tropical residual soils as dam foundation and fill material … · 2017-08-03 · tropical residual...

Post on 04-Jul-2020

44 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

TROPICAL RESIDUAL SOILS as dam foundation and fill material

SOLS RÉSIDUELS TROPICAUX UTILISÉS pour la fondation de barrages et comme matériau de remblai

Bulletin 151

2017

INTERNATIONAL COMMISSION ON LARGE DAMSCOMMISSION INTERNATIONALE DES GRANDS BARRAGES

61, avenue Kléber, 75116 ParisTéléphone : (33-1) 47 04 17 80 - Fax : (33-1) 53 75 18 22

http://www.icold-cigb.org./ 151

So

ls r

ésid

ue

ls t

rop

ica

ux

uti

lisé

s p

ou

r la

fo

nd

ati

on

de

ba

rra

ge

s e

t c

om

me

ma

téri

au

de

re

mb

lai

Tro

pic

al

resid

ua

l so

ils a

s d

am

fo

un

da

tio

n a

nd

fill

ma

teri

al

CouvertureIllustration en couverture : Barrage Punchina en

Colombie

Texte original en anglais Traduction en français par le Comité des Grands Barrages du Burkina Faso

Mise en page par Nathalie Schauner

1

INTERNATIONAL COMMISSION ON LARGE DAMSCOMMISSION INTERNATIONALE DES GRANDS BARRAGES

61, avenue Kléber, 75116 ParisTéléphone : (33-1) 47 04 17 80 - Fax : (33-1) 53 75 18 22

http://www.icold-cigb.org./

TROPICAL RESIDUAL SOILS as dam foundation and fill material

SOLS RÉSIDUELS TROPICAUX UTILISÉS pour la fondation de barrages et comme matériau de remblai

2

Chairman/Président

Vice Chairman/Vice-Président

Members/Membres

3

Chairman/Président

Vice Chairman/Vice-Président

Members/Membres

4

14

18

18

18

18

1820

2222

24

26

32

34

34

36

38

40

42

42

56

58

64

64

68

68

72

76

76

76

80

80

80

82

82

84

86

86

92

92

92

5

15

19

19

19

19

19

21

23

23

25

27

33

35

35

37

39

41

43

43

57

59

65

65

69

69

73

77

77

77

81

81

81

83

83

85

87

87

93

93

93

6

Slab

lift thickness

92

94

96

96

98

98

102

104

108

108

112

112

114

116

118

132

134

136

138

140

142

144

146

148

150

152

156

158

160

162

164

166

168

170

172

174

7

93

95

97

97

99

99

103

105

109

109

113

113

115

117

119

133

135

137

139

141

143

145

147

149

151

153

157

159

161

163

165

167

169

171

173

175

8

9

10

11

12

13

14

15

16

17

18

2.1.1. Processus d’altération 2.1.1. Weathering Processes

2.1.2. Les facteurs affectant les processus d’altération

2.1.2. Factors affecting weathering processes

19

2.1.1. Weathering Processes

2.1.2. Factors affecting weathering processes

20

2.1.2. Les facteurs affectant les processus d’altération 2.1.2. Factors affecting weathering processes

21

2.1.2. Factors affecting weathering processes

22

2.2.1. Les latérites et les sols latéritiques

2.2.2. Les saprolites

2.2.1. Laterites and lateritic soils

23

2.2.1. Laterites and lateritic soils

24

2.2.2. Les saprolites 2.2.2. Saprolites

25

2.2.2. Saprolites

26

27

28

29

30

31

32

33

34

Classifications sur la base des critères chimiques, pédologiques et morphologiques

Classifications Orthodoxes

Classifications basées sur des tests non-orthodoxes

35

36

Classifications based on chemical, pedological and morphological criteria

Orthodox Classifications

Classifications based on non-orthodox tests

Classifications sur la base des critères chimiques, pédologiques et morphologiques

Classifications Orthodoxes

Classifications basées sur des tests non-orthodoxes

37

Classifications based on chemical, pedological and morphological criteria

Orthodox Classifications

Classifications based on non-orthodox tests

38

39

40

5.4.1. Natural Moisture Content

5.4.1. Teneur en eau naturelle

5.4.2. Les limites d’Atterberg

41

5.4.1. Natural Moisture Content

42

5.4.1. Natural Moisture Content 5.4.1. Teneur en eau naturelle

5.4.2. Les limites d’Atterberg

43

5.4.1. Natural Moisture Content

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

6.2.1. Écroulement

67

68

6.2.1. Collapsibility 6.2.1. Écroulement

69

6.2.1. Collapsibility

70

,

6.2.2. Indices de Compression

71

72

,

6.2.2. Indices de Compression

,

6.2.2. Indices de Compression 6.2.2. Compression indexes

% Settlement at 700 kPa load

73

6.2.2. Compression indexes

% Settlement at 700 kPa load

74

% Tassement sous un chargement de 700 kPa

6.2.3. Soulèvement

6.2.4. Considérations pour un Projet de Compressibilité

% Settlement at 700 kPa load

6.2.3. Heave

6.2.4. Compressibility Design considerations

75

% Settlement at 700 kPa load

6.2.3. Heave

6.2.4. Compressibility Design considerations

76

% Tassement sous un chargement de 700 kPa

6.2.3. Soulèvement

6.2.4. Considérations pour un Projet de Compressibilité

6.2.3. Heave

6.2.4. Compressibility Design considerations

77

6.2.3. Heave

6.2.4. Compressibility Design considerations

78

Pad-foot rollers

6.4.1. Stress history

6.4.2. Bonding between particles

79

6.4.1. Stress history

6.4.2. Bonding between particles

80

Pad-foot rollers

6.4.1. L’historique de la contrainte

6.4.2. Liaisons entre particules

6.4.3. Résistance au cisaillement drainé ou non drainé

6.4.1. Stress history

6.4.2. Bonding between particles

6.4.3. Drained vs. Undrained shear strength

6.4.4. Influence of Mineralogy on shear strength

81

6.4.1. Stress history

6.4.2. Bonding between particles

6.4.3. Drained vs. Undrained shear strength

6.4.4. Influence of Mineralogy on shear strength

82

6.4.3. Drained vs. Undrained shear strength

6.4.4. Influence of Mineralogy on shear strength

6.4.5. Relic structures and discontinuities

Material Macro-structure Parallel Perpendicular Remarks

6.4.1. L’historique de la contrainte

6.4.2. Liaisons entre particules

6.4.3. Résistance au cisaillement drainé ou non drainé

pore

6.4.4. Influence de la minéralogie sur la résistance au cisaillement

platey

instrument the foundation

pore

6.4.4. Influence de la minéralogie sur la résistance au cisaillement

platey

instrument the foundation

83

6.4.3. Drained vs. Undrained shear strength

6.4.4. Influence of Mineralogy on shear strength

6.4.5. Relic structures and discontinuities

Material Macro-structure Parallel Perpendicular Remarks

84

pore

6.4.4. Influence de la minéralogie sur la résistance au cisaillement

platey

instrument the foundation

6.4.5. Structures reliques et discontinuités

schistosités

Matériaux Macrostructure Parallèle Perpendiculaire Remarques

framework and remaining nucleuses

6.4.6. Saturation Partielle

6.4.5. Relic structures and discontinuities

Material Macro-structure Parallel Perpendicular Remarks

6.4.6. Partial Saturation

6.4.7. Determination of shear strength parameters

85

6.4.5. Relic structures and discontinuities

Material Macro-structure Parallel Perpendicular Remarks

6.4.6. Partial Saturation

6.4.7. Determination of shear strength parameters

86

6.4.5. Structures reliques et discontinuités

schistosités

Matériaux Macrostructure Parallèle Perpendiculaire Remarques

framework and remaining nucleuses

6.4.6. Saturation Partielle

6.4.7. Détermination des paramètres de la résistance au cisaillement

Back-calculating

index properties

foundation competence

6.4.6. Partial Saturation

6.4.7. Determination of shear strength parameters

87

6.4.6. Partial Saturation

6.4.7. Determination of shear strength parameters

88

Foundation-Horizon IC (SM)

89

90

Foundation-Horizon IC (SM)

index properties

91

92

7.1.1. Compétence de la fondation

7.1.2. Traitement de la fondation

shell

pinhole et crumb testsDouble hydrometer tests

toe slab

water stop

shell

7.1.1. Foundation competence

7.1.2. Foundation Treatment

93

7.1.1. Foundation competence

7.1.2. Foundation Treatment

94

water stop

shell

slab

Slab

95

96

slab

Slab

transverse cold joints

adjacent connecting slab

quarry volumes

7.3.1. Exigences de compaction

7.3.1. Compaction requirements

97

7.3.1. Compaction requirements

98

7.3.1. Compaction requirements

transverse cold joints

adjacent connecting slab

quarry volumes

7.3.1. Exigences de compaction

transverse cold joints

adjacent connecting slab

quarry volumes

7.3.1. Exigences de compaction

99

7.3.1. Compaction requirements

100

pore

pore

sinkholes

, lift thickness

pads

lifts

101

102

7.3.2. Instrumentation

pore

pore

sinkholes

, lift thickness

pads

lifts

pad-foot rollers

pad-foot roller

pad-foot roller

7.3.2. Instrumentation

pore

pore

103

7.3.2. Instrumentation

104

pad-foot rollers

pad-foot roller

pad-foot roller

7.3.2. Instrumentation

pore

pore

calibrated with the lesat precise

double fluid settlement devices

105

7.3.2. Instrumentation

106

calibrated with the lesat precise

double fluid settlement devices

107

108

trial berms

trial berm

Pressions de Pore Développées au Barrage de Troneras Un Mois après sa Construction

pore

Voir les Case d’Expérience).

shell

pore

shell

pore

109

110

Voir les Case d’Expérience).

shell

pore

shell

pore

pore

pore

111

112

pore

pore

113

114

115

116

CAS D’EXPERIENCES PASSEES

117

118

Slope Stability in Residual Soils, Proceedings

Proceedings of the ASCE Specialty Conference on Engineering and Construction in Tropical and Residual Soils

Three-dimensional stability analyses of four embankment failures

Proceedings of the International Symposium on Laterisation Processes, Trivandrum

Compressibility and Settlement of Residual Soils

A Case Record of Tailings Dam Construction Using Residual Soils

Origin and formation of residual soils

Case Histories of Shear Strength - Controlled Aspects of Residual Soils

Slopes and excavations in residual soils

Site investigation and geotechnical engineering practice in Hong Kong

Sampling and Testing of Residual Soils: A Review of International Practice.

In-situ direct shear tests on Hong Kong residual soils

Review of international practice for the sampling and testing of residual soils

Shear Strength Behaviour and Measurement of Shear Strength in Residual Soils

Case history Saprolite as Foundation soil and Filling Material for Dams

Effect of Compaction on the Behavior of Residual Soils

Field Compaction of Residual and Colluvial Gneiss Derived Soils

Dam foundations on tropical laterites and saprolites. General Report

Peculiarities of in situ behavior of tropical lateritic and saprolitic soils in their natural conditions.- dam foundations

Mechanical and Hydraulic Properties of Tropical of Tropical, Lateritic and Saprolitic Soils, Particularly as Related to their structure and Mineral Components - Hydraulic Properties

Peculiarities of in situ behavior of tropical lateritic and saprolitic soils in their natural conditions.- erosion

Tropical Residual Soils

Classification and Index Tests

Theoretical context for understanding unsaturated residual soil behaviour. Proceedings

Permeability

Laterite Soil Engineering

Laterite Soil Engineering

Increase in strength due to suction for two Hong Kong soils. Proceedings

119

Slope Stability in Residual Soils, Proceedings

Proceedings of the ASCE Specialty Conference on Engineering and Construction in Tropical and Residual Soils

Three-dimensional stability analyses of four embankment failures

“Proceedings of the International Symposium on Laterisation Processes, Trivandrum”

“Compressibility and Settlement of Residual Soils

“A Case Record of Tailings Dam Construction Using Residual Soils”

“Origin and formation of residual soils”

Case Histories of Shear Strength - Controlled Aspects of Residual Soils

Slopes and excavations in residual soils

Site investigation and geotechnical engineering practice in Hong Kong

Sampling and Testing of Residual Soils: A Review of International Practice

In-situ direct shear tests on Hong Kong residual soils.

Review of international practice for the sampling and testing of residual soils.

Shear Strength Behaviour and Measurement of Shear Strength in Residual Soils

Case history Saprolite as Foundation soil and Filling Material for Dams

Effect of Compaction on the Behavior of Residual Soils

Field Compaction of Residual and Colluvial Gneiss Derived Soils

120

Shear Strength Behaviour and Measurement of Shear Strength in Residual Soils

Case history Saprolite as Foundation soil and Filling Material for Dams

Effect of Compaction on the Behavior of Residual Soils

Field Compaction of Residual and Colluvial Gneiss Derived Soils

Dam foundations on tropical laterites and saprolites. General Report

Peculiarities of in situ behavior of tropical lateritic and saprolitic soils in their natural conditions.- dam foundations

Mechanical and Hydraulic Properties of Tropical of Tropical, Lateritic and Saprolitic Soils, Particularly as Related to their structure and Mineral Components - Hydraulic Properties

Peculiarities of in situ behavior of tropical lateritic and saprolitic soils in their natural conditions.- erosion

Tropical Residual Soils

Classification and Index Tests

Theoretical context for understanding unsaturated residual soil behaviour. Proceedings

Permeability

Laterite Soil Engineering

Laterite Soil Engineering

Increase in strength due to suction for two Hong Kong soils. Proceedings

Automatic production of the matic maps of slope stability

Slope failure in colluvium overlying weak residual soils in Hong Kong

Assessment of the effectiveness of corrective measures in relation to geological conditions and type of slope movement

Relict joints in completely decomposed volcanics in Hong Kong

The mass strength of jointed residual soils

Mechanical and Hydraulic Properties of Tropical of Tropical, Lateritic and Saprolitic Soils, Particularly as Related to their Structure and Mineral Components - Compressibility Properties of Lateritic and Saprolitic Soils

Laterites”. Actes de Conférence, 3ème Conférence Régionale Asiatique sur la Mécanique de Sols et l’Ingénierie des Fondations

The engineering classification of residual tropical soils

Laterite as a Dam Construction Material and its Placement Water Content

The properties of decomposed granite

The residual soils of Hong Kong

Principles for description and classification of weathered rocks for engineering purposes

Foundation Treatment for Control of Seepage at the Guri Embankment Dams

121

Slope Stability in Residual Soils, Proceedings

Proceedings of the ASCE Specialty Conference on Engineering and Construction in Tropical and Residual Soils

Three-dimensional stability analyses of four embankment failures

“Proceedings of the International Symposium on Laterisation Processes, Trivandrum”

“Compressibility and Settlement of Residual Soils

“A Case Record of Tailings Dam Construction Using Residual Soils”

“Origin and formation of residual soils”

Case Histories of Shear Strength - Controlled Aspects of Residual Soils

Slopes and excavations in residual soils

Site investigation and geotechnical engineering practice in Hong Kong

Sampling and Testing of Residual Soils: A Review of International Practice

In-situ direct shear tests on Hong Kong residual soils.

Review of international practice for the sampling and testing of residual soils.

Shear Strength Behaviour and Measurement of Shear Strength in Residual Soils

Case history Saprolite as Foundation soil and Filling Material for Dams

Effect of Compaction on the Behavior of Residual Soils

Field Compaction of Residual and Colluvial Gneiss Derived Soils

Dam foundations on tropical laterites and saprolites. General Report

Peculiarities of in situ behavior of tropical lateritic and saprolitic soils in their natural conditions.- dam foundations

Mechanical and Hydraulic Properties of Tropical of Tropical, Lateritic and Saprolitic Soils, Particularly as Related to their structure and Mineral Components - Hydraulic Properties

Peculiarities of in situ behavior of tropical lateritic and saprolitic soils in their natural conditions. - EROSION

Tropical Residual Soils

Classification and Index Tests

Theoretical context for understanding unsaturated residual soil behavior

Permeability

Laterite Soil Engineering

Laterite Soil Engineering

Increase in strength due to suction for two Hong Kong soils

Automatic production of the matic maps of slope stability

Slope failure in colluvium overlying weak residual soils in Hong Kong

Assessment of the effectiveness of corrective measures in relation to geological conditions and type of slope movement

Relict joints in completely decomposed volcanics in Hong Kong

The mass strength of jointed residual soils

Mechanical and Hydraulic Properties of Tropical of Tropical, Lateritic and Saprolitic Soils, Particularly as Related to their Structure and Mineral Components - Compressibility

122

Automatic production of the matic maps of slope stability

Slope failure in colluvium overlying weak residual soils in Hong Kong

Assessment of the effectiveness of corrective measures in relation to geological conditions and type of slope movement

Relict joints in completely decomposed volcanics in Hong Kong

The mass strength of jointed residual soils

Mechanical and Hydraulic Properties of Tropical of Tropical, Lateritic and Saprolitic Soils, Particularly as Related to their Structure and Mineral Components - Compressibility Properties of Lateritic and Saprolitic Soils

Laterites”. Actes de Conférence, 3ème Conférence Régionale Asiatique sur la Mécanique de Sols et l’Ingénierie des Fondations

The engineering classification of residual tropical soils

Laterite as a Dam Construction Material and its Placement Water Content

The properties of decomposed granite

The residual soils of Hong Kong

Principles for description and classification of weathered rocks for engineering purposes

Foundation Treatment for Control of Seepage at the Guri Embankment Dams

Characterization, identification and classification of tropical lateritic and saprolitic soils for geotechnical purposes

Stability of slopes in residual soils

Peculiarities of the Design of Corumbá I Earth Core Rockfill Dam

Sampling and testing of granitic residual soils in Japan

Properties of Compacted Granite Saprolites

Peculiarities of Tropical Lateritic and Saprolitic Soils used as Construction Materials: Selection, Control and Acceptance Criteria.- Roads

Landslides in weathered rocks and residual soils in Japan and surrounding areas

Mouvements de Masse

Sampling and testing of residual soils in Hong Kong

Design Construction and Performance of Large Dams on Residual

Mineralogy and Microstructure

Geotechnical aspects of residual soils in Australia

123

Dam foundations on tropical laterites and saprolites. General Report

Peculiarities of in situ behavior of tropical lateritic and saprolitic soils in their natural conditions.- dam foundations

Mechanical and Hydraulic Properties of Tropical of Tropical, Lateritic and Saprolitic Soils, Particularly as Related to their structure and Mineral Components - Hydraulic Properties

Peculiarities of in situ behavior of tropical lateritic and saprolitic soils in their natural conditions. - EROSION

Tropical Residual Soils

Classification and Index Tests

Theoretical context for understanding unsaturated residual soil behavior

Permeability

Laterite Soil Engineering

Laterite Soil Engineering

Increase in strength due to suction for two Hong Kong soils

Automatic production of the matic maps of slope stability

Slope failure in colluvium overlying weak residual soils in Hong Kong

Assessment of the effectiveness of corrective measures in relation to geological conditions and type of slope movement

Relict joints in completely decomposed volcanics in Hong Kong

The mass strength of jointed residual soils

Mechanical and Hydraulic Properties of Tropical of Tropical, Lateritic and Saprolitic Soils, Particularly as Related to their Structure and Mineral Components - Compressibility Properties of Lateritic and Saprolitic Soils

Laterites. Proceedings, 3rd Asian Regional Conference on Soil Mechanics and Foundation Engineering

The engineering classification of residual tropical soils. Proceedings, Specialty Session on Lateritic Soils

Laterite as a Dam Construction Material and its Placement Water Content

The properties of decomposed granite

The residual soils of Hong Kong

Principles for description and classification of weathered rocks for engineering purposes

Foundation Treatment for Control of Seepage at the Guri Embankment Dams

Characterization, identification and classification of tropical lateritic and saprolitic soils for geotechnical purposes

Stability of slopes in residual soils

Peculiarities of the Design of Corumbá I Earth Core Rockfill Dam

Sampling and testing of granitic residual soils in Japan

Properties of Compacted Granite Saprolites

Peculiarities of Tropical Lateritic and Saprolitic Soils used as Construction Materials: Selection, Control and Acceptance Criteria.- Roads

Landslides in weathered rocks and residual soils in Japan and surrounding areas

Mass Movements

Sampling and testing of residual soils in Hong Kong

124

Characterization, identification and classification of tropical lateritic and saprolitic soils for geotechnical purposes

Stability of slopes in residual soils

Peculiarities of the Design of Corumbá I Earth Core Rockfill Dam

Sampling and testing of granitic residual soils in Japan

Properties of Compacted Granite Saprolites

Peculiarities of Tropical Lateritic and Saprolitic Soils used as Construction Materials: Selection, Control and Acceptance Criteria.- Roads

Landslides in weathered rocks and residual soils in Japan and surrounding areas

Mouvements de Masse

Sampling and testing of residual soils in Hong Kong

Design Construction and Performance of Large Dams on Residual

Mineralogy and Microstructure

Geotechnical aspects of residual soils in Australia

Sampling and Testing of Residual Soils: A Review of International Practice

“Design Features of Salvajina Dam”. Concrete Face Rockfill Dams- Design Construction and Performance

Construction and Performance of Salvajina Dam

Compaction

Profile Description and Sampling Methods

Introductory Soil Mechanics and Foundations

Engineering properties of residual soils derived from igneous and metamorphic rocks

Landslides in weathered volcanics in Puerto Rico

Residual soils in the United States

Progress Report of the ISSMFE Committee on Tropical Soils

Peculiarities of Tropical Lateriric and Saprolitic Soils used as Construction Materials : Selection, Control and Acceptance Criteria - Dams

Soil Mechanics in Engineering Practice

Geotechnical characteristics of Residual Soils

125

Properties of Lateritic and Saprolitic Soils

Laterites. Proceedings, 3rd Asian Regional Conference on Soil Mechanics and Foundation Engineering

The engineering classification of residual tropical soils. Proceedings, Specialty Session on Lateritic Soils

Laterite as a Dam Construction Material and its Placement Water Content

The properties of decomposed granite

The residual soils of Hong Kong

Principles for description and classification of weathered rocks for engineering purposes

Foundation Treatment for Control of Seepage at the Guri Embankment Dams

Characterization, identification and classification of tropical lateritic and saprolitic soils for geotechnical purposes

Stability of slopes in residual soils

Peculiarities of the Design of Corumbá I Earth Core Rockfill Dam

Sampling and testing of granitic residual soils in Japan

Properties of Compacted Granite Saprolites

Peculiarities of Tropical Lateritic and Saprolitic Soils used as Construction Materials: Selection, Control and Acceptance Criteria.- Roads

Landslides in weathered rocks and residual soils in Japan and surrounding areas

Mass Movements

Sampling and testing of residual soils in Hong Kong

Design Construction and Performance of Large Dams on Residual

Mineralogy and Microstructure

Geotechnical aspects of residual soils in Australia

Sampling and Testing of Residual Soils: A Review of International Practice

Design Features of Salvajina Dam

Construction and Performance of Salvajina Dam

Compaction”, in Mechanics of Residual soils

Profile Description and Sampling Methods

Introductory Soil Mechanics and Foundations

Engineering properties of residual soils derived from igneous and metamorphic rocks

Landslides in weathered volcanics in Puerto Rico

Residual soils in the United States

Progress Report of the ISSMFE Committee on Tropical Soils

Peculiarities of Tropical Lateriric and Saprolitic Soils used as Construction Materials: Selection, Control and Acceptance Criteria - Dams

Soil Mechanics in Engineering Practice

Geotechnical characteristics of Residual Soils

126

Sampling and Testing of Residual Soils: A Review of International Practice

“Design Features of Salvajina Dam”. Concrete Face Rockfill Dams- Design Construction and Performance

Construction and Performance of Salvajina Dam

Compaction

Profile Description and Sampling Methods

Introductory Soil Mechanics and Foundations

Engineering properties of residual soils derived from igneous and metamorphic rocks

Landslides in weathered volcanics in Puerto Rico

Residual soils in the United States

Progress Report of the ISSMFE Committee on Tropical Soils

Peculiarities of Tropical Lateriric and Saprolitic Soils used as Construction Materials : Selection, Control and Acceptance Criteria - Dams

Soil Mechanics in Engineering Practice

Geotechnical characteristics of Residual Soils

Design and construction of large cuttings in residual soils

Some engineering properties of residual clay soils occurring in southern Brazil

Residual soil and rock slides in Santos (Brazil)

Residual Clay Dams in the state of Sao Paulo, Brazi

Key note paper. Characterizing the mechanical properties of residual soils

Mechanical and hydraulic properties of in-situ residual soils

Remedial Works at Troneras and Miraflores Dams in Colombia

Classification of Residual Soils

Influence of Structure and Composition on Residual Soils

Tjipanundjang Dam in West Java, Indonesia

127

Design Construction and Performance of Large Dams on Residual

Mineralogy and Microstructure

Geotechnical aspects of residual soils in Australia

Sampling and Testing of Residual Soils: A Review of International Practice

Design Features of Salvajina Dam

Construction and Performance of Salvajina Dam

Compaction”, in Mechanics of Residual soils

Profile Description and Sampling Methods

Introductory Soil Mechanics and Foundations

Engineering properties of residual soils derived from igneous and metamorphic rocks

Landslides in weathered volcanics in Puerto Rico

Residual soils in the United States

Progress Report of the ISSMFE Committee on Tropical Soils

Peculiarities of Tropical Lateriric and Saprolitic Soils used as Construction Materials: Selection, Control and Acceptance Criteria - Dams

Soil Mechanics in Engineering Practice

Geotechnical characteristics of Residual Soils

Geotechnical characteristics of residual soils

Design and construction of large cuttings in residual soils

Some engineering properties of residual clay soils occurring in southern Brazil

Residual soil and rock slides in Santos (Brazil)

Residual Clay Dams in the state of Sao Paulo, Brazil

Key note paper. Characterizing the mechanical properties of residual soils

Mechanical and hydraulic properties of in-situ residual soils

Remedial Works at Troneras and Miraflores Dams in Colombia

Classification of Residual Soils

Influence of Structure and Composition on Residual Soils

Tjipanundjang Dam in West Java, Indonesia

128

129

130

131

132

133

134

135

136

137

CASE STUDY No. 2 Quebradona Scheme

General Data

Location Antioquia, Colombia. Construction Period 1956 - 1958. Purpose River regulation and hydroelectric power generation.

Technical Aspects Type of structure 34 m high earth dam with a fill volume of 331.000 m3. Embankment materials:

decomposed rock to non-plastic sand soil with water content between 15 and 28% and natural unit weight of 1.7 g/cm3. Silts with an average PI of 6%, natural water contents between 27 to 35% and average natural unit weight of 1.53 g/cm3. Embankment material average properties: LL=35%, PI=4%, 30% passing #200 sieve, wnat=26%, wopt=23%.

Geology "Antioqueño Batholith": Lower Cretaceous intrusion with an approximate extension of 8000 km2. The predominant rock varies from granodiorite to quartz diorite, fine to coarse grained, constituted by plagioclase, quartz biolite and hornblende.

Foundation materials Low permeability residual soils. Average thickness: 10 – 20 m of low compressibility silty sands (ML). Brownish red color, low to medium plasticity (wL= 40 - 50%, PI= 7 - 12%), medium to high compressibility, high water content (25 - 40%), low unit weight (1.5 - 1.6 g/cm3) and internal friction angle 30° in natural state.

Foundation treatment Horizontal filter at downstream foundation contact. Instrumentation Installation of piezometers and settlement measuring devices. Construction issues Designs were based on Piedras Blancas Dam experience (Case Study No.

1). More gentle slopes were designed to avoid failures during construction stages due to excessive pore pressures. However due to the type of material used, the pore pressures generated during construction dissipated faster than predicted causing a rapid consolidation process. It is estimated that about 5% of the total settlement occurred during construction.

Operational issues The performance of the dam has been satisfactory.

References Villegas, Fabio. "Experiences in Earth Dam Construction in Antioquia". III Colombian Geotechnical Seminar, Bogota, August 6-10, 1984. Villegas, Fabio. "Dynamic Stability Analyses of some Earth Dams in Residual Soils". III Colombian Geotechnical Seminar, Bogota, August 6-10, 1984.

138

139

140

141

142

143

144

145

146

ETUDE DE CAS No. 7 Punchina Section

Données générales

Localisation Antioquia, Colombie. Période de constuction 1978 - 1983. But visé Réglementation de la rivière Guatape et production d’énergie

hydroélectrique à la station de San Carlos Station. Aspects Techniques

Type de structure Barrage de 75 m de haut avec un volume de remblai de 6 million m3. Propriétés moyennes du matériau de remblai: LL=45 %, PI=14 %, 42 % passage à travers un tamis #200, wnat=24 %, wopt=20 %.

Géologie "Antioqueño Batholith": Intrusion du crétacé inférieur avec une extension approximative de 8 000 km2. La roche prédominante varie entre le granodiorite et le diorite quartzifère, grains fins à grossiers, constitué de plagioclase, biolite quartzitique et l’hornblende.

Matériau pour la fondation

Faible perméabilité des sols résiduels. Épaisseur moyenne: 10 – 20 m de faible compressibilité des sables silteux (ML). Couleur marron-rouge, plasticité faible à moyenne (wL= 40 – 50 %, PI= 7 – 12 %), compressibilité moyenne à élevée, teneur en eau élevée (25 – 40 %), poids unitaire faible (1.5 - 1.6 g/cm3) et angle de friction interne de 30° à l’état naturel.

Traitement de la fondation

Filtre et collecteurs de drainage en aval de l’axe du barrage pour contrôler la fissuration de la fondation et la migration fine pendant un tremblement de terre. Construction de galeries de drainage à travers la saprolite pour capturer l’eau de percolation ainsi qu’un système pour mesure la percolation à travers la fondation. Des rideaux d’étanchéité ont été construits pour réduire l’écoulement à travers la fondation.

Instrumentation 88 piezomètres, 57 points de contrôle superficiels, 63 points de contrôle le long de la crête, 1 inclinomètre, 1 appareil de mesure des mouvements horizontaux, 2 accélérographes et 8 appareils pour mesurer l’arrivée de l’eau.

Problèmes rencontrés lors de la construction

De 3,5H:1V à 2H:1V pour accélérer la progression de la construction. Pour compenser pour la pente plus raide, des drainages horizontaux ont été installés et les pressions de pore ont été surveillées de près pour assurer la stabilité de la pente. Parce que la saison des pluies était proche, le taux de placement du remblai a été augmenté entrainant une augmentation dangereuse des pressions de pore et un début de rupture du batardeau. La pente en aval a bougé de 1,5 m horizontalement en 11 jours. Pendant la construction, il a été décidé d’installer un remblai contrepoids au pied en aval de la pente pour augmenter la stabilité sous une charge sismique.

Problèmes rencontrés après la mise en service

La performance du barrage a été satisfaisante.

Références Villegas, Fabio. "Experiences in Earth Dam Construction in Antioquia" (Expériences avec la Construction d’un Barrage en terre à Antioquia). IIIème Séminaire Géotechnique Colombien, Bogota, Août 6-10, 1984. Villegas, Fabio. "Dynamic Stability Analyses of some Earth Dams in Residual Soils" (Analyse de ka Stabilité Dynamique de certains Barrages en terre construits avec des sols résiduels. IIIème Séminaire Géotechnique Colombien, Bogota, Août 6-10, 1984.

147

148

ETUDE DE CAS No. 8 San Lorenzo

Section

Données générales

Localisation Antioquia, Colombie. Période de constuction 1980 - 1984. But visé Diversion de la Rivière Nare pour augmenter l’écoulement de la Rivière

Guatape pour permettre la production d’énergie hydroélectrique aux Stations de San Carlos et Las Playas Stations.

Aspects Techniques Type de structure Barrage de 63 m de haut avec un volume de remblai de 5.4 million m3.

Matériaux de remblai: silts et saprolites avec des some rock wedges. Géologie "Antioqueño Batholith": Intrusion du crétacé inférieur avec une extension

approximative de 8 000 km2. La roche prédominante varie entre le granodiorite et le diorite quartzifère, grains fins à grossiers, constitué de plagioclase, biolite quartzitique et l’hornblende.

Matériau pour la fondation

Faible perméabilité des sols résiduels. Épaisseur moyenne: 10 – 20 m de faible compressibilité des sables silteux (ML). Couleur marron-rouge, plasticité faible à moyenne (wL= 40 – 50 %, PI= 7 – 12 %), compressibilité moyenne à élevée, teneur en eau élevée (25 – 40 %), poids unitaire faible (1.5 - 1.6 g/cm3) et angle de friction interne de 30° à l’état naturel. Les sols de la fondation sont composes de 60 % sable, 27 % silt et 13 % argile

Traitement de la fondation

Excavation de matériaux inadéquats (jusqu’à 6 m d’excavation à certains endroits). Filtre et collecteurs de drainage en aval de l’axe du barrage pour contrôler la fissuration de la fondation et la migration fine pendant un tremblement de terre.

Instrumentation 152 piezomètres, 102 points de contrôle superficiels, 58 points de contrôle le long de la crête, 3 inclinomètres, 3 extensomètres, 4 accélérographes et 10 appareils pour mesurer l’arrivée de l’eau.

Problèmes rencontrés lors de la construction

Les considérations suivantes ont été prises en compte lors de la conception du projet et de la construction pour augmenter la stabilité sous chargement sismique: pentes douces, crêtes épaisses, franc-bord très conservateur, utilisation d’une zone de matériau non cohésif dans une section plus haute de la pente en amont pour faciliter la dissipation de la pression de pore après un tremblement de terre, filtre de cheminé épais pour empêcher la migration de particules fines en cas de fissuration. Villegas, Fabio.

Problèmes rencontrés après la mise en service

La performance du barrage a été satisfaisante.

References Villegas, Fabio. "Experiences in Earth Dam Construction in Antioquia" (Expériences avec la Construction d’un Barrage en terre à Antioquia). IIIème Séminaire Géotechnique Colombien, Bogota, Août 6-10, 1984. Villegas, Fabio. "Dynamic Stability Analyses of some Earth Dams in Residual Soils" (Analyse de la Stabilité Dynamique de certains Barrages en terre construits avec des sols résiduels. IIIème Séminaire Géotechnique Colombien, Bogota, Août 6-10, 1984.

149

150

151

152

ETUDE DE CAS No. 10 Guri (étape finale)

Section

Données générales

Localisation Venezuela. Période de constuction 1984 (année de finalisation). But visé Energie Hydroélectrique.

Aspects Techniques Type de structure L’étape finale de la réalisation du projet de Guri a compris la construction d’un

barrage en remblai de terre et de roche de 5 500 m avec des remblais de terre et de roche de 100 m de haut et de 2 km de long du côté gauche et de 4 km de long du côté droit, avec une digue du réservoir dont le rebord a une longueur d’à peu près 20 km de pour un volume total de remblai d’environ 72 million de mètres cubes. Le barrage en remblai est divisé en barrages gauche et droit. Matériaux de remblai : ruissellement de la pente et sols résiduels. Matériaux du filtre et des drains obtenus en écrasant la gneiss granitique.

Géologie Roche précambrienne consistant principalement de gneiss. granitique parsemé de bandes de quartzite ferrugineux variant en épaisseur de quelques mètres à plus de 100 m. La structure géologique dominante est le Bolivar Fault System. Les preuves sur le terrain suggèrent que les failles n’ont pas connues d’activité récente. Il y a une faille d’environ 60m de large et 100m de profondeur sous une section du remblai gauche du barrage

Matériau pour la fondation

Le lessivage des éléments solubles pendant l’altération a produit une densité faible, des sols résiduels poreux (effondrables) dérivés de la décomposition des gneiss granitiques et des quartzites avec une épaisseur variable allant de quelques mètres à plus de 70 m. Les sols présentent un effondrement soudain sous une charge et avec une saturation à l’état in situ. Lorsqu’ils sont remodelés, aucun tassement important brusque ne se produit si les sols sont chargés ou saturés.

Traitement de la fondation

L’excavation de sols poreux pour recouvrir les roches dures altérées et server de remplacement avec le remblai compacté. Avant la construction du remblai, les canaux d’irrigation ont été utilisés pour pré-mouiller les sols résiduels que n’étaient pas excavés et se trouvaient au-dessus de la nappe phréatique. Il avait é convenu que pré-mouiller dans certaines zones et excaver dans d’autres pourraient causer une fissuration du fait des tassements différentiels de la fondation. Des filtres épais (1,1 m) ont été installés pour empêcher la migration des particules fines en cas de fissuration. À l’emplacement de la faille, un barrage en enrochement avec un noyau central imperméable a été construit. Le matériau dans la faille a été excavé jusqu’à une profondeur pratique (environ 30 m en dessous du noyau). En amont du noyau, la faille excavée a été couverte d’un tapis imperméable avec deux couches de filtre en plus de cela. En aval du noyau, deux couches de filtres ont été utilisées (chacune allant jusqu’à 4 m d’épaisseur en dessous du noyau).

Instrumentation Des piezomètres et des inclinomètres ont été installés dans la fondation et le remblai

Problèmes rencontrés après la mise en service

La performance du barrage a été satisfaisante.

153

154

Références Prusza Z., Kleiner D.E., Sundaram A.V. "Characteristics of Guri Soils"(Caractéristiques des sols de Guri), Présenté à la session annuelle de l’ASCE, Houston, Texas, 1983. Medina J., Liu Bernard."The Influence of a Collapsible Foundation on the Design of Guri Embankment Dams" (Influence d’une foundation effondrable sur le projet du Barrage en remblai de Guri), Quatorsième Congrès International sur les grands barrages, Rio de Janeiro, Brésil, 3-7 Mai, 1982. Medina J., Liu Bernard."Foundation Treatment for Control of Seepage at the Guri Embankment Dams" (Traitement de la Fondation pour Contrôler la Percolation des Barrages en Remblai de Guri), Quinzième Congrès International sur les grands barrages, Lausanne, Suisse, 24-28 Juin, 1985

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

COLORED FIGURES/FIGURES EN COULEUR

177

COLORED FIGURES/FIGURES EN COULEUR

178

 Fig. 5

Weathering Profile found at the Goro Nickel Project – New Caledonia Profil d’Altération du projet Goro Nickel en Nouvelle Calédonie

 

 

 Fig. 10

Plasticity Chart Average Plot of the Residual Soils (Limonite) found at the Goro Nickel Mine Tailings Dam

Diagramme de Plasticité des Sols Résiduels (Limonite) du Barrage de Résidus Miniers de Goro Nickel

 

 

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100 110 120

LIQUID LIMIT (%)

PLA

STIC

ITY

IND

EX (%

)

OH or MH

ML or OL

CH

CL

CL-ML

A-line

179

 Fig. 11

Natural Water Content and Atterberg Limits with Depth for the Limonite found at the foundation of a Tailings Dam in an island in the Pacific Rim

Teneur en Eau Naturelle et Limites d’Atterberg en fonction de la Profondeur pour le Limonite à la Fondation d’un Barrage de Résidus Miniers sur une ile du pourtour du Pacifique

 

 

 Fig. 15(*)

Percentage (%) of sand and clay of lateritic soils for Brazilian Dam sites (Texeira et al, 1985) Pourcentage (%) de sable et d’argile des sols latéritiques pour les sites du Barrage Brésilien

(Texeira et al, 1985)  

 

0

10

20

30

40

50

0 25 50 75 100 125 150MOISTURE CONTENT (%)

DEP

TH B

ELO

W G

RO

UN

D S

UR

FAC

E (m

)

Berm foundation FMCBerm foundation LLBerm foundation PLFMC TrendLL TrendPL Trend

0102030405060708090

Itaparica Três Irmãos Juquía I Juquía II Poços deCaldas

Itaipu

% o

f tot

al m

ass

% Clay < 2microns % Sand

180

 Fig. 16(*)

Percentage (%) of sand and clay of saprolitic soils for Brazilian Dam sites (Texeira et al, 1985) Pourcentage (%) de sable et d’argile des sols saprolitiques pour les sites du Barrage Brésilien

(Texeira et al, 1985)  

 

Fig. 18(*) Particle Size Distribution for Quebradona, Troneras and Miraflores Dams

Distribution Granulométrique des Barrages de Quebradona, Troneras et Miraflores   

0102030405060708090

100

Itaparica NovaAvanhandava

Euclides daCunha

Passauna Emborcação

% o

f tot

al m

ass

%Clay <2microns % Sand

Particle diameter (mm)

Liquid limit (%)Plasticity chart

U.S Standard sieves

181

 Fig. 19

Particle Size Distribution for Santa Rita, La Fe, Punchiná and San Lorenzo Dam Distribution Granulométrique des Barrages de Santa Rita, La Fe, Punchiná et San Lorenzo

 Fig. 28

Residual Soils Found at the Right Abutment (Far Left) at Salvajina Dam that mandated special treatments at the Plinth and Foundation

Sols Résiduels au niveau de l’Appui Droit (Extrême Gauche) du Barrage de Salvajina qui ont nécessité des traitements spéciaux au niveau de la Plinthe et de la Fondation

 

182

 Fig. 30

Corumbá I Earth Core Rockfill Dam, Brasil Barrage Corumbá I en Enrochement avec Noyau en Terre, Brésil

 Fig. 31

Guri Dam, Venezuela Barrage Guri, Venezuela

 

 Fig. 36

General Overview of Punchiná Dam Aperçu Général du Barrage de Punchiná

183

 Fig. 30

Corumbá I Earth Core Rockfill Dam, Brasil Barrage Corumbá I en Enrochement avec Noyau en Terre, Brésil

 Fig. 31

Guri Dam, Venezuela Barrage Guri, Venezuela

 

 Fig. 36

General Overview of Punchiná Dam Aperçu Général du Barrage de Punchiná

 Fig. 37

Reservoir’s Slope Instabilities Experienced at Punchiná Dam Due to Rapid Drawdown (INGETEC S.A., 2002)

Instabilités de la Pente du Réservoir du Barrage de Punchiná causé par un Rabattement Rapide (INGETEC S.A., 2002)

184

Achevé d’imprimer en mars 2017sur les presses de l’Imprimerie Offset Cinq Édition,

85150 La Mothe-Achard

Dépôt légal 2e trimestre 2017, avril 2017, N° d’impression : 2017040277

ISSN 0534 – 8293Imprimé en France

TROPICAL RESIDUAL SOILS as dam foundation and fill material

SOLS RÉSIDUELS TROPICAUX UTILISÉS pour la fondation de barrages et comme matériau de remblai

Bulletin 151

2017

INTERNATIONAL COMMISSION ON LARGE DAMSCOMMISSION INTERNATIONALE DES GRANDS BARRAGES

61, avenue Kléber, 75116 ParisTéléphone : (33-1) 47 04 17 80 - Fax : (33-1) 53 75 18 22

http://www.icold-cigb.org./ 151

So

ls r

ésid

ue

ls t

rop

ica

ux

uti

lisé

s p

ou

r la

fo

nd

ati

on

de

ba

rra

ge

s e

t c

om

me

ma

téri

au

de

re

mb

lai

Tro

pic

al

resid

ua

l so

ils a

s d

am

fo

un

da

tio

n a

nd

fill

ma

teri

al

top related