1 ra unidad b

Post on 30-Jun-2015

490 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ESTRUCTURA NO CRISTALINA - IMPERFECCION

1.- ESTRUCTURA CRISTALINA PERFECCIÓN.SIETE SISTEMAS - CATORCE RETÍCULOSESTRUCTURAS DE METALESESTRUCTURA DE CERÁMICOSESTRUCTURA DE POLÍMEROSESTRUCTURA DE SEMICONDUCTORES

2.- ESTRUCTURA NO CRISTALINA IMPERFECCIÓNLA SOLUCIÓN SÓLIDADEFECTOS PUNTUALESDEFECTOS LINEALESDEFECTOS PLANARESSÓLIDOS NO CRISTALINOS

3.- DIFRACCIÓN DE CRISTALES – LEY DE BRAGG

SOLUCION SOLIDA - IMPERFECCION QUIMICA

No es posible evitar que haya al menos una contaminación de los materiales sólidos, muchos contienen cantidades significativas de componentes diferentes, aleación o contaminación.

Los materiales son de hecho soluciones sólidas.

SOLUCION SOLIDA - IMPERFECCION QUIMICA

Solución sólida por substitución. Solución sólida aleatoria, los átomos de un elemento substituyen a

otro en sus lugares correspondientes de la red; reglas de Hume-Rothery:

Menos de aproximadamente, 15% de diferencia en el radio atómico.

La misma estructura de cristal. Electronegativos similares (habilidad del átomo para atraer

un e-). La misma valencia.

Solución sólida ordenada, distribución ordenada de elementos en la red cristalina.

SOLUCION SOLIDA - IMPERFECCION QUIMICA

Solución sólida intersticial. Cuando el tamaño de los átomos difiere en gran medida, la

substitución del átomo más pequeño en un sitio de la estructura del cristal podría ser inestable desde el punto de vista energético; es más estable que el átomo pequeño se acomode en alguno de los espacios (intersticios) que existen entre átomos adyacentes de la estructura del cristal.

Condiciones:

Mantenimiento de una neutralidad de carga.

SOLUCION SOLIDA - IMPERFECCION QUIMICA

SOLUCION SOLIDA - IMPERFECCION QUIMICA

SOLUCION SOLIDA - IMPERFECCION QUIMICA

SOLUCION SOLIDA - IMPERFECCION QUIMICA

SOLUCION SOLIDA - IMPERFECCION QUIMICA

DEFECTOS PUNTUALES - IMPERFECCIÓN CERODIMENSIONAL

Son imperfecciones estructurales que resultan de la agitación térmica.

Existen en los materiales independientemente de las impurezas químicas.

Vacancia, lugar desocupado por un átomo dentro de la estructura del cristal.

Intersticialidad, un átomo ocupa un lugar intersticial que no es normalmente ocupado en la estructura perfecta del cristal.

DEFECTOS PUNTUALES - IMPERFECCIÓN CERODIMENSIONAL

El defecto de Schottky, consiste en una vacante que deja un par de iones con cargas opuestas, necesario para mantener localmente la neutralidad de carga dentro de la estructura del cristal.

El defecto de Frenkel, combinación vacancia-intersticio, se presenta en estructuras relativamente abiertas acomodan iones intersticiales sin generar esfuerzo excesivo.

DEFECTOS PUNTUALES - IMPERFECCIÓN CERODIMENSIONAL

Conclusiones:

Los defectos puntuales pueden ser átomos o iones faltantes (vacantes) o átomos o iones extras (intersticialidades).

La neutralidad de carga debe ser mantenida localmente para las estructuras de los defectos puntuales en los compuestos iónicos.

La concentración de defectos puntuales aumenta exponencialmente con la temperatura absoluta siguiendo una expresión de Arrhenius.

DEFECTOS PUNTUALES - IMPERFECCIÓN CERODIMENSIONAL

La difusión de estado sólido ocurre en los materiales cristalinos a través del mecanismo de los defectos puntuales.

La difusividad, según las leyes de Fick, aumenta exponencialmente con la temperatura absoluta siguiendo la expresión de Arrehenius.

DEFECTOS PUNTUALES - IMPERFECCIÓN CERODIMENSIONAL

DEFECTOS LINEALES O DISLOCACIONES - IMPERFECCIÓN UNIDIMENSIONAL

Son defectos lineales, unidimensionales, asociados a deformaciones mecánicas, corresponden a la mitad de un plano extra de átomos en una estructura de cristal de otra manera perfecta.

Dislocación de borde, el defecto o línea de dislocación corre a lo largo del bode de la hilera extra de átomos.

Dislocación de tornillo, apilamiento en espiral de planos del cristal alrededor de la línea de dislocación.

DEFECTOS LINEALES O DISLOCACIONES - IMPERFECCIÓN UNIDIMENSIONAL

Dislocaciones y deformación mecánica.

Las dislocaciones juegan un papel crítico en la deformación mecánica de los materiales cristalinos, facilitando el desplazamiento de átomos mediante el deslizamiento en planos de alta densidad atómica a lo largo de direcciones de alta densidad atómica.

Sin el deslizamiento de dislocaciones, se requiere de esfuerzos excepcionalmente grandes para deformar de manera permanente los materiales.

Muchas propiedades mecánicas se explican en términos de mecanismo micro mecánico de deslizamiento de dislocaciones.

La deformación plástica o permanente de los sólidos cristalinos es difícil sin dislocaciones.

DEFECTOS LINEALES O DISLOCACIONES - IMPERFECCIÓN UNIDIMENSIONAL

DEFECTOS LINEALES O DISLOCACIONES - IMPERFECCIÓN UNIDIMENSIONAL

DEFECTOS PLANARES - IMPERFECCIÓN BIDIMENSIONAL.

Lo constituyen todas las superficies de frontera que rodean a una estructura cristalina.

Fronteras gemelas, dividen dos regiones que son imágenes de espejo una con respecto a la otra.

La superficie exterior tiene una estructura característica que involucra un elaborado sistema de capas.

Frontera de grano, estructura de región de disparidad entre granos adyacentes, depende de la orientación relativa de los granos.

DEFECTOS PLANARES - IMPERFECCIÓN BIDIMENSIONAL.

DEFECTOS PLANARES - IMPERFECCIÓN BIDIMENSIONAL.

DIFRACCIÓN DE CRISTALES – LEY DE BRAGG

DIFRACCIÓN DE CRISTALES – LEY DE BRAGG

DIFRACCIÓN DE CRISTALES – LEY DE BRAGG

DIFRACCIÓN DE CRISTALES – LEY DE BRAGG

Ley de Bragg, hay que tener en cuenta:

- Se consideran planos cristalinos paralelos (en consecuencia, equiespaciados). Estos actúan como espejos semitransparentes

- Se deprecia el efecto de refracción. (Existe, pero es pequeño debido a la alta energía de las estas ondas cortas). En los modelos más completos, este efecto se considera y corrige.

- Las distancias recorridas por el haz incidente y por el haz reflejado, así como el diámetro del haz, son muchísimo mayores que las distancias interatómicas. Esto permite sumar las ondas reflejadas que llegan a un punto de la pantalla o película como si fuesen paralelas, una aproximación.

DIFRACCIÓN DE CRISTALES – LEY DE BRAGG

En la deducción de la Ley de Bragg hay dos consideraciones importantes.

La primera es que el número de planos paralelos de una familia dada que efectivamente

participan en la difracción es un número grande de planos; por ello, bastará un

pequeño desfase entre los haces emergentes de dos planos sucesivos, para que la suma

de los haces provenientes de todos los planos paralelos involucrados corresponda a una

interferencia destructiva sobre la pantalla. Esto es, bastará un pequeño desfase para que

ese conjuntos de haces no ilumine el punto correspondiente en la pantalla, pues su

contribución destructiva dará un mínimo de difracción.

La segunda consideración es que, atendiendo a la primera consideración, sólo si los

haces de los planos paralelos emergen en fase, se tendrá un haz emergente fino, el cuál

dará un máximo fino sobre una pantalla (justo en fase). Así, la Ley de Bragg establece

que sólo algunos haces serán reflejados sobre la pantalla, en el sentido de que den

máximos; ello corresponderá a planos paralelos que reflejen en fase.

DIFRACCIÓN DE CRISTALES – LEY DE BRAGG

Según esta ley, para que haya reflexión debe cumplirse la siguiente igualdad:

n λ= 2 d sinθdonde: θ es el ángulo de incidencia

λ es la longitud de onda

d es la distancia interplanar de los planos paralelos considerados,

n, un número entero igual o mayor que uno; es el orden de la difracción

DIFRACCIÓN DE CRISTALES – LEY DE BRAGG

DIFRACCIÓN DE CRISTALES – LEY DE BRAGG

DIFRACCIÓN DE CRISTALES – LEY DE BRAGG

top related