 0.000102 0.070344 5.93 8.95 13557.07

Y16 239.91 1,248.74 0.000074 0.038423 5.93 12.10 7405.06

Y17 194.65 806.28 0.000060 0.024809 5.93 14.50 4781.25

Y18 452.67 4,333.61 0.000139 0.133342 5.93 18.15 25698.31

TOTALES 363,091.81 25,822.84 0.11 0.79 66.21 98,964.88

Xcr= 3.83 mYcr= 16.17 m

Page 24: Analisis en albañileria confinada

Cálculo del Centro de Masa (CM)

Kix.Yi y.Kx/Em x.Ky/Em Muro L h t158258.79 0.0487 0.00006 X1 202 245 13 1.8074623.82 0.0230 0.00003 X2 132 245 13 1.80

753707.77 0.2319 0.00012 X3 290 245 13 1.80488266.07 0.1502 0.00007 X4 203 245 13 1.80

1382766.08 0.4255 0.00019 X5 294 245 13 1.801454578.57 0.4476 0.00012 X6 290 245 13 1.801506809.95 0.4636 0.00024 X7 295 245 13 1.80

1149.77 0.0004 0.00433 Y1 500 245 13 1.801132.12 0.0003 0.00080 Y2 205 245 13 1.802957.49 0.0009 0.00293 Y3 365 245 13 1.802902.95 0.0009 0.00165 Y4 265 245 13 1.802822.37 0.0009 0.00109 Y5 215 245 13 1.805103.64 0.0016 0.00229 Y6 293 245 13 1.801149.77 0.0004 0.25166 Y7 500 245 13 1.802957.49 0.0009 0.15528 Y8 365 245 13 1.801765.83 0.0005 0.02921 Y9 168 245 13 1.805591.87 0.0017 0.16307 Y10 356 245 13 1.802891.27 0.0009 0.02197 Y11 160 245 13 1.803002.64 0.0009 0.05042 Y12 167 245 13 1.801149.77 0.0004 0.65893 Y13 500 245 13 1.801132.12 0.0003 0.11778 Y14 205 245 13 1.802957.49 0.0009 0.41714 Y15 365 245 13 1.802902.95 0.0009 0.22785 Y16 265 245 13 1.802822.37 0.0009 0.14712 Y17 215 245 13 1.808215.88 0.0025 0.79072 Y18 500 245 13 1.80

5,871,618.85 1.81 3.05

Xcm= 2.81 mYcm= 11.50 m

γm

GS8
peso espc albañileria
Page 25: Analisis en albañileria confinada

Calculo de Momento Polar de inercia - Piso Típico (1,2,3,4)

Peso x y Px Py Muro y barra

1,158,066 1.13 5.08 1,308,615 5,882,975 X1 -11.091

756,756 0.80 7.13 605,405 5,395,670 X2 -9.041

1,659,704 1.53 10.78 2,539,346 17,891,604 X3 -5.391

1,160,933 1.16 15.58 1,346,682 18,087,328 X4 -0.591

1,686,649 2.32 19.13 3,913,025 32,265,588 X5 2.959

1,662,570 1.50 20.73 2,493,855 34,465,076 X6 4.559

1,691,235 2.93 20.73 4,955,319 35,059,302 X7 4.559

2,866,500 0.08 2.54 214,988 7,280,910 Y1 -13.631

1,175,265 0.08 6.10 88,145 7,169,116 Y2 -10.071

2,092,545 0.08 8.95 156,941 18,728,278 Y3 -7.221

1,519,245 0.08 12.10 113,943 18,382,865 Y4 -4.071

1,232,595 0.08 14.50 92,445 17,872,628 Y5 -1.671

1,679,769 0.08 19.24 125,983 32,318,756 Y6 3.069

2,866,500 2.98 2.54 8,542,170 7,280,910 Y7 -13.631

2,092,545 2.98 8.95 6,235,784 18,728,278 Y8 -7.221

963,144 2.98 11.61 2,870,169 11,182,102 Y9 -4.561

2,040,948 2.98 17.35 6,082,025 35,410,448 Y10 1.179

917,280 2.32 19.96 2,128,090 18,308,909 Y11 3.789

957,411 4.57 19.86 4,375,368 19,014,182 Y12 3.689

2,866,500 5.93 2.54 16,998,345 7,280,910 Y13 -13.631

1,175,265 5.93 6.10 6,969,321 7,169,116 Y14 -10.071

2,092,545 5.93 8.95 12,408,792 18,728,278 Y15 -7.221

1,519,245 5.93 12.10 9,009,123 18,382,865 Y16 -4.071

1,232,595 5.93 14.50 7,309,288 17,872,628 Y17 -1.671

2,866,500 5.93 18.15 16,998,345 52,026,975 Y18 1.979

41,932,309 117,881,510.29 482,185,694.72

HB8
Yi-Ycr
Page 26: Analisis en albañileria confinada

Calculo de Momento Polar de inercia - Piso Típico (1,2,3,4) PRIMER PISO

y barra^2 R x barra x barra^2 R J Descripcion

123.0140 1.1792 -15.041 226.2368 0.0127 1.1919 Vx (3)=

81.7427 0.2632 -15.371 236.2728 0.0087 0.2719 Vy (3)=

29.0647 0.6253 -14.641 214.3638 0.0173 0.6426 Fx (3)=

0.3495 0.0034 -15.011 225.3352 0.0127 0.0161 Fx (4)=

8.7547 0.1947 -13.851 191.8549 0.0157 0.2104 Fy (3)=

20.7829 0.4487 -14.671 215.2432 0.0174 0.4661 Fy (4)=

20.7829 0.4648 -13.241 175.3285 0.0144 0.4792 Xcm

185.8088 0.0259 -16.096 259.0866 14.9704 14.9963 Ycm

101.4284 0.0058 -16.096 259.0866 2.7710 2.7768 Xcr

52.1453 0.0053 -16.096 259.0866 10.1251 10.1304 Ycr

16.5744 0.0012 -16.096 259.0866 5.6885 5.6897 dx

2.7928 0.0002 -16.096 259.0866 3.7679 3.7681 dy

9.4177 0.0008 -16.096 259.0866 7.9117 7.9124 J (2)=

185.8088 0.0259 -13.191 174.0069 14.6949 14.7207 PESO NIVEL

52.1453 0.0053 -13.191 174.0069 9.0669 9.0722 Cx

20.8043 0.0010 -13.191 174.0069 1.7055 1.7065 Cy

1.3896 0.0001 -13.191 174.0069 9.5220 9.5222 Tx

14.3552 0.0006 -13.851 191.8549 1.8171 1.8177 Ty

13.6075 0.0006 -11.601 134.5871 1.4848 1.4854 ex

185.8088 0.0259 -10.241 104.8815 11.6542 11.6801 ey

101.4284 0.0058 -10.241 104.8815 2.0832 2.0890 eaccx

52.1453 0.0053 -10.241 104.8815 7.3778 7.3831 eaccy

16.5744 0.0012 -10.241 104.8815 4.0299 4.0311 Mtx1

2.7928 0.0002 -10.241 104.8815 2.6020 2.6021 Mtx2

3.9158 0.0005 -10.241 104.8815 13.9851 13.9856 Mty1

128.6478 Mty2

HD8
(Kx/Em)*ybarra^2
HE8
Xi-Xcr
HG8
(Ky/Em)*xbarra^2
Page 27: Analisis en albañileria confinada

PRIMER PISO

PRIMER PISO SEGUNDO PISO Direccion X Direccion Y

Valores Descripcion Valores Muro ∆V1x ∆V2x ∆V1y

13,457.36 Vx (4)= 8,971.57 X1 -87.928 -15.990 -0.158

13,457.36 Vy (4)= 8,971.57 X2 -24.080 -4.379 -0.106

4,485.79 Fx (4)= 8,971.57 X3 -95.921 -17.444 -0.221

8,971.57 Fy (4)= 8,971.57 X4 -4.715 -0.857 -0.158

4,485.79 Xcm 2.81 X5 54.425 9.897 -0.212

8,971.57 Ycm 11.50 X6 81.402 14.803 -0.222

2.81 Xcr 3.83 X7 84.325 15.335 -0.203

11.50 Ycr 16.17 Y1 -1.570 -0.286 -173.927

3.83 dx 7.66 Y2 -0.476 -0.086 -32.193

16.17 dy 32.34 Y3 -0.607 -0.110 -117.634

7.66 J (2)= 128.6478 Y4 -0.249 -0.045 -66.089

32.34 PESO NIVEL 53829.433 Y5 -0.083 -0.015 -43.776

128.6478 Cx 2.5 Y6 0.207 0.038 -91.918

0.00 Cy 2.5 Y7 -1.570 -0.286 -208.323

2.5 Tx 0.08 Y8 -0.607 -0.110 -128.538

2.5 Ty 0.08 Y9 -0.177 -0.032 -24.178

0.08 ex -1.02 Y10 0.097 0.018 -134.990

0.08 ey -4.67 Y11 0.140 0.025 -24.533

-1.02 eaccx 0.766 Y12 0.142 0.026 -23.934

-4.67 eaccy 3.234 Y13 -1.570 -0.286 -212.809

0.766 Mtx1 70,931.56 Y14 -0.476 -0.086 -38.040

3.234 Mtx2 12,899.24 Y15 -0.607 -0.110 -134.720

106,397.34 Mty1 16,038.59 Y16 -0.249 -0.045 -73.586

19,348.85 Mty2 2,285.33 Y17 -0.083 -0.015 -47.513

24,057.89 Y18 0.228 0.041 -255.371

3,428.00

Calculo de los incrementos Cortantes por torsion (∆)

IA8
=[Mt1x(Kix/Em)*ybarra]/J
IB8
=[Mt2x(Kix/Em)*ybarra]/J
IC8
=[Mt1y(Kiy/Em)*ybarra]/J
ID8
=[Mt2y(Kiy/Em)*ybarra]/J
IE8
=[Mt1x(Kix/Em)*ybarra]/J
IF8
=[Mt2x(Kix/Em)*ybarra]/J
IG8
=[Mt1y(Kiy/Em)*ybarra]/J
IH8
=[Mt2y(Kiy/Em)*ybarra]/J
II8
=[Mt1x(Kix/Em)*ybarra]/J
IJ8
=[Mt2x(Kix/Em)*ybarra]/J
IK8
=[Mt1y(Kiy/Em)*ybarra]/J
Page 28: Analisis en albañileria confinada

Calculo de Cortantes de diseño en la direccion "X"

PRIMER PISO SEGUNDO PISO

Direccion Y Direccion X Direccion Y PRIMER PISO

∆V2y ∆V1x ∆V2x ∆V1y ∆V2y Muro Vtras ∆Vx (asum)

-0.023 -58.619 -10.660 -0.106 -0.015 X1 1.15 -15.99

-0.015 -16.053 -2.919 -0.070 -0.010 X2 0.39 -4.38

-0.031 -63.947 -11.629 -0.147 -0.021 X3 2.59 -17.44

-0.023 -3.143 -0.572 -0.106 -0.015 X4 1.16 -0.86

-0.030 36.283 6.598 -0.142 -0.020 X5 2.68 54.43

-0.032 54.268 9.869 -0.148 -0.021 X6 2.60 81.40

-0.029 56.217 10.223 -0.136 -0.019 X7 2.69 84.33

-24.783 -1.047 -0.190 -115.951 -16.522 Y1 0.02 -0.29

-4.587 -0.317 -0.058 -21.462 -3.058 Y2 0.01 -0.09

-16.762 -0.405 -0.074 -78.423 -11.174 Y3 0.01 -0.11

-9.417 -0.166 -0.030 -44.059 -6.278 Y4 0.01 -0.05

-6.238 -0.055 -0.010 -29.184 -4.158 Y5 0.01 -0.02

-13.097 0.138 0.025 -61.279 -8.732 Y6 0.01 0.21

-29.684 -1.047 -0.190 -138.882 -19.789 Y7 0.02 -0.29

-18.315 -0.405 -0.074 -85.692 -12.210 Y8 0.01 -0.11

-3.445 -0.118 -0.021 -16.119 -2.297 Y9 0.01 -0.03

-19.235 0.064 0.012 -89.993 -12.823 Y10 0.01 0.10

-3.496 0.093 0.017 -16.355 -2.330 Y11 0.01 0.14

-3.410 0.095 0.017 -15.956 -2.274 Y12 0.01 0.14

-30.323 -1.047 -0.190 -141.873 -20.215 Y13 0.02 -0.29

-5.420 -0.317 -0.058 -25.360 -3.614 Y14 0.01 -0.09

-19.196 -0.405 -0.074 -89.813 -12.797 Y15 0.01 -0.11

-10.485 -0.166 -0.030 -49.057 -6.990 Y16 0.01 -0.05

-6.770 -0.055 -0.010 -31.675 -4.513 Y17 0.01 -0.02

-36.388 0.152 0.028 -170.247 -24.258 Y18 0.02 0.00

IL8
=[Mt2y(Kiy/Em)*ybarra]/J
IM8
=[Mt1x(Kix/Em)*ybarra]/J
IN8
=[Mt2x(Kix/Em)*ybarra]/J
IO8
=[Mt1y(Kiy/Em)*ybarra]/J
IP8
=[Mt2y(Kiy/Em)*ybarra]/J
IT8
el mayor maximo entre V1x y V2x
IY8
el mayor maximo entre V1x y V2x
JD8
el mayor maximo entre V1x y V2x
Page 29: Analisis en albañileria confinada

Calculo de Cortantes de diseño en la direccion "X" Calculo de Cortantes de diseño en la direccion "Y"

PRIMER PISO SEGUNDO PISO PRIMER PISO

Vx diseño % Absorc Muro Vtras ∆Vx (asum) Vx diseño % Absorc Muro

-14.84 -7.65% X1 0.77 -10.66 -9.89 -7.65% X1

-3.99 -2.06% X2 0.26 -2.92 -2.66 -2.06% X2

-14.85 -7.66% X3 1.73 -11.63 -9.90 -7.66% X3

0.30 0.16% X4 0.77 -0.57 0.20 0.16% X4

57.10 29.43% X5 1.79 36.28 38.07 29.43% X5

84.00 43.30% X6 1.73 54.27 56.00 43.30% X6

87.02 44.85% X7 1.80 56.22 58.01 44.85% X7

-0.27 -0.14% Y1 0.01 -0.19 -0.18 -0.14% Y1

-0.08 -0.04% Y2 0.00 -0.06 -0.05 -0.04% Y2

-0.10 -0.05% Y3 0.01 -0.07 -0.07 -0.05% Y3

-0.04 -0.02% Y4 0.01 -0.03 -0.02 -0.02% Y4

-0.01 0.00% Y5 0.00 -0.01 -0.01 0.00% Y5

0.22 0.11% Y6 0.01 0.14 0.14 0.11% Y6

-0.27 -0.14% Y7 0.01 -0.19 -0.18 -0.14% Y7

-0.10 -0.05% Y8 0.01 -0.07 -0.07 -0.05% Y8

-0.03 -0.01% Y9 0.00 -0.02 -0.02 -0.01% Y9

0.11 0.06% Y10 0.01 0.06 0.07 0.06% Y10

0.15 0.07% Y11 0.00 0.09 0.10 0.07% Y11

0.15 0.08% Y12 0.00 0.09 0.10 0.08% Y12

-0.27 -0.14% Y13 0.01 -0.19 -0.18 -0.14% Y13

-0.08 -0.04% Y14 0.00 -0.06 -0.05 -0.04% Y14

-0.10 -0.05% Y15 0.01 -0.07 -0.07 -0.05% Y15

-0.04 -0.02% Y16 0.01 -0.03 -0.02 -0.02% Y16

-0.01 0.00% Y17 0.00 -0.01 -0.01 0.00% Y17

0.02 0.01% Y18 0.01 0.00 0.01 0.01% Y18

194.01 100.00% 129.34 100.00%

JI8
el mayor maximo entre V1x y V2x
JO8
el mayor maximo entre V1x y V2x
JT8
el mayor maximo entre V1x y V2x
Page 30: Analisis en albañileria confinada

Calculo de Cortantes de diseño en la direccion "Y"

PRIMER PISO SEGUNDO PISO

Vtras ∆Vx (asum) Vx diseño % Abs Muro Vtras ∆Vx (asum) Vx diseño % Abs

0.00 -0.02 -0.02 0.01% X1 0.00 -0.02 -0.01 0.01%

0.00 -0.02 -0.01 0.01% X2 0.00 -0.01 -0.01 0.01%

0.00 -0.03 -0.03 0.01% X3 0.00 -0.02 -0.02 0.01%

0.00 -0.02 -0.02 0.01% X4 0.00 -0.02 -0.01 0.01%

0.00 -0.03 -0.03 0.01% X5 0.00 -0.02 -0.02 0.01%

0.00 -0.03 -0.03 0.01% X6 0.00 -0.02 -0.02 0.01%

0.00 -0.03 -0.03 0.01% X7 0.00 -0.02 -0.02 0.01%

0.98 -24.78 -23.80 11.26% Y1 1.66 -16.52 -14.86 11.70%

0.18 -4.59 -4.41 2.08% Y2 0.31 -3.06 -2.75 2.17%

0.66 -16.76 -16.10 7.62% Y3 1.13 -11.17 -10.05 7.91%

0.37 -9.42 -9.05 4.28% Y4 0.63 -6.28 -5.65 4.44%

0.25 -6.24 -5.99 2.83% Y5 0.42 -4.16 -3.74 2.94%

0.52 -13.10 -12.58 5.95% Y6 0.88 -8.73 -7.85 6.18%

1.43 -29.68 -28.25 13.37% Y7 2.43 -19.79 -17.36 13.67%

0.88 -18.32 -17.43 8.25% Y8 1.50 -12.21 -10.71 8.43%

0.17 -3.45 -3.28 1.55% Y9 0.28 -2.30 -2.01 1.59%

0.93 -19.23 -18.31 8.66% Y10 1.58 -12.82 -11.25 8.85%

0.16 -3.50 -3.34 1.58% Y11 0.27 -2.33 -2.06 1.62%

0.19 -3.41 -3.22 1.52% Y12 0.32 -2.27 -1.96 1.54%

1.88 -30.32 -28.44 13.45% Y13 3.20 -20.22 -17.02 13.40%

0.34 -5.42 -5.08 2.40% Y14 0.57 -3.61 -3.04 2.39%

1.19 -19.20 -18.00 8.52% Y15 2.03 -12.80 -10.77 8.48%

0.65 -10.49 -9.83 4.65% Y16 1.11 -6.99 -5.88 4.63%

0.42 -6.77 -6.35 3.00% Y17 0.71 -4.51 -3.80 2.99%

2.26 0.00 2.26 -1.07% Y18 3.84 0.00 3.84 -3.02%

-211.39 100.00% -127.02 100.00%

JY8
el mayor maximo entre V1x y V2x
KD8
el mayor maximo entre V1x y V2x
Page 31: Analisis en albañileria confinada

CARACTERISTICAS DEL MURO "X4"

H libre= 2.45 m f'm= 64 kg/cm2

H piso 2.57 m f'c= 210 kg/cm2

N° Pisos= 4 fy= 4200 kg/cm2RESUMEN DE LAS CORTANTES EN LOS MUROS Dxx= 19.15 m fs= 2100 kg/cm2

Dyy= 8.65 m

NIVELES L= 2.95 m Area sec= 3,835.00 cm2

Muro 1° 2° t= 0.13 m Inercia= 27,811,740 cm4

X1 -14.84 -9.89 P= 18.32 tn V= 7.08 tn

X2 -3.99 -2.66 Pm= 21.52 tn M= 27.91 tn.m

X3 -14.85 -9.90 Pd= 17.25 tn

X4 0.30 0.20 Ps= 7.39 tn

X5 57.10 38.07 Columna

X6 84.00 56.00 b= 0.4 m

X7 87.02 58.01 h= 0.13 m

Y1 -0.27 -0.18 Área (col)= 0.052 m2

Y2 -0.08 -0.05

Y3 -0.10 -0.07

Y4 -0.04 -0.02

Y5 -5.99 -3.74

Y6 -12.58 -7.85

Y7 -28.25 -17.36

Y8 -17.43 -10.71

Y9 -211.39 -127.02

Y10 0.11 0.07

Y11 0.15 0.10

Y12 0.15 0.10

Y13 -0.27 -0.18

Y14 -5.08 -3.04

Y15 -18.00 -10.77

Y16 -9.83 -5.88

Y17 -6.35 -3.80

Y18 194.01 129.34

73.49 68.76

KO2
Altura de piso a techo.
KN8
Espesor de muro
KN9
Carga Axial 25% de s/c=
KQ9
Cortante Basal
KN10
Axial con 100% de s/c
KQ10
Momento basal
KN11
axial permanente
KH12
Diseñamos este muro por simple eleccion al azar
KN12
Axial sismica
Page 32: Analisis en albañileria confinada

DISEÑO X COMPRESION AXIAL (fa<Fa)

el esfuerzo admisible esta dado por=

Fa= 9.08 kg/cm2 90.753532182

el esfuerzo axial maximo (solicitacion de servicio) es=

fa= 5.61 kg/cm2

condicion Si cumple

DISEÑO X CORTE

el esfuerzo admisible para mortero sin cal es:

fd= 4.50 kg/cm2

Va= 2.01 kg/cm2

El esfuerzo cortante actuante es:

v= 1.85 kg/cm2

Condicion: Si cumple φ AREA

el area de la columna esta dada por: 1/4 0.32

Ac= 439.71 cm2 3/8 0.71

t= 13 cm 1/2 1.27

b= 33.82 cm 5/8 1.98

b(asumir)= 40 cm 3/4 2.85

El area del refuerzo vertical es: 1 5.07

h= 2.57 m 1 1/8 6.45

As (vert)= 2.06 cm2 1 1/4 8.19

f'c= 175 kg/cm2 1 3/8 10.06

As min= 2.167 cm2

Siendo que As(vert)min es MAYOR que As(v), USAR: As(v)min

As (usar)= 2.167 kg/cm2

- El area del refuerzo horizontal (solera) es:

As (horz)= 2.36 cm2

Combinacion: 4 φ 3/8" para la losa de techo

- Los estribos de confinamiento a emplearse en los extremos de las columnas, en una distancia de 2.5d o 50cm (la mayor),

estarán espaciados a:

d= 37 cm

Usando 1/4" 0.64 cm2

S= 10.0 cm

1@5cm; 9@ 10 cm Rto@25cm

Se colocará en cada extremo estribos de Ø 1/4"

KV16
Por facilidad constructiva se diseña la columna con el espesor del muro
KV18
escribir valor proximo redondeado según el resultado de la celda anterior
KV20
altura de piso a piso
Page 33: Analisis en albañileria confinada

- Los estribos de confinamiento a emplearse en los extremos de las columnas, en una distancia de 2.5d o 50cm (la mayor),

Page 34: Analisis en albañileria confinada

1.41.150.251.131.120.251.78

10.05

0.30.15

0.150.3

0.051

1.770.251.131.120.251.15

1.4