asociación universidad privada san juan bautista facultad de ciencias de la salud escuela...

Post on 24-Jan-2016

224 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

AsociaciónUniversidad Privada San Juan BautistaFACULTAD DE CIENCIAS DE LA SALUD

ESCUELA PROFESIONAL DE MEDICINA HUMANA Curso: Biofísica Ciclo: I Semestre Acadêmico: 2013- Ii

ANÁLISIS VECTORIAL

Magnitud física

Es toda propiedad de aquello que es susceptible a ser medido y pueden cuantificarse

Ejemplo:Un paciente llega a un centro de salud y lo primero que se realiza luego de tomarle los datos es medir algunas magnitudes físicas, esenciales como : temperatura, peso, talla, presión, etc.

Clasificación: 1. MAGNITUDES ESCALARES .-

Asociadas a propiedades que pueden ser caracterizadas a través de una cantidad y su respectiva unidad. Ejemplo: masa, longitud, tiempo, volumen, trabajo, etc.

2. MAGNITUDES VECTORIALES.- Asociadas a propiedades que se caracterizan no sólo por su cantidad y unidad sino por su dirección y su sentido. Ejemplo: velocidad, desplazamiento, fuerzas, etc.

VECTOR• Gráficamente se representa por un segmento de recta y sirve

para representar a las magnitudes vectoriales.Todo vector tiene cuatro elementos: Modulo, dirección, sentido y punto de origen.

Sentido5 uDirección

Pto. de origen o de aplicación

x

y

Notación de vector

v

x

y

A

B

Vector: VAB,

Módulo: VyVAB ,

Clases de vectores

Vectores igualesVectores opuestosVectores colinealesVectores concurrentesVectores coplanares

Resultante de vectores

• Adición de vectores colineales

A

4u

B

BAR

7u

3u

+

A

B

8u 4u =

BAR

4u

Algebra vectorial: Suma vectorial • Considere dos vectores como se muestra.

• El vector suma se puede determinar mediante la regla del paralelogramo o del triángulo .

• La magnitud de la resultante R se determina mediante la ley de cosenos

• La dirección mediante la ley de senos

2 22 cosR A B A B

ByA

sen

B

sen

A

sen

R

Ejemplo Nº 01

A=3B=5=60ºR=?

CosBABAR 2²²

º60)5)(3(2²5²3 CosR

)5,0)(5)(3(2259 R

15259 R

49R

7R

60º

A=3B=5

1F

22

21

2 F F R

Perpendiculares: se aplica el método gráfico y usamos el teorema de Pitágoras sobre el triángulo que determinan los dos vectores y su resultante.

Ejemplo: Veamos la interacción de dos fuerzas:

2F

1F

2F

R

R2F

sen

F1

RF2 R

F cos 1

1

2

F

F

cos

sen tg

1

2

F

F arctg

Adición de vectores concurrentes

descomposición rectangular

Nosotros vamos a estudiar una llamada DESCOMPOSICIÓN NORMAL, en la que los vectores obtenidos (componentes), son perpendiculares entre sí.

2y

2x

2 F F F

F

F αsen y

Fx

FFy

F

x

yF

yF

xF x

F

yF

xF

y

Fx = componente en x

De forma que…

F·sen F y

F

F cos x F·cosF x

Fy = componente en y

Ejemplo Nº 02:• La fuerza ejercida por el músculo deltoides sobre el húmero, cuando el

brazo está en posición horizontal (vea figura). Por medio de estudios se ha determinado que dicha fuerza es aproximadamente de y forma con la horizontal 15º de elevación.

Hallar:a) La fuerza necesaria para sostener el brazo contra la gravedadb) La fuerza estabilizadora del húmero contra el omóplato

F

kg30

kgF

kgF

y

x

75,7

98,28

Ejemplo Nº 03:• El abductor de La cadera, que conecta esta al fémur, consta de tres músculos

independientes que actúan en diferentes ángulos. La figura muestra El valor de las fuerzas ejercidas por cada músculo. Determine La fuerza resultante ejercida por los tres músculos

NR 654

Expresión cartesiana de vector en R2

jyixyxV

Vector

ˆˆ;

:

V jyˆ

ixˆi

j

x

y

o

1,0ˆ0,1ˆ

:

ji

UnitarioVector

Vectores unitarios en el espacio

xy

z

ij

k

xy

z(x1,y1,z1)

(x2,y2,z2)A

k)z(zj)y(yi)x(xA 121212ˆˆˆ

Expresión cartesiana de vector en R3

Determínese la suma de los siguientes vectores y el modulo del vector suma:

Ejemplo Nº 04:

k5j8i3A ˆˆˆ

kji-5B ˆ3ˆ2ˆ

kji4C ˆ2ˆ7ˆ

13 CBA

Producto punto o producto escalar

El producto punto o producto escalar se definió como:A ● B = |A| |B| cos θ = A B cos θ

En función de los vectores unitariosA ● B = (A x i + A y j) ● (B x i + B y j)

Desarrollando:

A●B = A x B x (i●i) + A x B y (i●j) + A y B x (j●i) + A y B y

(j●j)

Aplicando la definición

i ● i = (1) (1) cos 00 = 1

i ● j = (1) (1) cos 900 = 0

j ● j = (1) (1) cos 00 = 1

j ● i = (1) (1) cos 900 = 0

Producto escalarSustituyendo los productos punto

A ● B = A x B x + A y B y Igualando ambas definiciones

|A| |B| cos θ = A x B x + A y B y Despejando el ángulo

θ = cos-1A x B x + A y B y

|A| |B|

Encontrar el producto punto o producto escalar de los siguientes vectores, así como el ángulo que se forma entre ambos vectores.

A= 3i+2j-k B= 2i-j+2k

Rpta: A.B = 2 =

Ejemplo Nº 05:

Producto vectorialEl producto cruz o producto vectorial se definió como:

θABBAC sen

kji ˆˆˆ ikj ˆˆˆ jik ˆˆˆ

0ii

0jj

0ˆˆ

kk

PRODUCTO VECTORIALEjemplo:A= A1i +A2j +A3k

B= B1i +B2j +B3k

i j kAxB = A1 A2 A3 =

B1 B2 B3

El modulo de A x B representa el área del paralelogramo

kji21

21

31

31

32

32

BB

AA

BB

AA

BB

AA

PRODUCTO TRIPLE

A . (B x C))A = A1i+A2j+A3k A1 A2 A3

B = B1i+B2j+B3k A.(B x C) = B1 B2 B3

C = C1i+C2j+C3k C1 C2 C3

El valor absoluto del producto triple representa el volumen de un paralelepípedo de arista A, B y C

Dados los siguientes vectores:

k3j5i4B

k5j3i3A

Determine :a) El producto escalar entre ellos. b)el producto vectorial entre ambos

Ejemplo Nº 06:

Ejemplo 07:

8m

10m

5m

A

B

C

Determine la suma de los vectores indicados

x

y

z

¡GRACIAS!

MECANICA RESPIRATORIA

• Se entiende por mecánica de la respiración tanto los movimientos de la caja torácica y de los pulmones, como los consecutivos cambios volumétricos y de presión producidos en éstos.

• la mecánica respiratoria supone por tanto un cambio continuo de presiones provocada por los cambios en el volumen de la caja torácica.

Física de la respiración

¿Cómo se modifica el volumen torácico?• En condiciones normales, cuando no actúa

ninguna fuerza sobre la caja torácica, el aparato respiratorio se encuentra casi vacio de aire (nunca se vacía del todo, incluso tras una espiración forzada) correspondiéndose con una espiración normal completada.

Física de la respiración

Cuando tomamos el aire inspiramos, la caja torácica se expande, porque los músculos levantan las costillas, el diafragma baja y los pulmones se llenan de aire

Cuando sacamos el aire espiramos, la caja torácica vuelve a su tamaño anterior, el diafragma sube y los pulmones se comprimen sacando aire al exterior

FENOMENOS MECANICOS DE LA RESPIRACION

El ingreso y salida del aire se realiza mediante los movimiento llamados: inspiración y espiración dichos movimientos se deben al aumento y disminución de la cavidad torácica y de la presión de los gases en los pulmones con relación al aire externo

• La mecánica respiratoria comprende dos procesos: inspiración (el aire entra en los pulmones) y espiración (expulsa el aire de los pulmones al exterior) Intervienen: el diafragma y los músculos intercostales.

INSPIRACION

Se realiza al disminuir la presión del aire que se encuentra en los alveolos lo que permite el ingreso del aire externo, esta disminución de presión se debe a la contracción del musculo diafragma que adopta la forma mas o menos aplanada aumentando el volumen de los pulmones, además los músculos intercostales, escalenos al contraerse levantan las costillas hacia arriba y adelante aumentando el volumen torácico y produciendo un vacio que permite el ingreso de aire

ESPIRACION

Es un proceso pasivo por el cual los músculos vuelven a su estado normal, el diafragma adquiere su convexidad y los otros músculos se relajan disminuyendo el volumen del tórax y ejerciendo presión sobre los pulmones, también las costillas se contraen hacia abajo y adentro disminuyendo la capacidad torácica

• Los cambios volumétricos de la caja torácica se producen por la actividad de los músculos respiratorios

• La inspiración aumenta su volumen, gracias a la contracción de los diversos músculos respiratorios, y es, por lo tanto, un proceso activo

• El descenso vertical del diafragma es de aproximadamente 1.2 cm, magnitud que aumenta considerablemente en las personas entrenadas (atletas). El descenso diafragmático desplaza los órganos abdominales hacia abajo y adelante, produciendo abombamiento del abdomen.

• El diafragma está en contacto con los pulmones en una extensión de unos 250 cm2 y su descenso durante la inspiración (1.2 cm) produce un aumento del volumen alrededor de 300 ml El volumen de aire que penetra durante la inspiración a los pulmones es unos 500 ml

• Dentro de las respuestas fisiológicas al ejercicio, la respiración aumenta para hacer frente al incremento de oxígeno que se precisa para aumentar la formación de energía imprescindible para realizar ejercicio físico.

• Ello supone que en intensidades máximas de ejercicio, se movilizan entre 120 y 200 litros por minuto, variando lógicamente estos valores en función del tamaño corporal y características individuales.

• En situaciones de ejercicio muy intenso, la frecuencia respiratoria alcanza las 40-50 respiraciones por minuto y el volumen movilizado en cada respiración se sitúa en torno a 3-4 litros.

• Incluso en deportistas olímpicos de deportes de fondo y gran tamaño corporal (como los remeros) se han llegado a medir Ventilaciones Minuto Máximas (máximo volumen de aire movilizado en 1 minuto) de hasta 250 - 300 litros de aire, lo que implica que para conseguirlos, estos deportistas movilizan en cada respiración más de 5 litros de aire (ya que la frecuencia respiratoria máxima apenas varía).

top related