d istribuciÓn normal o de g auss pedro godoy g.. 1 función densidad continua (o distribución de...

Post on 23-Jan-2016

217 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

DISTRIBUCIÓN NORMAL O DE GAUSS

PEDRO GODOY G.

2

Función Densidad Continua (o distribución de probabilidad continua)Es una función que permite obtener la probabilidad de ocurrencia para intervalos de valores de una variable aleatoria continua. La función densidad de una variable aleatoria X se denota habitualmente como f(x).Esta función se expresa siempre como una fórmula matemática, como ladistribución Normal, distribución t de Student, etc.Supongamos una variable aleatoria X ]- , + [. Sea A un evento definido como A={x / a x b}, o bien A= [a,b] , con a y b constantes conocidas. Luego, el suceso A es el intervalo de valores de X entre a y b. Entonces si f(x) es la función densidad de X, se tiene:

3

Es decir, la probabilidad de que A ocurra se calcula como el área bajo la curva f(x) en el intervalo de puntos de X que pertenecen al intervalo A. Gráficamente, la probabilidad de que A ocurra es:

4

El área bajo la curva (la probabilidad calculada), no cambia si se toma o no en cuenta el punto a, b o ambos, ya que el área en un punto vale cero. Es decir

5

Propiedades de la Función Densidad ContinuaPor ser una función densidad, f(x) debe cumplir las siguientes propiedades:

6

Distribución de Probabilidad NormalLa distribución normal fue reconocida por primera vez por el francés Abraham de Moivre (1667-1754).

Posteriormente, el matemático alemán CarlFriedrich Gauss (1777-1855) elaboró desarrollosmás profundos y formuló la ecuación de la curva;de ahí que también se la conozca, máscomúnmente, como la "campana de Gauss".

7

Su propio nombre indica su extendida utilización, justificada por la frecuencia con la que ciertos fenómenos tienden a parecerse en su comportamiento a esta distribución. Luego, muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.Por otra parte, varios procedimientos estadísticos usados habitualmente asumen la normalidad de los datos observados.

Ejemplos.• Caracteres morfológicos de individuos (personas, animales, plantas,...) de una especie (como estaturas, pesos, diámetros, etc.)• Caracteres fisiológicos, por ejemplo: efecto de una misma dosis de un fármaco, o de una misma cantidad de abono.• Caracteres sociológicos, por ejemplo: consumo de cierto producto por un mismo grupo de individuos, puntuaciones de examen.• Caracteres psicológicos, por ejemplo: cuociente intelectual, grado de adaptación a un medio.• Errores cometidos al medir ciertas magnitudes.• Valores estadísticos muestrales, por ejemplo: distribución del promedio de un conjunto de datos muestrales cuando el tamaño de la muestra es grande.

8

9

Aparece de manera natural: Errores de medida. Distancia de frenado. Altura, peso, propensión al crimen…

Está caracterizada por dos parámetros: La media, y la desviación típica, .

Su función de densidad es:

10

tiene distribución normal con media 0 y varianza 1. Esta distribución se denomina distribución normal estándar. Generalmente se usa la letra z para identificar una variable con esta distribución.La operación de transformar X en z se llama estandarización y permitetransformar cualquier distribución normal a una normal estándar. Esto facilita el cálculo de probabilidades bajo distribución Normal, ya que sólo se requiere conocer la distribución Normal estándar para determinar probabilidades bajo cualquier distribución Normal.

11

12

13

14

15

16

N(, ): Interpretación probabilista

Entre la media y una desviación típica tenemos siempre la misma probabilidad: aprox. 68%

Entre la media y dosdesviaciones típicasaprox. 95%

17

18

19

De los 31 productos cuál es la probabilidad de que 20 salgan defectuosos, si el 50% de los productos normalmente sale defectuoso.

La probabilidad de que 20 productos salgan defectuosos es de 3.97%.

20

Buscar en la tabla de la normal estándar N(0;1) las probabilidades:a) p(Z ≤ 1,05)b) p(Z ≤ 1,52)c) p(Z ≤ - 0,82)d) p(Z ≤ 1,35)e) p(Z ≤ 3,24)f) p(Z ≤ 8,09)

21

Supongamos que se sabe que el peso de los sujetos de una determinada población sigue una distribución aproximadamente normal, con una media de 80 Kg y una desviación estándar de 10 Kg. ¿Cuál es la probabilidad de que una persona, elegida al azar, tenga un peso superior a 100 Kg? R 0.0228

22

•Haciendo uso de la tabla que proporciona áreas entre cada valor z y la media 0 de la distribución normal tipificada, calcular las probabilidades (áreas) siguientes : a) P(z ≤ 0,22) b) P(z <-1,8) c) P(z > 1,0092)

d) P(z>-1,61) e) P(-2,06 < z <-0,24)

f) P(-0,02 ≤ z ≤ 1,7)

23

Los tiempos de la primera avería de una unidad de cierta marca de impresoras tiene una distribución de tipo normal con un promedio de 1.500 horas y una desviación estándar de 200 horas.

a) ¿Qué fracción de impresoras fallará antes de 1.000 horas?

b) ¿Cuál debe ser el tiempo de garantía para estas impresoras si el fabricante desea que solamente presenten averías el 5% de las impresoras dentro del tiempo de garantía?

24

En una ciudad se estima que la temperatura máxima en el mes de junio sigue una distribución normal, con media 23° y desviación típica 5°. Calcular el número de días del mes en los que se espera alcanzar máximas entre 21° y 27°

25

Las calificaciones de los 500 aspirantes presentados a un examen para contratación laboral, se distribuye normalmente con media 6,5 y varianza 4.

a) Calcule la probabilidad de que un aspirante obtenga más de 8 puntos. R: 0,22663

b) Determine la proporción de aspirantes con calificaciones inferiores a 5 puntos. R : 0,22663

c) ¿Cuántos aspirantes obtuvieron calificaciones comprendidas entre 5 y 7,5 puntos ? R : 232 aspirantes

26

La media de los pesos de 500 estudiantes de un colegio es 70 kg y la desviación típica 3 kg. Suponiendo que los pesos se distribuyen normalmente, hallar cuántos estudiantes pesan:A. Entre 60 kg y 75 kgB. Más de 90 kgC. Menos de 64 kgD. 64 kgE. 64 kg o menos

27

Entre 60 kg y 75 kg

28

Más de 90 kg

29

Menos de 64 kg

30

64 kg

31

64 kg o menos

32

Se supone que los resultados de un examen siguen una distribución normal con media 78 y desviación típica 36. Se pide:

¿Cuál es la probabilidad de que una persona que se presenta el examen obtenga una calificación superior a 72?

33

Una máquina produce tubos cuyo diámetro sigue una distribución N(35,6 ; 0,16) . Suponiendo que los tubos no sirven si su diámetro es inferior a 36,1mm. ¿Qué porcentaje de tubos defectuosos produce ésta máquina?

Suponga que las edades de inicio de cierta enfermedad sigue una distribución N(11,5 ; 9). Un niño contrae recientemente la enfermedad. ¿Cuál es la probabilidad de que la edad del niño sea entre 8,5 y 14,5 años?

top related