entrenamiento continuo vs intermitente 8 (2009

Post on 17-Nov-2014

967 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Razonamiento y criterios fisiológicos en el entendimiento del rendimiento continuo y

fraccionado.

Prof. Carlos Burgos MScMEDS

Nuestra vieja y querida metodología del entrenamiento.

Por donde comenzar ?Que Deberíamos Entender y saber

Manejar– Principios del entrenamiento– Adaptaciones especificas del

entrenamiento

– Factores que influencian la respuesta al entrenamiento

– Métodos continuos

– Evidencias científicas de apoyo– Intensidad y zonas sensibles del

entrenamiento

COMPONENTES DEL ENTRENAMIENTO

• INTENSIDAD A specific level of muscular activity that can be quantified. How hard is the exercise ? 60 - 90% HR max (40 - 85% VO2max or HRR)

• DURACION Length of exercise session (30 - 60 min)

(TIEMPO) Length of training programme (10 -12 weeks)

• FREQUENCIA Number of sessions per week (3-5 / week)

• MODO Type of exercise

(TIPO) Large muscles, aerobic, rhythmic, continuous or intermittent

(ACSM, 2000)

Factores que Afectan la Respuesta al Entrenamiento

• Salud general del entrenado• Condición genética del entrenado• Nivel inicial de capacidad de

entrenamiento (fitness)• Intensidad del entrenamiento

– % of HR max– HRthreshold = HRmax +.60 (HRmax-HRrest )

• Frecuencia del entrenamiento• Duración del entrenamiento

Volumen

Nace? O se hace?

CARGA

PRINCIPIOS DEL ENTRENAMIENTO

• OVERLOAD Exercise at level higher than is normally performed stimulates physiological adaptations that enable the body to function more efficiently.

• SPECIFICITY Training adaptations are specific to the systems and specific muscles and actions stressed

• INDIVIDUAL DIFFERENCES Initial levels of fitness differ as do genetics

• REVERSIBILITY Benefits gained through training are lost when training ceases.

La energía y su relación Con la duración del ejercicio

OPTIMIZACION DEL ENTRENAMIENTO

Under-trained

Over-trained

Optimal performance

Kreider, R.B., Fry, A.C. and O’Toole, M.L. (1998). Overtraining in Sport. Champaign, Human Kinetics.

Carga Recuperación

Optimización

Kreider, R.B., Fry, A.C. and O’Toole, M.L. (1998). Overtraining in Sport. Champaign, Human Kinetics.

Factores que Conforman los Sistemas continuos

Elementos Formas Finalidad

-Duración (distancia)-Ritmo (Tiempo)

-Resistenciaaeróbica-Anaerobia(umbral anerób)-Resistencia aeróbica(VO2max)

-Larga-Lenta-Media-Corta - Rápida-Progresiva concambios (largos)

López Chicharro Fisiología del ejercicio Cap..27 pag.283-306

% de la capacidad de entrenamiento

Final delentrenamiento

Continuo intensivo

Continuo variableContinuo extensivo

Intensidadde carga Descanso

Volumen decarga

Duración de la carga

70-90% dela mejormarca

No existe Muy elevadoMuy larga30 min- 2 h

Esquema gráfico del método continuo

Adaptaciones fisiológicas propuestas para varias intensidades de entrenamiento

Nivel %V´O2max% FCmax

AdaptacionesFisiológicaspropuestas

Modelos de entrenamiento

I 55-65 60-70-Fuentes de E. aeróbica-Densidad capilar-Proliferación mitocondrial-Movilización FFA

Sobre-distanciaFuerza

II 66-75 71-75 -Fuentes de E. aeróbicaEndurance 1

Fuerza

III 76-80 76-80-Fuentes de E. aeróbica-Reclutamiento FT- Glicólisis aeróbica

Endurance 2fuerza

IV 81-90 81-90-Reclutamiento FT-U.AMetabolismo lactato

Intervalos, carreras cuestaRitmo de pasos

V 91-100 91-100-velocidad-coordinación neuromuscular

Técnicas de velocidadRacing

Peaking speeds

R. Sleamaker and Ray Browning: ¨Serious Training for Endurance athletes¨, Human Kinetic, 1996

A. V. Hill's (Hill, 1925) original plot of world record performance time on the X-axis versus performance speed on the Y-axis The top tracing is for speed-skating, the

middle tracing is for running by males, and the bottom tracing is for running by women. The shape of the curve led to Hill's original ideas about differing causes of

muscle fatigue for exercise bouts of different durations.

Joyner M J, Coyle E F J Physiol 2008;586:35-44©2008 by The Physiological Society

Figure 3. Plot or blood lactic acid concentration ve rsus race distance (Costill, 1970) This figure is an example of the diminishing contributio n of so-called ‘anaerobic’ energy sources

as race distance increases

Joyner M J, Coyle E F J Physiol 2008;586:35-44©2008 by The Physiological Society

Individual record of treadmill velocity v/s blood la ctate concentration in subject capable of breaking 2:30 h for the marathon (Farrell et al. 19 79) In untrained subjects the upturn in lactic acid concentrations is seen at about 60% of. Traine d subjects can usually exercise at 75–85% of before there is a marked increase in blood lacta te concentration. This figure also illustrates

the concept of performance and performance velocity .

Joyner M J, Coyle E F J Physiol 2008;586:35-44©2008 by The Physiological Society

Time to fatigue during exercise at 88% of plotted against lactate threshold (LT) in 14 highly trained cyclists and triathletes (data plotted from Coyle et al. 1988; Coyle, 1995) These

athletes all had similar values and uniformly high muscle oxidative enzymes. A subgroup of 4 athletes (subjects 1, 2, 7 and 8) with exceptionall y high capillary density seemed to

‘overachieve’ in comparison with their lactate thres hold values compared with other members of the group

Joyner M J, Coyle E F J Physiol 2008;586:35-44©2008 by The Physiological Society

Regression lines for high, average and low running economy (efficiency) in elite endurance athletes based on values gleaned from a number of s ources (Joyner, 1991) Since there has been little systematic data collected above �18 km h−1 the filled triangles in the figure are

individual data from a limited number of champions with exceptional running economy

Joyner M J, Coyle E F J Physiol 2008;586:35-44©2008 by The Physiological Society

Título del diagrama

RES. al MOVIM

VO2 de PERF.

DENS.CAP. VOL.SIST. ACT. ENZ. AER

VO2 MAX. DIST.POT.y TECN %F.STI

VO2 U.L. ECON.MOV. EFIC.MECAN.

POT.o VEL. U.L.

POT. de PERF.

VEL.de PERFOM

CAPACIDADDE PERFOMANCE

CAPACIDADFUNCIONAL

COMPONENTESMORFOLOGICOS

1) r: 0,97 2) r: 0,94

3) r: 0,91

4) r: 0,89

5) r: 0,59

6) r: 0,54

E. COYLE

Joyner, M. J. et al. J Physiol 2008;586:35-44

CAPACIDADDE PERFOMANCE

CAPACIDADFUNCIONAL

COMPONENTESMORFOLOGICOS

Modelo de entrenamiento para deportes de Endurance

RacingRecovery Peak

Base Intensidad 16 semanas

16 semanas

4-6 semanas4-6 semanas

8-12 semanasR. Sleamaker and Ray Browning: ¨Serious Training for Endurance athletes¨, Human Kinetic, 1996

Base: 16 semanas

Sobre-distancia Baja intensidad

Fuerza

Intervalos

Sobre-distancia Baja intensidad

Racing: 12 semanas

Fuerza

Intervalos

velocidad

Ritmo de pasos

R. Sleamaker and Ray Browning: ¨Serious Training for Endurance athletes¨, Human Kinetic, 1996

Sobre-distancia Baja intensidad

Actividades diversas

Recovery: 4-6 semanas

EJERCICIO FRACCIONADO Y/O INTERVALADO SUBMAXIMO Y MAXIMO

Incorporar frase filosofica

Que se entiende por ejercicio Intermitente de máxima

intensidad ?• Periodos de esfuerzos físicos de máximo

compromiso metabólico y muscular entrelazados con periodos de reposo de baja intensidad de diferente duración.

• Condicionantes:• 1.-El numero de repeticiones • 2.- La duración de los estímulos aplicados• 3.- Periodos de reposo ( duración y

cantidad) Br J Sports Med; 41: 717-722 : 2007Society for Tennis Medicine and Science: 5. N 2, 2000Amer. Zool., 41: 219-228, 2001

Copyright ©2004 BMJ Publishing Group Ltd.

St Clair Gibson, A et al. Br J Sports Med 2004;38:7 97-806

Peripheral fatigue as usually conceived is an examp le of a linear dynamic system in which the progressive accumulation of metabolites in the exer cising muscles causes an absolute fatigue,

after which a period of rest is required before exe rcise can again be undertaken. This model also predicts that, at the point of absolute fatigue, th e brain has recruited all the motor neurones in

the active skeletal muscles.

Tipo de ejercicio

Captación de O2

Litros x h-1 Litros x min-1

Ventilaciónpulmonar litros x min-1

Frecuencia cardíacalatidos x min-1

Ácido lácticoen sangre,mM

Continuo

175 watts

350 watts &

146 2.44 49 134 1.3

4.60 124 190 16.5

Intermitente350 vatios

Ejercicio Reposo

30seg 30seg

1 min 1 min

2 min 2 min

3 min 3 min

154 2.90 63 150 2.2

152 2.93 65 167 5.0

160 4.40 95 178 10.5

163 4.60 107 188 13.2

Astrand - Rodahl., Fisiología del trabajo físico. Cap 10 pp318-365 1992

&Podría llevarse a cabo por solo 9 min.&Carga de trabajo en 30 minutos

Datos de un sujeto que alcanza 635kJ (64.800kpm) en una bicicleta de ergometriadurante 1 hora Con diferentes procedimientos

10 20 30

minutos

Lactato en la sangremmol. L-1

14

12

10

8

6

4

2

0

60 seg. de ejercicios

120 seg. de pausa

30 seg. de ejercicios

60 seg. de pausa

10 seg. de ejercicios

20 seg. de pausa

PER - OLOF ASTRAND., La Resistencia en el deporte. Cap 2

Concentración de lactato en sangre en una producciónTotal de trabajo de 247kJ (25.200 kpm) en 30 minutos

El ejercicio se efectúo con una potencia de 412 W (2.520 kpm-min-1),

10 seg. 60 seg.RMB (0.043 L)

O2 enlazado enla hemoglobina(0.43 L)

RMB (0.26 L)

O2 transportado(0.47 L)

Déficit de O2(1.91 L)

O2 enlazado conla mioglobina(0.43 L)

O2 transportado(3.26 L)

Oxigeno(litros)

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Demanda de oxigeno para 10 y 60 segundos con una potencia de 412 W

PER - OLOF ASTRAND., La Resistencia en el deporte. Cap 2

1 2 3 4 5 6 7 8 9 10

semanas

Ejercicio

Calentamiento

2-4’ Pausa entre repeticiones

30´´ de Sprint en bicicleta3 veces por semana

reposo

streching

Semana 1 : 4 repeticiones / semana 7 : 10 repeticiones

1 7

J Appl Physiol 84: 2138-2142 1998

J Appl Physiol 84: 2138-2142 1998

Copyright ©2005 American Physiological Society

Burgomaster, K. A. et al. J Appl Physiol 98: 1985-1 990 2005

Entre cada esfuerzo de trabajo hubo 4 minutos de reposo activo

Copyright ©2005 American Physiological Society

Burgomaster, K. A. et al. J Appl Physiol 98: 1985-1 990 2005

Cycle endurance time to fatigue before and after a 2-wk sprint training protocol (training group; SIT) or equivalent period without training ( control; Con)

Copyright ©2005 American Physiological Society

Peak anaerobic power elicited during 4 consecutive Wingate tests performed during the first and last sprint training session

Burgomaster, K. A. et al. J Appl Physiol 98: 1985-1 990 2005

Copyright ©2005 American Physiological Society

Maximal activity of citrate synthase (CS) measured in resting muscle biopsy samples obtained before and after a 2-wk sprint training protocol

Burgomaster, K. A. et al. J Appl Physiol 98: 1985-1 990 2005

Copyright ©2005 American Physiological Society

Muscle glycogen concentration measured in resting biopsy samples obtained before and after a 2-wk sprint training protocol

Burgomaster, K. A. et al. J Appl Physiol 98: 1985-1 990 2005

Copyright ©2005 American Physiological Society

Burgomaster, K. A. et al. J Appl Physiol 100: 2041- 2047 2006

Entre cada esfuerzo de trabajo hubo 4 minutos de reposo activo

Test de 10 minutos al 60% del vo2 máx. y 10 min. al 90% del vo2 máx.Test de 10 minutos al 60% del vo2 máx. y 10 min. al 90% del vo2 máx.

Burgomaster, K. A. et al. J Appl Physiol 100: 2041- 2047 2006

B B BB B

Burgomaster, K. A. et al. J Appl Physiol 100: 2041- 2047 2006

Burgomaster, K. A. et al. J Appl Physiol 100: 2041- 2047 2006

Gibala M J et al. J Physiol 2006;575:901-911

750 kJ cycling time trial performance before (PRE) and after (POST) 6 sessions of sprint interval training (SIT) or endurance training (ET) over 2 weeks *P ≤ 0.05 versus pre-training

(main effect for time)

Gibala M J et al. J Physiol 2006;575:901-911©2006 by The Physiological Society

Maximal activity of COX measured in resting muscle biopsy samples obtained before (PRE) and after (POST) 6 sessions of sprint interval trai ning (SIT) or endurance training (ET) over 2

weeks *P ≤ 0.05 versus pre-training (main effect for time)

Gibala M J et al. J Physiol 2006;575:901-911©2006 by The Physiological Society

Protein content of COX subunit II (middle panel) an d IV (bottom panel) measured in resting muscle biopsy samples obtained before (PRE) and aft er (POST) 6 sessions of sprint interval

training (SIT) or endurance training (ET) over 2 we eks *P ≤ 0.05 versus pre-training (main effect for time)

Gibala M J et al. J Physiol 2006;575:901-911©2006 by The Physiological Society

Skeletal muscle buffering capacity measured in rest ing muscle biopsy samples before (PRE) and after (POST) 6 sessions of sprint interval trai ning (SIT) or endurance training (ET) over 2

weeks *P ≤ 0.05 versus pre-training (main effect for time)

Gibala M J et al. J Physiol 2006;575:901-911©2006 by The Physiological Society

Resting muscle glycogen content before (PRE) and af ter (POST) 6 sessions of sprint interval training (SIT) or endurance training (ET) over 2 we eks *P ≤ 0.05 versus pre-training (main

effect for time)

Gibala M J et al. J Physiol 2006;575:901-911©2006 by The Physiological Society

FIN

ERROR: syntaxerror

OFFENDING COMMAND: --nostringval--

STACK:

/Title

()

/Subject

(D:20091107100132-03’00’)

/ModDate

()

/Keywords

(PDFCreator Version 0.9.5)

/Creator

(D:20091107100132-03’00’)

/CreationDate

(Carlos Burgos)

/Author

-mark-

top related