e s t r u c t u r a s i©tricas-1.pdf · definida por su área, su momento de inercia y su módulo...

Post on 17-Feb-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

E S T R U C T U R A S I

F.A.D.U. / UdelaR AÑO 2018

PROPIEDADES GEOMÉTRICAS

DE LAS SECCIONES PLANAS,

CON APLICACIONES MECÁNICAS

CENTRO DE GRAVEDAD

MOMENTO ESTÁTICO

MOMENTO DE INERCIA

- SECCIONES IRREGULARES

- SECCIONES COMBINADAS

Recordemos:

DIMENSIONADO:

• ELEGIDO UN MATERIAL ( ACERO, MADERA, etc.)• DEFINIDA LA FORMA DE LA SECCIÓN

(RECTANGULAR, PERFILERÍA NORMALIZADA DE ACERO, etc.)

DETERMINAR LAS DIMENSIONES MÍNIMAS DE MODO QUE EN NINGÚN PUNTO DE LA PIEZA SE SUPERE LA TENSIÓN DE DIMENSIONADO.

En todas las verificaciones tenemos una ecuación que nos relaciona:

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones ylos vínculos de la estructura.

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

A

N

w

M

r

df máxσ

Verificación de tensiones normales en tracción

N

A

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

A

N

w

M

r

df máxσ

Verificación de tensiones normales en tracción

N

A

Donde: fd -tensión admisible

N -esfuerzo axil

A - área de la sección

Verificación de tensiones normales en compresión

σreal= ≤σeuler=N

A_ fd

ω_

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

Verificación de tensiones normales en compresión

σreal= ≤σeuler=N

A_ fd

ω_

Donde: fd -tensión admisible

N -esfuerzo axil

A -área de la sección

w -coeficiente de pandeo

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

Verificación de tensiones normales en flexión

A

N

w

M

r

df máxσ

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

Donde: fd -tensión admisible

M -momento flector

N -esfuerzo axil

W -módulo resistente

A - área de la sección

Verificación de tensiones normales en flexión

A

N

w

M

r

df máxσ

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

Verificación de tensiones tangenciales en flexión

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

Donde: T -tensión admisible

V -esfuerzo cortante

SLN -momento estático

b -ancho de la sección

I - inercia

Verificación de tensiones tangenciales en flexión

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

Zmáx ≤ Zadm

Verificación de deformaciones en flexión

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

Zmáx ≤ Zadm

Verificación de deformaciones en flexión

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

Zadm = L500

L300

ó

Donde: z es la deformación

y en ella intervienen :

• Las acciones

• L: el largo de la barra

• E: el módulo de elasticidad del material

• I : el momento de inercia de la sección

Zmáx ≤ Zadm

Verificación de deformaciones en flexión

En todas las verificaciones tenemos una ecuación que nos relaciona:

- el material; definido por su tensión admisible y

su módulo de elasticidad.

- las solicitaciones; obtenidas a partir del equilibrio,

en función de las acciones y

los vínculos de la estructura.

- la sección; definida por su área, su momento de inerciay su módulo resistente.

Zadm = L500

L300

ó

- GEOMETRÍA DE LA SECCIÓN

para una sección rectangular:

- área: A = b x h

- inercia (baricéntrica) I = b x h / 12

- módulo resistente W = I / 0,5 h = b x h / 6

GEOMETRÍA DE LA SECCIÓN:

b

h x

y

3

2

Vimos que en las ecuaciones, las propiedades geométricas de la sección que intervienen son:• El área• El momento de inercia respecto a un

eje baricéntrico• El módulo resistente

Geometría de la sección:

b

h x

y

Cuantificar la inercia baricéntrica, implica tener ubicado el centro de gravedad de la sección.

En caso de existir un eje de simetría, el centro de gravedad se encuentra sobre dicho eje.

En el caso del rectángulo se obtiene de inmediato, por estar en el cruce de las medianas. (que son ejes de simetría)

- área: A = b x h

- inercia (baricéntrica): I = b x h /12

- módulo resistente : W = b x h /6

3

2

En otro tipo de secciones, debemos hallar esa ubicación, la que no siempre es inmediata.

En caso de existir un eje de simetría, el centro de gravedad se encuentra sobre dicho eje.

- SECCIÓN IRREGULAR

Ubicación del centro de gravedad:

Ubicación del centro de gravedad:

Utilizamos el MOMENTO ESTÁTICO o de 1er. ODEN y el Teorema de VARIGNON.

Ubicación del centro de gravedad:

Utilizamos el MOMENTO ESTÁTICO (o de 1er. ODEN) y el Teorema de VARIGNON.

MOMENTO ESTÁTICO

Ubicación del centro de gravedad:

Utilizamos el MOMENTO ESTÁTICO (o de 1er. ODEN) y el Teorema de VARIGNON.

MOMENTO ESTÁTICO

Ubicación del centro de gravedad:

Utilizamos el MOMENTO ESTÁTICO (o de 1er. ODEN) y el Teorema de VARIGNON.

MOMENTO ESTÁTICO

b

h

b

h2

2

1

1

Ubicación del centro de gravedad:

Podemos descomponer la figura total en otras figuras regulares, de las que conozcamos la posición de su centro de gravedad.

b

h

b

h2

2

1

1

Ubicación del centro de gravedad:

Consideramos las áreas parciales como “vectores”, ubicados en el centro de gravedad de cada una de ellas, y ubicamos la resultante mediante una toma de momentos, aplicando el Teorema de Varignon.

Podemos descomponer la figura total en otras figuras regulares, de las que conozcamos la posición de su centro de gravedad.

b

h

b

h2

2

1

1

A = b x h2 2 2

A = b x h1 1 1

Ubicación del centro de gravedad:

Podemos ubicar los ejes baricéntricos, considerando las áreas parciales como “vectores”, y ubicando la resultante mediante una toma de momentos

b

h

b

h2

2

1

1

A = b x h2 2 2

A = b x h1 1 1

eje

baricéntrico

y

eje

baricéntrico

Ubicación del centro de gravedad:

Podemos ubicar los ejes baricéntricos, considerando las áreas parciales como “vectores”, y ubicando la resultante mediante una toma de momentos

b

h

b

h2

2

1

1

A = b x h2 2 2

A = b x h1 1 1

eje

baricéntrico

Podemos ubicar los ejes baricéntricos, considerando las áreas parciales como “vectores”, y ubicando la resultante mediante una toma de momentos

Esto lo hacemos para el eje horizontal y para el eje vertical, obteniendo el centro de gravedad donde se cruzan dichos ejes.

y

eje

baricéntrico

Ubicación del centro de gravedad:

b

h

b

h2

2

1

1

A = b x h2 2 2

A = b x h1 1 1

eje

baricéntrico

Podemos ubicar los ejes baricéntricos, considerando las áreas parciales como “vectores”, y ubicando la resultante mediante una toma de momentos

Esto lo hacemos para el eje horizontal y para el eje vertical, obteniendo el centro de gravedad donde se cruzan dichos ejes.

Para esto tomamos momento, por ej., en P

P

22 2A x h /2 + A x h /2 = (A + A ) x y1 1 12 2A x h /2 + A x h /21 1

2(A + A ) 1

y =

y

Ubicación del centro de gravedad:

b

h2

2

A = b x h2 2 2

Cálculo del Momento de Inercia, (o Momento de 2º orden):

2dI = dA. y x

xy

b

h2

2

A = b x h2 2 2xy

2dI = dA. y x

Cálculo del Momento de Inercia, (o Momento de 2º orden):

b

h2

2

A = b x h2 2 2

eje baricéntrico

s

2dI = dA. y y

x

X

x

Cálculo del Momento de Inercia, (o Momento de 2º orden):

b

h2

2

A = b x h2 2 2

eje baricéntrico

s

2dI = dA. y y

x

2dI = dA. (y + s) XX

x

Cálculo del Momento de Inercia, (o Momento de 2º orden):

b

h2

2

A = b x h2 2 2

eje baricéntrico

s

2dI = dA. y y

x

2dI = dA. (y + s) = dA. (y + 2sy + s )XX 2 2

x

Cálculo del Momento de Inercia, (o Momento de 2º orden):

b

h2

2

A = b x h2 2 2

eje baricéntrico

s

2dI = dA. y y

x

2dI = dA. (y + s) = dA. (y + 2sy + s )XX 2 2

2I = dA. y + 2s dA. y + s dAX

2

x

Cálculo del Momento de Inercia, (o Momento de 2º orden):

b

h2

2

A = b x h2 2 2

eje baricéntrico

s

2dI = dA. y y

x

2dI = dA. (y + s) = dA. (y + 2sy + s )XX 2 2

2I = dA. y + 2s dA. y + s dAX

2

x

Cálculo del Momento de Inercia, (o Momento de 2º orden):

Expresión general del Teorema de STEINER

b

h2

2

A = b x h2 2 2

eje baricéntrico

s

2dI = dA. y y

x

2dI = dA. (y + s) = dA. (y + 2sy + s )XX 2 2

2I = dA. y + 2s dA. y + s dAX

2

x

Cálculo del Momento de Inercia, (o Momento de 2º orden):

Expresión general del Teorema de STEINER

Cuando uno de los ejes es baricéntrico:

b

h2

2

A = b x h2 2 2

eje baricéntrico

s

2dI = dA. y y

x

2dI = dA. (y + s) = dA. (y + 2sy + s )XX 2 2

2I = dA. y + 2s dA. y + s dAX

2

2dA. y = Ix

x

Cálculo del Momento de Inercia, (o Momento de 2º orden):

Expresión general del Teorema de STEINER

Cuando uno de los ejes es baricéntrico:

b

h2

2

A = b x h2 2 2

eje baricéntrico

s

2dI = dA. y y

x

2dI = dA. (y + s) = dA. (y + 2sy + s )XX 2 2

2I = dA. y + 2s dA. y + s dAX

2

2dA. y = Ix dA. y = 0

x

Cálculo del Momento de Inercia, (o Momento de 2º orden):

Expresión general del Teorema de STEINER

Cuando uno de los ejes es baricéntrico:

b

h2

2

A = b x h2 2 2

eje baricéntrico

s

2dI = dA. y y

x

2dI = dA. (y + s) = dA. (y + 2sy + s )XX 2 2

2I = dA. y + 2s dA. y + s dAX

2

2dA. y = Ix dA. y = 0 s dA = s . A2

x

2

Cálculo del Momento de Inercia, (o Momento de 2º orden):

Expresión general del Teorema de STEINER

Cuando uno de los ejes es baricéntrico:

b

h2

2

A = b x h2 2 2

eje baricéntrico

s

2dI = dA. y y

x

2dI = dA. (y + s) = dA. (y + 2sy + s )XX 2 2

2I = dA. y + 2s dA. y + s dAX

2

2dA. y = Ix dA. y = 0 s dA = s . A2

I = I + s AX2

x

x

Steiner

2

Cálculo del Momento de Inercia, (o Momento de 2º orden):

Expresión general del Teorema de STEINER

Cuando uno de los ejes es baricéntrico:

Se obtiene la expresión más utilizada:

b

h2

2

A = b x h2 2 2

eje baricéntrico

s

2dI = dA. y y

x

2dI = dA. (y + s) = dA. (y + 2sy + s )XX 2 2

2I = dA. y + 2s dA. y + s dAX

2

2dA. y = Ix dA. y = 0 s dA = s . A2

I = I + s AX2

x

x

Steiner

2

Cálculo del Momento de Inercia, (o Momento de 2º orden):

Expresión general del Teorema de STEINER

Cuando uno de los ejes es baricéntrico:

Se obtiene la expresión más utilizada:

En nuestro ejemplo, la Inercia total será la suma de las inercias parciales (1 y 2) trasladadas por Steiner al eje baricéntrico del conjunto de la sección.

Los perfiles estructurales son productos fabricados para la construcción

de estructuras, son perfiles de sección cerrada, conformado en frío y

soldado eléctricamente por alta frecuencia, formando elementos tubulares

de sección cuadrada, circular, rectangular, T, TT, vienen en longitudes de

12metros, estos productos son realizados según normas ASTM

PERFILES METÁLICOS

- SECCIÓN COMBINADA

Ejemplo:

Formamos una sección mediante la unión de

un PNI Nº 14, unido mediante soldadura a

un PNC Nº 6 y ½

uno encima del otro, según la figura adjunta.

Ejemplo:

Debemos cuantificar el área de los perfiles y

ubicar la posición de su centro de gravedad.

Ambos tienen una simetría vertical,

por lo que uno de los ejes baricéntricos

es el eje de simetría.

A1

A2

Formamos una sección mediante la unión de

un PNI Nº 14, unido mediante soldadura a

un PNC Nº 6 y ½

uno encima del otro, según la figura adjunta.

Ejemplo:

A1

A2

Formamos una sección mediante la unión de

un PNI Nº 14, unido mediante soldadura a

un PNC Nº 6 y ½

uno encima del otro, según la figura adjunta.

Debemos cuantificar el área de los perfiles y

ubicar la posición de su centro de gravedad.

Ambos tienen una simetría vertical,

por lo que uno de los ejes baricéntricos

es el eje de simetría.

Obtenemos los datos en la tabla correspondiente.

Ejemplo:

9,03 cm2

18,2 cm214 cm

6,5 cm

4,2 cm

7 cm

1,42 cm

2,78 cm

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

6,6 cm

9,03 cm x 2,78 cm + 18,2 cm x 11,2 cm

2(9,03 cm + 18,2 cm ) 2y =

3 325,1 cm + 203,84 cm

2(27,23 cm ) y = = 8,408 cm

Ubicación del centro de gravedad

2 2

Centro de gravedad:

9,03 cm2

18,2 cm214 cm

6,5 cm

4,2 cm

7 cm

1,42 cm

2,78 cm

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

6,6 cm

9,03 cm x 2,78 cm + 18,2 cm x 11,2 cm

2(9,03 cm + 18,2 cm ) 2y =

Ubicación del centro de gravedad

3 325,1 cm + 203,84 cm

2(27,23 cm ) y = = 8,408 cm

8,408 cm

2 2

9,03 cm2

18,2 cm214 cm

6,5 cm

4,2 cm

7 cm

1,42 cm

2,78 cm

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

6,6 cm

9,03 cm x 2,78 cm + 18,2 cm x 11,2 cm

2(9,03 cm + 18,2 cm ) 2y =

Ubicación del centro de gravedad

3 325,1 cm + 203,84 cm

2(27,23 cm ) y = = 8,408 cm

8,408 cm

(27,23 cm )2

Centro de gravedad:

2 2

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

2 29,03 cm x 2,78 cm + 18,2 cm x 11,2 cm

2(9,03 cm + 18,2 cm ) 2y =

Ubicación del centro de gravedad

3 325,1 cm + 203,84 cm

2(27,23 cm ) y = = 8,408 cm

8,408 cm

(27,23 cm )2

s

s

s =8,408 cm - 2,78 cm = 5, 628 cms = 7 cm + 4,2 cm - 8,408 cm = 2, 792 cm

2

1

2

1

Centro de gravedad:

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

2 29,03 cm x 2,78 cm + 18,2 cm x 11,2 cm

2(9,03 cm + 18,2 cm ) 2y =

Ubicación del centro de gravedad

3 325,1 cm + 203,84 cm

2(27,23 cm ) y = = 8,408 cm

8,408 cm

(27,23 cm )2

s = 5,628 cm

s = 2,792 cm

s =8,408 cm - 2,78 cm = 5, 628 cms = 7 cm + 4,2 cm - 8,408 cm = 2, 792 cm

2

1

2

1

Inercia:

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

2 29,03 cm x 2,78 cm + 18,2 cm x 11,2 cm

2(9,03 cm + 18,2 cm ) 2y =

Ubicación del centro de gravedad

3 325,1 cm + 203,84 cm

2(27,23 cm ) y = = 8,408 cm

8,408 cm

(27,23 cm )2

s = 5,628 cm

s = 2,792 cm

s =8,408 cm - 2,78 cm = 5, 628 cms = 7 cm + 4,2 cm - 8,408 cm = 2, 792 cm

2

1

2

1

Cálculo de la Inercia (STEINER) I = I + s AX2

x

Inercia:

Inercia:

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

2 29,03 cm x 2,78 cm + 18,2 cm x 11,2 cm

2(9,03 cm + 18,2 cm ) 2y =

Ubicación del centro de gravedad

3 325,1 cm + 203,84 cm

2(27,23 cm ) y = = 8,408 cm

8,408 cm

(27,23 cm )2

s = 5,628 cm

s = 2,792 cm

s =8,408 cm - 2,78 cm = 5, 628 cms = 7 cm + 4,2 cm - 8,408 cm = 2, 792 cm

2

1

2

1

Cálculo de la Inercia (STEINER) I = I + s AX2

x

I = (573 cm + 18,2 cm x 2,792 cm ) + (14,1 cm + 9,03 cm x 5,628 cm ) X4 2 2 2 4 2 2 2

Inercia:

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

2 29,03 cm x 2,78 cm + 18,2 cm x 11,2 cm

2(9,03 cm + 18,2 cm ) 2y =

Ubicación del centro de gravedad

3 325,1 cm + 203,84 cm

2(27,23 cm ) y = = 8,408 cm

8,408 cm

(27,23 cm )2

s = 5,628 cm

s = 2,792 cm

s =8,408 cm - 2,78 cm = 5, 628 cms = 7 cm + 4,2 cm - 8,408 cm = 2, 792 cm

2

1

2

1

Cálculo de la Inercia (STEINER) I = I + s AX2

x

I = (573 cm + 18,2 cm x 2,792 cm ) + (14,1 cm + 9,03 cm x 5,628 cm ) X4 2 2 2 4 2 2 2

I = 573 cm + 141,9 cm + 14,1 cm + 286 cm X4 4 4 4

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

2 29,03 cm x 2,78 cm + 18,2 cm x 11,2 cm

2(9,03 cm + 18,2 cm ) 2y =

Ubicación del centro de gravedad

3 325,1 cm + 203,84 cm

2(27,23 cm ) y = = 8,408 cm

8,408 cm

(27,23 cm )2

s = 5,628 cm

s = 2,792 cm

s =8,408 cm - 2,78 cm = 5, 628 cms = 7 cm + 4,2 cm - 8,408 cm = 2, 792 cm

2

1

2

1

Cálculo de la Inercia (STEINER) I = I + s AX2

x

I = (573 cm + 18,2 cm x 2,792 cm ) + (14,1 cm + 9,03 cm x 5,628 cm ) X4 2 2 2 4 2 2 2

I = 573 cm + 141,9 cm + 14,1 cm + 286 cm X4 4 4 4

I = 1015 cmX4

Inercia:

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

8,408 cm

(27,23 cm )2

s = 8,408 cm

s = 9,792 cm 2

1

I = 1015 cmX4

W = I cm / y cmX4

0

Módulo resistente:

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

8,408 cm

(27,23 cm )2

s = 8,408 cm

s = 9,792 cm 2

1

I = 1015 cmX4

W = I cm / y cmX4

0

y es la distancia a la fibra mas alejada de la línea neutra

0

Módulo resistente:

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

8,408 cm

(27,23 cm )2

s = 8,408 cm

s = 9,792 cm 2

1

I = 1015 cmX4

W = I cm / y cmX4

0

W = 1015 cm / 9,792 cmX4

y es la distancia a la fibra mas alejada de la línea neutra

0

Módulo resistente:

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

8,408 cm

(27,23 cm )2

s = 8,408 cm

s = 9,792 cm 2

1

I = 1015 cmX4

W = I cm / y cmX4

0

W = 1015 cm / 9,792 cmX

y es la distancia a la fibra mas alejada de la línea neutra

0

W = 103,6 cm X3

Módulo resistente:

4

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

8,408 cm

(27,23 cm )2

s = 8,408 cm

s = 9,792 cm 2

1

I = 1015 cmX4

W = I cm / y cmX4

0

W = 1015 cm / 9,792 cmX

y es la distancia a la fibra mas alejada de la línea neutra

0

W = 103,6 cm X3

Análisis de tensiones:

4

A

N

w

M

r

df máxσ

9,03 cm2

18,2 cm2

perfil PNI Nº 14,

unido, mediante soldadura, a un

perfil PNC Nº 6 y 1/2

8,408 cm

(27,23 cm )2

s = 8,408 cm

s = 9,792 cm 2

1

I = 1015 cmX4

W = I cm / y cmX4

0

W = 1015 cm / 9,792 cmX

y es la distancia a la fibra mas alejada de la línea neutra

0

W = 103,6 cm X3

Análisis de tensiones:

4

A

N

w

M

r

df máxσ

Wr = 103,6 cm 3

A = 27,23 cm2

M y N = Solicitaciones

fd = Tensión de diseño

Verificación de tensiones tangenciales:

Sabemos que el valor máximo se da a la altura de la Línea Neutra.

Verificación de tensiones tangenciales:

Sabemos que el valor máximo se da a la altura de la Línea Neutra.

Utilizaremos la expresión de Jourawsky:𝜏 =

𝑉 ∙ 𝑆𝐿𝑁𝑏 ∙ 𝐼𝑥

Verificación de tensiones tangenciales:

Sabemos que el valor máximo se da a la altura de la Línea Neutra.

Utilizaremos la expresión de Jourawsky:

Necesitamos hallar el momento estático de la zona de la sección que queda por encima de la línea neutra con respecto a la misma.

𝜏 =𝑉 ∙ 𝑆𝐿𝑁𝑏 ∙ 𝐼𝑥

Verificación de tensiones tangenciales:

Sabemos que el valor máximo se da a la altura de la Línea Neutra.

Utilizaremos la expresión de Jourawsky:

Necesitamos hallar el momento estático de la zona de la sección que queda por encima de la línea neutra con respecto a la misma.

Cuando un perfil queda todo entero de un lado de la Línea neutra, es muy sencillo.Pero si un perfil queda cortado, se complica un poco porque resulta una figura no regular.Nos aproximamos al perfil de la sección, des-componiendo en figuras regulares aproxima-das.

𝜏 =𝑉 ∙ 𝑆𝐿𝑁𝑏 ∙ 𝐼𝑥

SL.N. = 9,03x5,628 + 0,57x4,208²/2 + 6,03x0,86x3,778 = 75,46 cm³

τ máx. = V x 75,46

0,57 x 1015

Vamos a considerar un rectángulo A, correspondiente al alma, y dos rectángulos B, correspondientes al ala, con la altura promedio.

SL.N. (del perfil C – 6,5) = 9,03 x 5,628

SL.N. (del rectáng. A) = 0,57 x 4,208 x 4,208/2

SL.N. (de los rect. B) = (6,60 – 0,57) x 0,86 x (4,208 – 0,86/2)

Por lo general, cuando se trata del acero, la tensión tangencial máxima es muy inferior a la admisible, y en la mayoría de los casos no es necesario verificarla.

Por lo general, cuando se trata del acero, la tensión tangencial máxima es muy inferior a la admisible, y en la mayoría de los casos no es necesario verificarla.

Resulta, sí, interesante determinar la tensión tangencial en la superficie de contacto entre ambos perfiles, porque nos permiten dimensionar los elementos de unión, sean bulones, sea soldadura, para que el trabajo conjunto resulte exitoso.

Por lo general, cuando se trata del acero, la tensión tangencial máxima es muy inferior a la admisible, y en la mayoría de los casos no es necesario verificarla.

τ (4,208) = V x 50,82

6,5 x 1015

Resulta, sí, interesante determinar la tensión tangencial en la superficie de contacto entre ambos perfiles, porque nos permiten dimensionar los elementos de unión, sean bulones, sea soldadura, para que el trabajo conjunto resulte exitoso.

SL.N. (del perfil C – 6,5) = 9,03 x 5,628 = 50,82 cm³

Por lo general, cuando se trata del acero, la tensión tangencial máxima es muy inferior a la admisible, y en la mayoría de los casos no es necesario verificarla.

τ (4,208) = V x 50,82

6,5 x 1015

Resulta, sí, interesante determinar la tensión tangencial en la superficie de contacto entre ambos perfiles, porque nos permiten dimensionar los elementos de unión, sean bulones, sea soldadura, para que el trabajo conjunto resulte exitoso.

SL.N. (del perfil C – 6,5) = 9,03 x 5,628 = 50,82 cm³

Si queremos hallar la fuerza de deslizamiento que se produce en 1 m, deberemos multiplicar la tensión hallada por la superficie de contacto.

Por lo general, cuando se trata del acero, la tensión tangencial máxima es muy inferior a la admisible, y en la mayoría de los casos no es necesario verificarla.

τ (4,208) = V x 50,82

6,5 x 1015

Resulta, sí, interesante determinar la tensión tangencial en la superficie de contacto entre ambos perfiles, porque nos permiten dimensionar los elementos de unión, sean bulones, sea soldadura, para que el trabajo conjunto resulte exitoso.

SL.N. (del perfil C – 6,5) = 9,03 x 5,628 = 50,82 cm³

Si queremos hallar la fuerza de deslizamiento que se produce en 1 m, deberemos multiplicar la tensión hallada por la superficie de contacto.

F deslizamiento = τ (4,208) x A (6,5 x 100)

Con esta fuerza determinamos los elementos de unión en cada metro de tramo.

Para la verificación de las deformaciones, sólo va a intervenir el momento de inercia de la sección, que ya fue determinado antes.

Verificación de la deformación:

DE DOS MATERIALES DIFERENTES:

-SECCIONES COMPUESTAS

Se denominan vigas compuestas a aquellas vigas elaboradas con más de un material. Algunos ejemplos de este tipo de vigas son las llamadas sandwich, bimetálicas, los tubos recubiertos con plásticos o las escuadrías de madera reforzadas con perfiles o planchuelas de acero. Se pueden distinguir, a efectos de su análisis mecánico, dos tipos de vigas compuestas:A- aquellas formadas por la superposición vertical de capas de distintos materiales. B- aquellas formadas por piezas de distintos materiales unidas lateralmente. Se supondrá que los materiales que componen este tipo de vigas cumplen con la ley de Hooke y que las distintas partes de la viga están unidas entre sí de modo que pueda suponerse que se comportan como una única unidad estructural.

Estudiaremos la distribución de tensiones en secciones compuestas para el caso de piezas en que el plano de flexión es un plano de simetría de la sección.

Estudiaremos la distribución de tensiones en secciones compuestas para el caso de piezas en que el plano de flexión es un plano de simetría de la sección.

Trabajaremos bajo la hipótesis de que las secciones planas se mantienen planas y perpendiculares al eje de la viga luego de la flexión (hipótesis de Bernouilli), con lo cual las deformaciones unitarias serán proporcionales a las distancias a la línea neutra.

Estudiaremos la distribución de tensiones en secciones compuestas para el caso de piezas en que el plano de flexión es un plano de simetría de la sección.

Trabajaremos bajo la hipótesis de que las secciones planas se mantienen planas y perpendiculares al eje de la viga luego de la flexión (hipótesis de Bernouilli), con lo cual las deformaciones unitarias serán proporcionales a las distancias a la línea neutra.

Sea una sección genérica como la que muestra la figura 2, compuesta por un material 1 de módulo de elasticidad E1 y un material 2 de módulo de elasticidad E2;

Supondremos: E1 < E2.

Sea una sección genérica como la que muestra la figura 2, compuesta por un material 1 de módulo de elasticidad E1 y un material 2 de módulo de elasticidad E2;

Supondremos: E1 < E2.

Las deformaciones unitarias producidas en la misma se pueden expresar, en función de la distancia de cada fibra a la línea neutra, como:

ε = ky

Sea una sección genérica como la que muestra la figura 2, compuesta por un material 1 de módulo de elasticidad E1 y un material 2 de módulo de elasticidad E2;

Supondremos: E1 < E2.

Las deformaciones unitarias producidas en la misma se pueden expresar, en función de la distancia de cada fibra a la línea neutra, como:

ε = ky donde: ε = Deformación unitaria; k = Curvatura; y = Distancia a LN.

Sea una sección genérica como la que muestra la figura 2, compuesta por un material 1 de módulo de elasticidad E1 y un material 2 de módulo de elasticidad E2;

Supondremos: E1 < E2.

Las deformaciones unitarias producidas en la misma se pueden expresar, en función de la distancia de cada fibra a la línea neutra, como:

ε = ky

Luego, admitiendo que los materiales 1 y 2 cumplen con la ley de Hooke, tenemos que las tensiones en cada material serán:

𝜎1 = 𝐸1 ∙ 𝜀 = 𝐸1 ∙ 𝐾 ∙ 𝑦𝜎2 = 𝐸2 ∙ 𝜀 = 𝐸2 ∙ 𝐾 ∙ 𝑦

Sea una sección genérica como la que muestra la figura 2, compuesta por un material 1 de módulo de elasticidad E1 y un material 2 de módulo de elasticidad E2;

Supondremos: E1 < E2.

Las deformaciones unitarias producidas en la misma se pueden expresar, en función de la distancia de cada fibra a la línea neutra, como:

ε = ky

Luego, admitiendo que los materiales 1 y 2 cumplen con la ley de Hooke, tenemos que las tensiones en cada material serán:

Para determinar la ubicación de la línea neutra y la constante k, igualamos los esfuerzos internos a los externos en la sección:

𝜎1 = 𝐸1 ∙ 𝜀 = 𝐸1 ∙ 𝐾 ∙ 𝑦𝜎2 = 𝐸2 ∙ 𝜀 = 𝐸2 ∙ 𝐾 ∙ 𝑦

Para determinar la ubicación de la línea neutra y la constante k, igualamos los esfuerzos internos a los externos en la sección:

Definiendo , relación entre los módulos de elasticidad de los materiales que

componen la sección, podemos escribir las ecuaciones de equilibrio anteriores como:

Esta sección la podemos diseñar multiplicando el ancho de la zona 2 por n. De esta forma el problema original con dos materiales puede ser sustituido por un problema equivalente tomando una sección de módulo de elasticidad constante (en este caso E1) y área igual a A1 + A2’, como se indica en la figura 3, problema que es más sencillo y que sabemos resolver.

Esta sección la podemos diseñar multiplicando el ancho de la zona 2 por n. De esta forma el problema original con dos materiales puede ser sustituido por un problema equivalente tomando una sección de módulo de elasticidad constante (en este caso E1) y área igual a A1 + A2’, como se indica en la figura 3, problema que es más sencillo y que sabemos resolver.

Esta sección la podemos diseñar multiplicando el ancho de la zona 2 por n. De esta forma el problema original con dos materiales puede ser sustituido por un problema equivalente tomando una sección de módulo de elasticidad constante (en este caso E1) y área igual a A1 + A2’, como se indica en la figura 3, problema que es más sencillo y que sabemos resolver.

Debemos hallar el baricentro de cada sección y, a partir de ellos, el baricentro del conjunto.

Esta sección la podemos diseñar multiplicando el ancho de la zona 2 por n. De esta forma el problema original con dos materiales puede ser sustituido por un problema equivalente tomando una sección de módulo de elasticidad constante (en este caso E1) y área igual a A1 + A2’, como se indica en la figura 3, problema que es más sencillo y que sabemos resolver.

Debemos hallar el baricentro de cada sección y, a partir de ellos, el baricentro del conjunto.

Para esto, aplicamos lo desarrollado a partir de la lámina 9, ubicando el baricentro, y, a través de la aplicación de Steiner, la inercia total.

top related