ciencia macroscópica que estudia las relaciones entre las propiedades de un sistema en equilibrio y...

Post on 23-Jan-2016

219 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Ciencia macroscópica que estudia las relaciones entre las propiedades de un sistema en equilibrio y el cambios del valor de éstas en los diferentes cambios en equilibrio.

Palabras griegas: calor y potencia: Ciencia que estudia el calor, el trabajo, la energía y los cambios que ellos producen en los estados del sistema.

Termodinámica

SISTEMA

ALREDEDORES

PARED O LIMITE

UNIVERSO = SISTEMA + ALREDEDORES + PARED DEL SISTEMA

1.- PAREDES a) Permeables

b) Impermeables

c) Adiabáticas

d) Diatérmicas

2.- SISTEMAS a) Abierto

b) Cerrado

c) Aislado

3.- PROPIEDADES TERMODINÁMICAS

Características medibles directa o indirectas, necesarias para determinar el estado del sistema. Por ejemplo la presión, el volumen entre otras.

PROPIEDADES INTENSIVAS Y EXTENSIVAS

Las propiedades intensivas son aquellas que no dependen de la masa del sistema, ejemplo la presión y las extensivas que si dependen de la presión, ejemplo el volumen.

Los valores que tienen las propiedades de un sistema determinan el “estado de un sistema”.

El estado de un sistema queda determinado al fijar los valores de algunas de las propiedades .

Se produce cuando cambia el valor de alguna propiedad intensiva

Estado Inicial (i) Estado Final (f)

Estado de un sistema

Cambio de estado

“Para determinar un cambio de estado, no se requiere conocer los valores intermedios de las variables intensivas por los que pasa el sistema”

CAMBIO

Estado Inicial Estado Finaltrayectoria recorrida

Tipos de cambios

1. Isotérmico

2. Isobárico

3. Isocórico

4. Adiabático

5. Reversible

6. Irreversible o expontáneo

Concepto de Trabajo y Energía

Teorema de Trabajo y Energía:

Basado en: δW = Fx dx y Energía mecánica

Postula:

Ec = ½ mu2 Energía Cinética

W = D K = K2 - K1

Trabajo realizado sobre una partícula por la fuerza que actúa sobre ella es igual a la variación de la energía cinética de la partícula.

Energía Potencial (Ep)Emecanica= Ec + Ep

δW = FXdx

P = F/A

δW = P A dx

L

δW = P dV

2

1

V

VdVPW Sistema cerrado, proceso reversible

Trabajo

A Fx

dx

dV =Adx

Sistema

sistema

Psistema>PalrededoresPara que el cambio se produzca es necesario que se cumpla:

Si suponemos que la Psistema es ligeramente superior a la Palrededores, la expansión será ligeramente (lenta) y si el incremento de presión sería un diferencial de presión, entonces originará un diferencial de incremento de presión y como consecuencia de esto un incremento de un diferencial de volumen del sistema, o sea:

δWsistema = Psistema dVsistema

Psistema≈Palrededores

Si el diferencial de presión, tiende al límite, entonces el cambio será tan lento que en esa condición se puede expresar lo siguiente:

La trayectoria de la expansión dependerá de la variación de la presión de oposición. Por ejemplo, si el cambio puede es a presión constante, la presión de oposición será constante, y el cambio terminará cuando la presión del sistema se iguala a la presión de oposición. El trabajo será:

Wsistema = Poposición (Vfinal-Vinicial)

δWsistema = Psistema dVsistema

Por tanto el trabajo hecho por el sistema se puede expresar así:

δWsistema = Palrededores dVsistema

δWsistema = Poposición dVsistema

Psistema≈Palrededores

Debemos tener presente que para encontrar el trabajo hecho por el sistema o contra el sistema, es necesario identificar la presión de oposición. En el caso que el cambio es de compresión la presión de oposición es la del sistema y la causante del cambio es la presión de los alrededores.

Para cambios muy lentos y en equilibrio, nuevamente podemos escribir:

δWsistema = Palrededores dVsistema

δWsistema = Poposición dVsistema

Calor

Caloría: cantidad de energía que se necesita para elevar la temperatura de 1 g de agua en 1 º C.

Primera Ley de la Termodinámica

Energía interna: U

Etotal = Ec + Ep + U

E = U Sistema en reposo en ausencia de campos externos

Primera Ley

Existe una función de estado extensiva llamada energía, tal que para cualquier proceso en un sistema cerrado se cumple:

DU = Q - W

DU = Q - W Sistema en reposo en ausencia de campos externos

U: Función de estado

DU : U2 – U1

SISTEMA

MEDIO AMBIENTEW > 0

Q > 0 Q < 0

W < 0

Convenio de Signos

A P cte DH = QP

A V cte DU = QV

Entalpía

H = U + PV

Utilizando el concepto de Entalpía y la primera Ley de la Termodinámica

Capacidades Caloríficas

Propiedad que mide la cantidad de energía calorífica que se debe añadir a una sustancia para producir un aumento dado de su temperatura.

a) A P cte.

δQP = dH

b) A V cte.

δQV= dU

pp

T

QC

pp

dT

dHC

vv

T

QC

vv

dT

dUQC

Capacidad Calorífica Molar

A P cte CP,m = CP n

A V cte CV,m = CV n

A.- Gases monoatómicos

CV = 3/2 R CP = 5/2 R

B.- Gases diatómicos

CV = 5/2 R CP = 7/2 R

Primera ley aplicada a gases perfectos

Gas ideal PV = nRT

Gas perfecto

a) PV = nRTb) U = 0 V

T

dU = CV dT

U = U (T)

H = U + PV = U + nRT

H = H (T)dH = CP dT

CP - CV = nR CP,m - CV,m = R

Aplicaciones de la primera ley a los gases perfectos

1.- Proceso cíclico DU, DH = 0 Q, W 0

2.- Proceso isotérmico ( T constante)

DU, DH = 0

Q = W (signos)

2.1 Reversible dW = - P dV P = nRT/V

dW = - nRT dV/V = W = -nRT dV/V = - nRT Ln V2/V1

- nRT Ln P1/P2

2.2 Contra una presión externa igual a la presión final

dW = - P dV = W = - P dV = W = - P (V2 – V1)

3.- Proceso reversible a P constante ( Isobárico)

DU = Q + WW = - P dV

Q = QP = DH

dQP = CP dT = QP = CP dT = n CP,m dT

4.- Procesos reversibles a volumen constante (isocórico)

DU = Q + WW = - P dV = 0

DU = QV

dQV = CV dT = QV = CV dT = n CV,m dT = DU DH = DU + D PVDH = DU + PDV + VDP + DVDPDH = DU + VDP

5.- Proceso reversible adiabáticoDU = Q + WQ = 0 DU = WW = - P dV

DU = CV dT = DU = CV (T2 - T1) = n CV,m (T2 - T1) = W

DU = W

CV dT = -P dV = -nRT dV = - nRT Ln V2/V1

n CV,m dT = - nRT Ln V2/V1

CV,m dT/T = R Ln V1/V2

CV,m Ln T2/T1 = R Ln V1/V2

Ln T2/T1 = Ln (V1/V2) R/C,vm

DH = DU + D(PV) = DU + nRDT

Ejercicios

1.- 1 mol de He a 100 ºC y 1 atm se calienta hasta los 200 ºC según los siguientes procesos:

a) Colocándolo en una fuente térmica a 200 ºC hasta que alcance el equilibrio manteniendo P cte.

b) Idem, pero manteniendo V cte

c) En forma adiabática

Calcule W, Q, DU y DH

2.- 1 mol de un gas perfecto a 4 atm experimenta una expansión a una temperatura constante de 26 ºC. La presión disminuye reversiblemente a 1 atm. Calcule los valores de ∆U, ∆H, W y Q.

3.- Se tiene 1 mol de un gas ideal a 25 ºC y 1 atm en un volumen determinado. Si después de un determinado tiempo podemos observar lo siguiente:

Un volumen tres veces mayor al inicial

Una Temperatura distinta a la inicial

Una Presión igual a 1 atm.

Calcule Q, W, DU, DH

4.- 1 mol de gas ideal monoatómico se encuentra en un estado inicial caracterizado por una P igual a 10 atm y un volumen de 5 L. Si este se expande isotérmicamente de manera reversible hasta un volumen de 10 L. Calcule W, Q, DU y DH.

top related