manejo no convencional de falla …...manejo no convencional de falla respiratoria aguda pediÁtrica...

Post on 29-Jun-2020

22 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

MANEJO NO CONVENCIONAL

DE FALLA RESPIRATORIA

AGUDA PEDIÁTRICA

DR PABLO CRUCES R.

MEDICINA INTENSIVA PEDIÁTRICA

TEMARIO

POSICIÓN PRONO

BLOQUEADORES NEUROMUSCULARES

HIPEROXIA

AGUA

b2

RETRASO DE INICIO DE ATB

DISINCRONÍA PACIENTE VENTILADOR

POSICIÓN PRONO

ACOPLAMIENTO V/Q

Heterogeneidad de la perfusión pulmonar

en planos isogravitacionales:

Conductancia vascular mayor en

regiones dorso-caudales.

Gradiente gravitacional de presión

pleural

Angulaciones en las dicotomías

vasculares pulmonares

Mayor liberación de NO endotelial en

vasos arteriales pulmonares dorsales

Mejor perfusión pulmonar caudal

Reducción de la distorsión de corazón y diafragma: menor compresión y colapso pulmonar

Reorientación de las fuerzas compresivas ejercidas por el mediastino y contenido abdominal

Mejor distribución que adopta el tejido pulmonar dentro de la cavidad toráxica

ACOPLAMIENTO V/Q

BLOQUEADORES

NEUROMUSCULARES

MANEJO CONSERVADOR

DE FLUIDOS

EVLW

EVLW

Común a muchas patologías

Causa frecuente de falla respiratoria aguda

de riesgo vital.

Clasificación:

Permeabilidad

Hidrostático o cardiogénico

EDEMA PULMONAR

SDRA

• Edema pulmonar rico en proteínas

• Disrupción de membrana alveolo capilar.

• Descenso de clearence de fluido alveolar.

• Resolución depende de remoción activa de

agua y sal desde espacios aéreos distales.

SDRA

EVLW

Safety and efficacy of a preventive strategy for fluid

overload in children with sepsis and pARDS

Blaha K, Díaz F, Quilodran J, Medina T, Nuñez MJ, Cruces P.,

SCCM 46th Annual Congress

Results :Fluids Overload (FO)

Daily FO

Conventional

Restrictive *p < 0,05

-3

-2

-1

0

1

2

3

4

Ingreso Día 1 Día 2 Día 3

0

1

2

3

4

Ingreso Día 1 Día 2 Día 3

* **

%% Cummulative FO

Clinical outcomes

Conventional Restrictive

MV (h) 124 (96-141) 63 (45-72) *

LOS 8 (7-9) 6 (5-9) *

Log rank < 0.01

conventional

restrictive

MV duration (h)

0

10

20

30

40

50

60

70

80

dia 1 dia2 dia 3

MIVF

mL

/kg

*

Conventional

Restrictive *p < 0,05

Results: Safety

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bolosreanimación

TxGR enteral0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Reanimation

Bolus

RBC Transfusion Enteral Intake

*

*

*

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DIA 1 DIA 2 DIA 3

Results: Safety

0

2

4

6

8

10

12

DIA 1 DIA 2 DIA 30

0,05

0,1

0,15

0,2

0,25

0,3

DIA 1 DIA 2 DIA 3

BUN Creatinine

Diuretics

0%

10%

20%

30%

40%

50%

60%

DIA 1 DIA 2 DIA 3

Administration K

* ** *

*p <

0,05

Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

Day 1 Day 2 Day 3 Day 1 Day 2 Day 3Conventional

Restrictive

HIPEROXIA

USO JUICIOSO DE ESTIMULACIÓN b

SDRA es la primera causa de falla

respiratoria en niños, 66-79% de los

casos.

Zhu YF, Chin Med J (Engl) 2012;125:2265-

2271.

Hu X, Acta Paediatr 2010;99:715-721.

Yu WL, Intensive Care Med 2009;35:136-

143.

Causas de sibilancias

LE HICE UN SET DE

NEBULIZACIONES Y

QUEDÓ TAQUICARDICO…

RETRASO EN INICIO DE

ANTIBIOTICO EFECTIVO

ASINCRONÍA PACIENTE

VENTILADOR

How Often Does Patient-Ventilator Asynchrony Occurand What Are the Consequences?

Scott K Epstein MD

Introduction

Factors to Consider in Analyzing the Prevalence of Patient-Ventilator

Asynchrony

Detecting Patient-Ventilator Asynchrony

How Often Does Patient-Ventilator Asynchrony Occur?

Effect of Patient-Ventilator Asynchrony on Outcomes

Summary

Mechanical ventilation can be life-saving for patientswith acute respiratory failure. In between the

2 extremes of complete and no ventilatory support, both patient and machine contribute to venti-

latory work. Ideally, ventilator gas delivery would perfectly match patient demand. This patient-

ventilator interaction depends on how the ventilator responds to patient respiratory effort and, in

turn, how the patient responds to the breath delivered by the ventilator. I t isnow evident that the

interaction between patient and ventilator is frequently suboptimal and that patient-ventilator

asynchrony iscommon. Itsprevalence dependson numerousfactors, includingtimingand duration

of observation, technique used for detection, patient population, type of asynchrony, ventilation

mode and settings (eg, trigger, flow, and cycle criteria), and confounding factors (eg, state of

wakefulness, sedation). Patient-ventilator asynchrony is associated with adverse effects, including

higher/wasted work of breathing, patient discomfort, increased need for sedation, confusion during

the weaning process, prolonged mechanical ventilation, longer stay, and possibly higher mortality.

Whether asynchrony isa marker of poor prognosisor causesthese adverse outcomesremainsto be

determined. Key words: patient-ventilator asynchrony; trigger asynchrony; mechanical ventilation;

weaning. [Respir Care 2011;56(1):25–35. © 2011 Daedalus Enterprises]

Introduction

Mechanical ventilation can be life-saving for patients

with acute respiratory failure. Once established, the objec-

tive of mechanical ventilation should be to assume the

work of breathing (WOB), improve gas exchange (increase

PaO2and decrease PaCO2

), and unload the respiratory mus-

cles. Animal studies have demonstrated that insufficient

unloading may lead to considerable structural injury to the

respiratory muscles.1,2 Therefore, some degree of ventila-

tory support is essential, especially during the initial phases

of recovery from respiratory failure. Synchronization be-

tween ventilator and patient is virtually assured at times of

Scott K Epstein MD is affiliated with the Office of Educational Affairs,

and with the Division of Pulmonary, Critical Care and Sleep Medicine,

Tufts Medical Center, Tufts University School of Medicine, Boston,

Massachusetts.

The author has disclosed no conflicts of interest.

Dr Epstein presented a version of this paper at the 46th RESPIRATORY

CARE Journal Conference, “Patient-Ventilator Interaction,” held March 19-

21, 2010, in Cancun, Quintana Roo, Mexico.

Correspondence: Scott K Epstein MD, Office of Educational Affairs,

Tufts University School of Medicine, 136 Harrison Avenue, Sackler 317,

Boston MA 02111. E-mail: scott.epstein@tufts.edu.

RESPIRATORY CARE · JANUARY 2011 VOL 56 NO 1 25

How Often Does Patient-Ventilator Asynchrony Occurand What Are the Consequences?

Scott K Epstein MD

Introduction

Factors to Consider in Analyzing the Prevalence of Patient-Ventilator

Asynchrony

Detecting Patient-Ventilator Asynchrony

How Often Does Patient-Ventilator Asynchrony Occur?

Effect of Patient-Ventilator Asynchrony on Outcomes

Summary

Mechanical ventilation can belife-saving for patientswith acuterespiratory failure. In between the

2 extremesof complete and no ventilatory support, both patient and machine contribute to venti-

latory work. Ideally, ventilator gas delivery would perfectly match patient demand. This patient-

ventilator interaction dependson how the ventilator respondsto patient respiratory effort and, in

turn, how the patient respondsto the breath delivered by the ventilator. It isnow evident that the

interaction between patient and ventilator is frequently suboptimal and that patient-ventilator

asynchrony iscommon. Itsprevalencedependson numerousfactors, includingtimingand duration

of observation, technique used for detection, patient population, type of asynchrony, ventilation

mode and settings (eg, trigger, flow, and cycle criteria), and confounding factors (eg, state of

wakefulness, sedation). Patient-ventilator asynchrony is associated with adverse effects, including

higher/wasted work of breathing, patient discomfort, increased need for sedation, confusion during

the weaning process, prolonged mechanical ventilation, longer stay, and possibly higher mortality.

Whether asynchrony isa marker of poor prognosisor causestheseadverseoutcomesremainstobe

determined. Key words: patient-ventilator asynchrony; trigger asynchrony; mechanical ventilation;

weaning. [Respir Care 2011;56(1):25–35. © 2011 Daedalus Enterprises]

Introduction

Mechanical ventilation can be life-saving for patients

with acute respiratory failure. Once established, the objec-

tive of mechanical ventilation should be to assume the

work of breathing (WOB), improve gas exchange (increase

PaO2and decrease PaCO2

), and unload the respiratory mus-

cles. Animal studies have demonstrated that insufficient

unloading may lead to considerable structural injury to the

respiratory muscles.1,2 Therefore, some degree of ventila-

tory support is essential, especially during the initial phases

of recovery from respiratory failure. Synchronization be-

tween ventilator and patient is virtually assured at times of

Scott K Epstein MD is affiliated with the Office of Educational Affairs,

and with the Division of Pulmonary, Critical Care and Sleep Medicine,

Tufts Medical Center, Tufts University School of Medicine, Boston,

Massachusetts.

The author has disclosed no conflicts of interest.

Dr Epstein presented a version of this paper at the 46th RESPIRATORY

CARE Journal Conference, “Patient-Ventilator Interaction,” heldMarch19-

21, 2010, in Cancun, Quintana Roo, Mexico.

Correspondence: Scott K Epstein MD, Office of Educational Affairs,

Tufts University School of Medicine, 136 Harrison Avenue, Sackler 317,

Boston MA 02111. E-mail: scott.epstein@tufts.edu.

RESPIRATORY CARE · JANUARY 2011 VOL 56 NO 1 25

SIN CONFLICTOS DE

INTERÉS

86

top related