realizaciÓn de tÉcnicas de microscopÍa · su función es colectar la luz proveniente de la...

Post on 05-Oct-2018

222 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

REALIZACIÓN DE TÉCNICAS DE MICROSCOPÍA

Justificación

Sin el microscopio no sería posible visualizar moléculas, células, tejidos y microorganismos. Gracias a ellos podemos llegar a captar y ver todo lo que tenemos delante.

En ésta unidad vamos a conocer los fundamentos de los distintos tipos de microscopía: óptica, fluorescente, electrónica y de barrido.

Objetivos de aprendizaje

• Identificar las características ópticas de los microscopios.

• Describir los diferentes tipos de microscopios.

• Detallar el funcionamiento del microscopio óptico.

• Enfocar preparaciones utilizando los microscopios del laboratorio.

Contenidos

1. Características ópticas de los microscopios.

2. Tipos de microscopios.

3. Funcionamiento del microscopio óptico.

4. Visualización de muestras en el microscopio óptico.

1. Características ópticas de los microscopios.

Las lentes

Son discos de vidrio en el que almenos una de sus dos caras es curva.

Deshacen la dispersión de la luzcuando esta incide sobre un objeto.

Permiten que cada punto del objetosea representado en un puntoespecífico en la imagen (Sistemaóptico ideal).

Son utilizadas para enfocar.

La refracción luminosa.

Las lentes basan su funcionamiento en elfenómeno de refracción luminosa:

La refracción es el cambio de direccióny velocidad que experimenta una onda alpasar de un medio a otro con distinto índicerefracción.

El fenómeno de la refracción va acompañado de una reflexión, más o menos débil, producida en la superficie que limita los dos medios transparentes.

Reflexión especular Reflexión difusa

Tipos de lentes

Lentes convergentes:

Son más gruesas por el centro que por el borde, y concentran (hacenconverger) en un punto los rayos de luz que las atraviesan.

A este punto se le llama foco (F) y la separación entre él y la lente seconoce como distancia focal (f).

Observa que la lente (2) tiene menor distancia focal que la (1). Decimos, entonces, que la lente (2) tiene mayor potencia que la (1).La potencia de una lente es la inversa de su distancia focal.

Tipos de lentes

Lentes divergentes:

Son más gruesas por los bordes que por el centroy hacen diverger (separan) los rayos de luz quepasan por ellas.

Si miramos por una lente divergente da lasensación de que los rayos proceden del punto F.A éste punto se le llama foco virtual.

En las lentes divergentes la distancia focal seconsidera negativa.

Las lentes convergentes pueden formar imágenes virtuales mayores que el objeto.

Acción de una lente convergente sobre un haz de rayos paralelos.

Acción de una lente divergente sobre un haz de rayos paralelos.

Las lentes divergentes siempre forman imágenes virtuales menores que el objeto.

Las aberraciones

Son alteraciones en las imágenes observadas a través de un sistema óptico. Existen varios tipos.

Aberración esférica

Relacionadas con la forma esférica de la lente. Las ondas queatraviesan la lente no convergen y dan como resultado unaimagen dispersa y borrosa.

Aberración cromática

La lente es incapaz de reunir en un mismo foco rayos de longitud de onda distinta, lo cual produce cromatismo.

Aberraciones geométricas: Coma

Se produce una degradación de la imagen de un punto, se me similar a un cometa.

Aberración geométrica: Distorsión

Afecta a los bordes del objeto que se ve en forma de barril.

Aberración geométrica: Curvatura de campo

El campo se ve con bordes curvos, deformando la imagen.

Otras propiedades de la luz

Difracción: la luz al pasar por el extremo de una superficie se dobla, desviándose del trayecto.

Otras propiedades de la luz

Absorción: cuando la luz llega a un objeto, este puede absorber toda o parte de ella, convirtiéndola en calor.

Otras propiedades de la luz

Transmisión: Cuando la luz atraviesa un objeto. Hay 3 tipos:

Otras propiedades de la luz

Transmisión directa: cuando la luz atraviesa un objeto y no se producen cambios de dirección ni de calidad.

Otras propiedades de la luz

Transmisión difusa: la luz pasa a travésde un objeto transparente osemitransparente con textura y esdesviada en muchas direcciones.

Otras propiedades de la luz

Transmisión selectiva: la luz atraviesa un objeto de color y una parte es absorbida y otra transmitida.

Otras propiedades de la luz

Interferencia: cuando dos ondas que tienen la misma longitud de onda se superponen.

2. Funcionamiento del microscopio ópticoLos componentes básicos del microscopio son:

Sistema de iluminación: emiten la luz.

Sistema óptico: consiguen el aumento.

Sistema mecánico: proporcionan el soporte.

Sistema mecánico

Base: tiene un peso considerable para garantizar la estabilidad.

Brazo: es el esqueleto del microscopio.

Sistema mecánico

Mecanismo de enfoque

El enfoque se consigue desplazando ensentido vertical la platina mediante:

Tornillo macrométrico. Produce unmovimiento tosco para lograr un enfoqueaproximado.

Tornillo micrométrico. Permite unenfoque fino y se utiliza con los objetivosde mayor aumento.

Sistema mecánico

La platina

Es un soporte horizontal donde secolocan las preparaciones.

Dispone de un sistema de fijaciónpar inmovilizar el protaobjetos.

Sistema mecánicoEl vernier y el nonius son dos pequeñas reglas graduadas en milímetros que encontramos en la platina. Su finalidad es obtener coordenadas aproximadas que sirvan de referencia para localizar una estructura en la preparación.Para leer la medida primero se determina la posición del fiel por defecto señala la unidad entera, la división del nonio o vernier indica la parte fraccionaria.

0,0 0,25 0,50 0,75 1,0

Sistema mecánico

El revolver

Es una semiesfera donde van atornillados los objetivos.

Permite el intercambio de objetivos mediante un movimiento de rotación.

Sistema mecánico

El tubo del ocular

Cilindro hueco con el objetivo en unextremo (revolver) y el ocular en otro.

Su longitud fue estandarizada a 160 mm.

Los tubos pueden ser simples, dobles otriples: monocular, binocular o trinocular(para conectar cámara)

Sistema óptico

Los objetivos:

Es el componente óptico mas importante delmicroscopio.

Su función es colectar la luz proveniente de la muestray proyectar una imagen invertida y aumentada haciael cuerpo del microscopio.

El ocular:

Es el segundo juego de lentes del microscopio.

Los objetivosLos aumentos

Cada objetivo lleva impreso los aumentos que proporciona (4x, 10x, 40x y 100x).

Poder de resolución

Capacidad de mostrar por separado dos puntos distintos y muy cercanos.

Limite de resolución

Distancia mínima a la que tienen que estar dos puntos para que se perciban por separado.

Los objetivos

Apertura numérica

Es la capacidad de recoger luz de unalente. Cuanto mayor AN mayorresolución y brillo en la imagen.

Para lentes secas su valor máximo esde 1 y de inmersión 1,4.

Tipos de objetivos

Según el medio

Objetivos secos y objetivos de inmersión: se diferencian en función del medio situado entre la muestra y la lente del objetivo (aire o aceite).

Tipos de objetivosSegún las correcciones

Objetivos acromáticos: corrigen aberración cromática (rojo y azul).

Objetivos semiapocromáticos: corrigen aberración cromática y esférica esférica (rojo y azul).

Objetivos apocromáticos: máximo nivel de corrección cromática y de esferica.

Objetivos planos (PLAN): para aberraciones geométricas

Tipos de objetivos

Según el tipo de tubo

Objetivo de óptica infinita: proyectan unaimagen al infinito. Funcionan con cualquierlongitud de tubo.

Objetivo de óptica finita: el objetivo llevaráimpresa la longitud de tubo con la quedebe funcionar.

Nomenclatura de los objetivos y código de colores

El ocular

Aumenta la imagen que capta el objetivo:

Aumento total = Aumento del objetivo x Aumento del ocular

El ocular

El ocular está formado como mínimo por dos lentes y un diafragma:

Lente ocular o superior: aumenta la imagen.

Lente de campo o inferior: aplana y aclara el campo óptico.

Diafragma situado entre las dos lentes: ocular negativo.

Diafragma situado por debajo de ellas: ocular positivo.

El ocular

Existen muchos tipos de oculares: Huygens, Ramsden…

Algunos llevan una copa de goma para mantener los ojos a la distancia correcta e impedir la formación de reflejos.

El ocularMecanismo de enfoque que ajusta dioptrías

(Uno de los oculares es ajustable, el otro no)

El ocular

Ajuste de distancia interpupilar

El ocularLa forma del campo

Está determinado por el diafragma fijo del ocular puede ser circular o cuadrado.

Las referencias: escalas y señaladores

Se sitúan en la apertura fija del diafragma.

El ocular

Nomenclatura de los oculares

Aumento: generalmente 10x, 12.5x, 15x, 20x o 25x

Número de campo: diámetro del diafragma: de 18 a 26.5 mm.

UW (ultra wide): campo visual muy amplio.

Plan-comp: oculares que corrigen curvatura.

Sistema de iluminación

Fuente de luz

Bombillas de tungsteno y halógenas.

Lampara de arco électrico: Xe, Ne, Hg…

LED: luz brillante, monocromática y fría.

Filtros neutros: disminuyen intensidad

Filtros de colores: compensan algunos colores.

Sistema de iluminación

Condensador

Formado por una o varias lentes.

Concentra los rayos luminosos sobre la preparación.

Tiene que tener la misma apertura numérica que el objetivo.

Tipos: Abbe es el más simple, sin corrección), aplanático-acromático(el que mayor poder de corrección tiene)…

Sistema de iluminación

Centrado del condensador

1. Enfocamos la muestra.

2. Cerramos ambos diafragmas y, si el condensador no está ajustado, se observará un círculo luminoso descentrado. Para ello usaremos los tornillos para centrado del condensador.

Sistema de iluminación

Ajuste de altura del condensador

Hasta que el círculo luminoso se convierta en un polígono de lados bien definidos.

Sistema de iluminación

Diafragma de apertura

Regula la cantidad de luz que llega al condensador y con ella la relación contraste/resolución.

Sistema de iluminaciónDiafragma de campo

Se encuentra a nivel de la lámpara.

Sirve para iluminar solamente la parte de la muestra que estamos observando.

Sistema de iluminación

Iluminación de Kohler

Técnica para iluminar uniformemente una muestra desde una fuendede iluminación no uniforme.

Requerimientos:

Bombilla con lente colectora

Condensador

Diafragma de campo (a nivel de la lámpara)

Diafragma de apertura (debajo del condensador)

2. Tipos de microscopios.

El microscopio óptico

Reglas generales para su uso

1. Colocarnos en una postura adecuada (espalda, dioptrías…)

2. Colocar objetivo de menos aumento.

3. Bajamos el condensador.

4. Bajamos platina.

5. Colocamos preparación.

6. Conectamos iluminación.

7. Subimos platina

8. Enfocamos observando por el ocular y bajando platina.

9. Cambie al siguiente objetivo y vuelva a enfocar.

Microscopía de campo oscuro

El espécimen iluminado por rayos oblicuos dispersa la luz y se hace visible contra el fondo oscuro que tiene detrás; las porciones transparentes quedan oscuras, mientras que los bordes y partículas se ven brillantes.

Microscopía de campo oscuro

Se utiliza para

Examen al fresco de células y gérmenes:

Treponema pallidum.

Estudio de procesos fisiológicos:

Migración celular.

Microscopía de contraste de fasesEste microscopio permite ver mejor las estructuras celulares gracias a los anillos de fase que contiene su condensador y objetivos. Estos anillos permiten que la imagen se vean con diferentes tonalidades (o contrastes) según la estructura de la célula.

Se utilizan para examinar tejidos vivos.

Microscopía de interferencia

Es una imagen con colores oscuros o claros en un fondo gris, semejante al contraste de fases, pero con sensación de relieve (con proyección de sombras).

Microscopía de fluorescencia

Permite el marcaje selectivo de moléculas y otros compuestos celulares con fluorocromos.

Se utilizan para:

Marcaje de moléculas.

Estudio de células normales y patológicas.

Estudio inmunológico.

Microscopía de luz ultravioletaLa luz UV proporciona un mayor poder de resolución que la luz visible pero es invisible para el ojo humano y muy nociva; por eso la imágenes se observarán a través fotografías o de un sensor digital.

El vidrio no transmite la luz UV por lo que todos los elementos ópticos están hechos de cuarzo o fluorita (incluido porta y cubreobjetos).

Las imágenes semejantes a la del microscopio de fluorescencia.

Microscopía de polarizaciónEs un microscopio de campo claro al cual se le adicionan filtros que modifican la luz. También se denomina microscopio metalúrgico por su uso en el estudio de minerales.

Mediante esta técnica se pueden visualizar sustancias cristalinas o fibrosas intracelulares

Microscopía electrónica

Usa electrones en lugar de luz visible para formar imágenes de objetos diminutos.

Permite amplificaciones mayores antes que los mejores MO, debido a que la longitud de onda de los e-es bastante menor que la de los fotones "visibles".

Microscopía electrónica

Microscopio electrónicos de transmisión (MET)

Emiten un haz de electrones que rebotan contra la muestra formando una imagen aumentada de esta. La muestra debe cortarse en capas muy finas, no mayores de unos 2000 angstroms.La imagen se graban en una película fotográfica.Pueden aumentar la imagen de un objeto hasta un millón de veces.

Microscopía electrónica

Microscopio electrónico de barrido (MEB)

La muestra es recubierta con una capa de metal delgado, y es barrida con electrones enviados desde un cañón. Un detector mide la cantidad de electrones enviados que arroja la intensidad de la zona de muestra, siendo capaz de mostrar figuras en tres dimensiones y proyectarlo en una imagen de TV.

top related