agujeros negros de masa intermedia: efectos sobre su...

176
Dirección: Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 Contacto: Contacto: [email protected] Tesis Doctoral Agujeros negros de masa intermedia: Agujeros negros de masa intermedia: efectos sobre su entorno y efectos sobre su entorno y detectabilidad detectabilidad Pepe, Carolina 2013 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Pepe, Carolina. (2013). Agujeros negros de masa intermedia: efectos sobre su entorno y detectabilidad. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Pepe, Carolina. "Agujeros negros de masa intermedia: efectos sobre su entorno y detectabilidad". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2013.

Upload: phamdung

Post on 09-Oct-2018

220 views

Category:

Documents


1 download

TRANSCRIPT

  • Di r ecci n:Di r ecci n: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Giraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293

    Co nta cto :Co nta cto : [email protected]

    Tesis Doctoral

    Agujeros negros de masa intermedia:Agujeros negros de masa intermedia:efectos sobre su entorno yefectos sobre su entorno y

    detectabilidaddetectabilidad

    Pepe, Carolina

    2013

    Este documento forma parte de la coleccin de tesis doctorales y de maestra de la BibliotecaCentral Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilizacin debe seracompaada por la cita bibliogrfica con reconocimiento de la fuente.

    This document is part of the doctoral theses collection of the Central Library Dr. Luis FedericoLeloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the correspondingcitation acknowledging the source.

    Cita tipo APA:

    Pepe, Carolina. (2013). Agujeros negros de masa intermedia: efectos sobre su entorno ydetectabilidad. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

    Cita tipo Chicago:

    Pepe, Carolina. "Agujeros negros de masa intermedia: efectos sobre su entorno ydetectabilidad". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2013.

    http://digital.bl.fcen.uba.arhttp://digital.bl.fcen.uba.armailto:[email protected]
  • UNIVERSIDAD DE BUENOS AIRES

    Facultad de Ciencias Exactas y Naturales

    Departamento de Fsica

    Agujeros negros de masa intermedia: efectossobre su entorno y detectabilidad

    Tesis presentada para optar al ttulo deDoctor de la Universidad de Buenos Aires en el area Ciencias

    Fsicas

    Carolina Pepe

    Director de Tesis: Dr. Leonardo J. Pellizza

    Consejero de estudios: Dra. Cristina Caputo

    Lugar de Trabajo: Instituto de Astronoma y Fsica del Espacio(CONICET-UBA)

    Buenos Aires, 2013

  • M 102104 M

  • 102104 M

  • W0 8

    m(r)/r

  • E(B V )5000 K

    MBH = 1000 M

    MBH = 3981 M

    E(B V )9976 K

  • E(B V )12559 K

    (P /P )

    (P /P )int

    2511M

    3981M

    100 M 1000 M

  • 1

  • M

    M

    105 109 M

  • 102 105 M

    103 104M

    M 10910 M

    105 M

  • jets

    scattering

    B ! 1013 scattering

    B 1012

    L > 1040 erg s1

    103

    105 106 M

  • M 104M /t

    M t

    30

    M ! 100 M

    102 103 M

  • M ! 250 M

    [1,3 2,3] 104 M

    1000 M

  • 5 104 M

    4,7 104 M500M

    4 104 M

  • 4,7 104 M

    1,7 104 M104 M

    [1,5 3,9] 103 M

    3 103 M 2 103 M

    2 103 M 8 103 M 6 103 M 800 M

  • 140 M

    2104 M

    F5 = 10

    (

    L

    3 1031 1)0,6(

    M

    100 M

    )0,76 (d

    10

    )2

    .

  • L M

    d

    L M

    cm3

    M

    LX = Mc2

    M

    M M

  • M

    M M

    M

    LX

    LX

    M

    M

  • M

  • 2

  • 105 106 M

    100108

    1010

  • f

  • f($r,$v) d3$r d3$v d3$r

    $r d3$v $v

    2 = 4G

    fd3$v,

    1

    r

    d

    dr

    (

    r2d

    dr

    )

    = 4G

    fd3$v,

    r

    f exp(E/2)E

  • 0

    + 0 E + 0 = 1

    2v2,

    v = |$v| E

    0 f > 0 > 0 f = 0 $ 0

  • fK() =

    1(22)

    3

    2 (e/2 1) > 0

    0 < 0.

    1

    r0

    92

    4G0,

    0

    > 0

    k() =4

    (22)3

    2

    2

    0

    [

    exp

    (

    12v2

    2

    )

    1]

    v2dv

    = 1

    [

    e/2

    erf

    (

    )

    4

    2

    (

    1 +2

    32

    )

    ]

    ,

    erf(x)

    1

    r

    d

    dr

    (

    r2d

    dr

    )

    = 4G1r2[

    e/2

    erf

    (

    )

    4

    2

    (

    1 +2

    32

    )

    ]

    .

    r = 0 (d/dr) = 0

  • r = 0 (0) > 0

    (0)

    (0) (d/dr) = 0

    (d2/dr2) < 0 2

    rt

    rt M(rt) (rt)

    (rt) = GM(rt)

    rt.

    (0) = (rt)(0)(0)

    (0)

    0 r0

    r7/4

  • f (E)1/4

    x r/r0 v/ W (x) (x)/2

    E 2/2W (x) (x)/0M(x) M(x)/0r30

    M/0r30

    r0 0

  • f(E) =

    c(E)1/4 E < W(2)3/2(eE 1) W < E < 00 E 0

    ,

    c (2)3/2(exp(W ) 1)W1/4

    f W W (xt) = 0 xt

    W W (x )

    x

    M(x ) = 0,1,

    x GM/2r0M(x ) % 104

    x

  • W ( )

    d2W

    dx2+

    2

    x

    dW

    dx= (4G0r22)(W ), x > 0;

    W

    (W ) = 4

    2W

    0

    f(E)2d =

    1, W W2, W > W

    ,

    1 2 W

    r0 =92

    4G0.

    d2W

    dx2+

    2

    x

    dW

    dx= 9(W ), x > 0,

    x0 > 0

  • dW

    dx(x0) = W

    0,

    W (x0) = W0.

    x0 = x

    W W

    d

    dr(x ) =

    GM

    (xBHr0)2=

    G

    x20r0,

    W x = 9

    4x2.

    (,W )

    0,1 x

    x M(x)

    x

    x = GM/32r0

    M = 0, 100, 1000, 4000 M W0 8

  • r < r0

    0.001 0.01 0.1 1 10 100

    r/r0

    0.0001

    0.01

    1

    100

    !/"

    2

    sin IMBH

    M = 100 M#

    M = 1000 M#

    M = 4000 M#

    W0 8

  • 0,8M 0,2M 0,1M

    1014 1011 1

    103

  • 10 100M

    H2

    M

    0,1 M

    0,1 M

    102 105 M 5 104 M

    9 104 M

  • M R

    m

    Eacc = GMm/R,

    R 3 M MEacc 5 1020

    Enuc = 0,007mc2,

    c Enuc = 61018

  • g1

    M /R

    M /R

    M

    LEdd = 4GMmpc/T = 1,3 1038(M/M)erg s1.

  • T = (Lacc/4R2)1/4,

    RSch = 2GM/c2 M

    104 M

    T =

    (

    LEdd16G2M2

    )1/4

    3,8 106K,

    kT

    3

  • $v

    $v

    T L $v T

    t+ ($v) = 0

    $v

    t+ ($v )$v = P + $f

    t(1

    2v2 + ) + (1

    2v2 + + P )$v = $f $v $Frad $q

    P $f

    $q $Frad

    $v T

  • r

    $v T

    v#r = v

    1

    r2d

    dr(r2v) = 0.

    r2v (v)

    M

    4r2(v) = M.

    $f

    fr = GM/r2

    vdv

    dr+

    1

    dP

    dr+

    GM

    r2= 0.

    P = K,

    K

  • = 5/3

    dP

    dr=

    dP

    d

    d

    dr= c2

    d

    dr,

    cs

    1

    2

    (

    1 c2

    v2

    )

    d

    dr(v2) = GM

    r2

    [

    1 2c2r

    GM

    ]

    .

    [

    1 2c2s rGM

    ]

    c2s c2s (r )

    ddr(v2)

    r

    v2 < c2

    v2 > c2.

  • rs = GM/2c2s (rs)

    v2 = c2s

    ddr(v2) = 0

    rs

    v2(r)

    v2(r ) = c2s (rs) v2 r

    v2 < c2s r > rs v2 > c2s r < rs

    v2(rs) = c2s (rs) v

    2 r v2 > c2s r > rs v

    2 < c2s r < rs

    v2 < c2s rddr(v2) = 0 r = rs

    v2 > c2s rddr(v2) = 0 r = rs

    ddr(v2) = v2 = c2s (rs) r > rs

  • ddr(v2) = v2 = c2s (rs) r < rs

    rs

    r

    r

    r

    v2

    v > 0 v < 0

  • M

    v2

    2+

    c2s 1

    GM

    r= .

    c2s (r )/( 1)cs(r ) cs(rs)

    c (r ) = c ()(

    2

    5 3

    )1

    2

    M = 4r2(v) = 4r2(r )c (r )

    c2s 1

    (rs) = (r )[

    cs(rs)

    cs()

    ]2/(1)

    .

    M = G2M2(r )c2(r )

    [

    2

    5 3

    ](53)/2(1)

    .

  • = 1

    1

    [

    253

    ](53)/2(1)

    = 5/3 e3/2 = 1

    p

    rc

  • ds2 =

    (

    1 2Mr

    )

    dt2 (

    1 2Mr

    )1

    dr2 r2(

    d2 + sen2d2)

    .

    r, , M

    ds

    J; = 0,

    T ; = 0,

    T = (+ p) uu pg ,

    p = p()

    J = u

  • u

    ur2 = C1

    (

    P +

    )2(

    1 2mr

    + u2)

    = C2,

    = +

    d

    du

    u

    [

    2V 2 mr(

    1 2mr+ u2

    )

    ]

    +dr

    r

    [

    V 2 u2

    1 2mr+ u2

    ]

    = 0,

    V 2 =dln(P + )

    dln 1.

    r u

    u2 = M/2r

  • V 2 = u2/(1 3u2).

    V 2 u2 > 1/3

    r < 6M

    uT; = u

    , + (+ p)u; = 0.

    ux2 exp

    [

    d

    + p()

    ]

    = A,

    u < 0

    x = r/M

    (+ p)

    (

    1 2x+ u2

    )1/2

    x2u = C1,

    r = 2M

  • C1

    (+ p)

    (

    1 2x+ u2

    )1/2

    exp

    [

    d

    + p()

    ]

    = C2,

    C2 = C1/A = + p()u = u(2M)

    = (2M)

    A

    4

    + p( )

    + p()= A

    2

    16u2(2M)= exp

    [

    2

    d

    + p()

    ]

    .

    + p( )

    + p()

    [

    1 + 3c2( )]1/2

    = exp

    [

    d

    + p()

    ]

    .

    r u

    M = 4r2T r0

    M = 4AM2 [ + p()] .

  • M

    +p() < 0

  • 3

  • 10

  • M

    ds2 = edt2 edr2 r2(d2 + sin2 d2),

    r, , t

    r

    m(r)

    r

    m(r) = M

    = = ln(1 2M/r)

  • p = p

    T = (+ p)uu pg ,

    g u = dx/ds

    uu = 1

    M = 4 lmr2M

    r2T r0 ,

    p

    u = 0

    (p+ )(

    e + eu2)1/2

    ur2e1

    2(+3) = C1,

    e

    d

    +p e1

    2(+)ur2 = C2,

    C1 C2

    (p+ )e

    d

    p+(

    1 + eu2)1/2

    e/2 = + p.

    + p r

  • M = 4( + p)C2,

    r 2M

    + = 0

    C2

    C2

    [

    (e + eu2)1eu u

    ]

    du+[

    1

    2(e + eu2)1(e + ( )u2e)+

    2+

    3

    2+

    2

    r (1 + )

    (

    2+

    2+

    2

    r

    )]

    dr = 0,

    1

    2 (rc)(1 )

    2

    rc= 0,

  • u2c =

    1 .

    < 0

    > 0

    (r) =2m(r)

    r [r 2m(r)] .

    rc

    m(rc)

    rc=

    2

    1 + 3.

    C2

    M = (1 + )[

    ec(1 +

    1 )] 1

    2

    (

    1

    )1

    2

    m2(rc)

    (

    1 + 3

    )2

    e1

    2c .

    M m2(rc)

    M2 (Mgc + M)2 Mgc

    Mgc M

  • r0rt

    cgcRgc

    M 3000MRgc

    DM 4,0 1021kg m3DE 7,7 1027kg m3

    10 K

  • p = /3

    r0 = 0,35 pc cgc = 1,8

    M = 3000M

    r 0 M/r r/r0 10

  • 1

    m(r)/r r r0

    rc uc M

    M2

    = 7, 0425 1031 3

    =

    = 5 105,

    crit

    = 1,878 1029h3,

    h = 0,75

    H0 = 7,5 107 1 1

    M = 1,7 1029 M yr1

    M

    M(r)/r 0 r 0

  • m(r

    )/r

    0

    1e-09

    2e-09

    3e-09

    4e-09

    5e-09

    6e-09

    7e-09

    8e-09

    9e-09

    1e-08

    0

    1e-09

    2e-09

    3e-09

    4e-09

    5e-09

    6e-09

    7e-09

    8e-09

    9e-09

    1e-08

    r /r0

    0 20 40 60 80 100 120 140

    0 20 40 60 80 100 120 140

    m(r)/r

    2/(1 + 3)

    700 1

  • p = 1

    % 1,5109

    % 5 1010

    m(rc) M + Mgc

    3109

  • rc

    > t = 1,5 109

    = DMc2 DM

    rc 3 1010 rcr r

  • M(v) v

    M0

    M(v) = M0c3s

    (v2 + c2s )3/2

    ,

    c2s = c2

    0

    M(v) M0

    v = 0, 100, 200

    M

    t 10Gyr % 109 Mm(rc) rc r0

    M Mt ! 104 M

  • r/r 0

    0,001

    0,01

    0,1

    1

    10

    100

    1000

    1e10 1e09 1e08 1e07

    Solucin interna

    Solucin externa

    Tasa d

    e a

    cre

    ci

    n (

    Msol/y

    r)

    1e12

    1e10

    1e08

    1e06

    0,0001

    0,01

    1

    100

    1e10 1e09 1e08

    v = 0

    v = 100 km/s

    v = 200 km/s

    v = 500 km/s

  • v

    ! 109

    109

    < 1/3

    = 1

  • < 0

    rc < 2M

    M = 16(1 + )M2.

    M < 1

  • DEc2

    M = 9,5 1034 M yr1(1 + )(

    M

    M

    )2

    .

    102 104 M

    M = 6,9 0,9 M

    M = 0,3 0,2 M

    R = 3 R

  • U = 105 16, V = 98 16,W = 21 10 1

    vBH 140km/s

    10

  • Macre

    tada

    1e06

    0,0001

    0,01

    1

    100

    1e12 1e10 1e08 1e06

    velocidad nula

    v = 145 km/s

    Facto

    r de c

    orr

    ecci

    n

    1e08

    1e06

    0,0001

    0,01

    1

    1e12 1e10 1e08 1e06

  • 4

    103132 erg s1

  • 1 arcsec

    2 104 M

  • =

    1014 1011 yr1

    104 103

    1

    r2d

    dr(r2u) = ,

  • r u

    udu

    dr= kBT

    d

    dr GM(r)

    r2 u,

    G kB

    M(r)

    r MBH

    q =

    q/ q = ur2

    dq

    dr= r2,

    du

    dr=

    u

    u2 c2s

    (

    2c2sr

    GM(r)r2

    (u2 + c2s )r

    2

    q

    )

    ,

    cs = kBT1

    q =

    r

    0

    r2dr + q0 =M(r)

    4+ q0,

    q0

  • = rr10 = u1 s = cs

    1 = q(0r30)

    1

    () = M(r)(40r

    30)

    1BH = MBH(40r

    30)

    1() = () +

    BH r0 0

    2 = 4G0r20/9

    = () + 0,

    d

    d=

    2 2s

    (

    22s

    dd

    (2s + 2)

    9()

    2

    )

    .

  • st u = 0

    (st) = 0,

    st

    st

    st

    s

    f () = 22s

    (

    1

    1

    d

    d

    )

    9()2

    = 0.

  • 0.1 1 10 100

    r(r0)

    -20

    -10

    0

    10

    20f s

    T = 9976 KT = 12559 KT = 15811 K

    T = 9976, 12559 15811 KM

    f ()

    M

    T = 9976, 12559 15811 K

    fs() = 0

    du/dr = 0

    st

    st

    T =3,99, 4,09 4,19

  • st

    st

    cGC

    r0 r0 0

    M(r)

    M(r)

    cs/ BH

  • r0 0 cGCkm s1 pc M pc

    3

    105105

    103104

    M/M L/L

    5000 15000 K

    102 104M

    st

    (st)

    cs/ BH

    M M = (st)0r30

    cs/

    rst r0cs/ 1

  • cs/ ! 1

    rst % r0

    cs/ < 1

    rst r0

    cs/

    BH

  • 0 1 2 3 4 5 6

    cs

    2/!

    2

    0.1

    1

    10

    100

    r st

    (r 0

    )

    M 15Liller 1 " CenM 28

    0 1 2 3 4 5 6

    cs

    2 / !

    2

    0.1

    1

    10

    100

    "#(r

    st)

    M 15Liller 1$ CenM 28

    BH

  • 0.0001 0.001 0.01 0.1

    BH

    1

    10

    100

    r st(r

    0)

    M 15Liller 1" CenM 28

    0.0001 0.001 0.01 0.1

    !BH

    0.01

    0.1

    1

    10

    100

    !"

    (r s

    t)

    M 15Liller 1# CenM 28

    c2s/2

    1 3

  • 100 1000 10000

    MBH

    1

    10

    100

    1000

    10000r s

    t/r a

    cc

    M 15

    Liller 1

    ! CenM 28

    M

    MM

    racc = GMBH/c2s

    M

    rst/racc MBH

    M M2BH

  • = 1011 yr1

    M r0 0

    MGC

    M

    MBH = 1000M

    T = 5000, 10000, 12600 K

    T = 5000K

    MBH = 1000, 4000, 10000M

    T cs/

  • M 0r30

    M

    rst MGC

    MGC

    M

    MGC

    0r30

  • 10000

    !(m/s)

    1e-08

    1e-07

    1e-06

    1e-05

    Acc

    reti

    on r

    ate

    (MS

    un y

    r-1)

    NG

    C 6

    388

    M 1

    5M 2

    8

    " C

    en

    Lil

    ler

    1

    T = 5000 KT = 10000 KT = 12600 K

    10000

    ! (m/s)

    1e-08

    1e-07

    1e-06

    1e-05

    Acc

    reti

    on

    rat

    e (M

    Sun y

    r-1

    )

    NG

    C 6

    388

    M 1

    5"

    Cen

    Lil

    ler

    1

    M 2

    8

    M = 1000 MSun

    M = 4000 M Sun

    M = 10000 MSun

    M M MM

  • 0 5e+05 1e+06 1.5e+06

    MGC

    (MSun

    )

    1e-08

    1e-07

    1e-06

    1e-05

    Acc

    reti

    on r

    ate

    (MS

    unyr-

    1)

    NG

    C 6

    38

    8

    M 1

    5

    Lil

    ler

    1

    M 2

    8

    T = 5000 KT = 10000T = 12300 K

    ! C

    en

    0 5e+05 1e+06 1.5e+06

    MGC

    (MSun

    )

    1e-08

    1e-07

    1e-06

    1e-05

    Acc

    reti

    on r

    ate

    (MS

    un y

    r-1)

    NG

    C 6

    38

    8

    M 1

    5

    Lil

    ler

    1

    M 2

    8

    M = 1000 MSun

    M = 4000 MSun

    M = 10000 MSun

    ! C

    en

    M MM

    MGC

  • MGC

    398 M 1000 M

    3981 M

    M

    9976 K

    rest

  • 0.01 1 100

    r (r0)

    0.0001

    0.01

    1

    100

    10000

    !

    M = 0M = 398 M

    Sol

    M = 1000 MSol

    M = 3981 MSol

    0 50 100

    r (r0)

    -5

    0

    u (!)

    M = 0M = 398 M

    Sol

    M = 1000 MSol

    M = 3981 MSol

    rest

  • rest

    fs() = 0

  • rest

    rt

    Pt = (rt)c2s .

    rest

    R z

    n (R, z) =

    [

    2,5 + 1,5 exp

    ( |z|70 pc

    )]

    (

    2

    1 + RR0

    )

    104m3,

    R0 = 8 kpc

    n

  • T = 100 K

    P = nkT,

    k

    rest

    rest

  • Pext

    rest

    rest Pt

    Pmarea rest

    Pt

    rest M

    T = 9976K

    rest

  • 1 10 100

    rest

    (r0)

    1e-17

    1e-16

    1e-15

    1e-14

    1e-13

    1e-12

    Pm

    are

    a(P

    a)

    T = 5000 KT = 9976 KT = 15811 KP

    ext

    1 10 100

    rest

    (r0)

    1e-17

    1e-16

    1e-15

    1e-14

    Pm

    are

    a(P

    a)

    M = 398 MSol

    M = 1000 MSol

    M = 3981 MSol

    Pext

    M

    M M M

  • u

    T =

    10000 K

    MEdd = LEdd/c2 c

    LEdd = 1,26 1038(MBH/M) erg s1

    MBH = 4G2M2BHac

    3s a

    a = 0,2 cm3

  • 0.01 1 100

    r (r0)

    0.0001

    0.01

    1

    100

    10000

    1e+06

    !

    M = 398 MSol

    M = 1000 MSol

    M = 3981 MSol

    0 20 40 60 80 100 120

    r (r0)

    -0.5

    0

    0.5

    u (

    cs2

    )

    M = 398 MSol

    M = 1000 MSol

    M = 3981 MSol

    rest

  • a

    1014 1011 yr1

    M2BH

    M

  • 100 10000

    Mbh

    (MSun

    )

    1e-12

    1e-08

    0.0001

    Acc

    reti

    on

    rat

    e (M

    Sun y

    r-1)

    M 15Liller 1! CenM 28Eddington limit

    Bondi-Hoyle

  • 0.01 1 100

    r(r0)

    1e-10

    1e-09

    1e-08

    1e-07

    1e-06

    1e-05

    Tas

    a de

    acre

    cion (

    MS

    ol y

    r-1)

    M = 398 MSol

    M = 1000 MSol

    M = 3981 MSol

    M = 1011 yr1 M

    M

    = 1011 yr1

  • LX

    = LX/Mc2

    = 0,1 = 1011 yr1

    1037 1041 erg s110321041 erg s1

    103840 erg s1

    LX, NGC6388 = 2,7 1033 erg s1LX, NGC6388 = 8,31032 erg s1

  • T MBH

    M

    T = 9976 K

    = 1011yr1

    LX, NGC6388

    1011 1014 yr1LX % 10

    31erg s1

    = M/MEdd,

    M < 0,1MEdd

    = 0,1 = 0,001

  • 0.001 0.01 0.1 1 10

    rest

    (r0)

    1e+32

    1e+34

    1e+36

    1e+38

    1e+40

    1e+42

    LX

    (erg

    s-1

    )

    M = 100 MSol

    M = 10000 MSol

    = 0,001 = 0,1M M

    = 1 1011yr1

  • udu

    dr= dP

    dr d

    dt u,

    d

    dr=

    d

    dr

    (

    P

    )

    +P

    d

    dr,

    c2s P = cp/cv cp

    cv

  • u

    (

    1 +c2su2

    )

    du

    dr= 1

    (

    dc2sdr

    +c2sq

    dq

    dr 2c

    2s

    r

    )

    ddr

    r2u

    q.

    h =u2

    2+

    1P

    + =

    u2

    2+

    c2s 1 + ,

    1

    r2d

    dr(qh) = (+ ),

    h = +

    q

    r

    r

    r2dr.

    rest q = 0

    r > rst c2s

    c2s

    du

    dr=

    1

    u(

    1 c2su2

    )

    [

    ( 1) ddr

    (h ) + 2c2s

    r d

    dr

    r2u2

    q

    (

    c2su2

    +

    )]

    .

  • = () + 0,

    d

    d=

    1

    (

    1 2s2

    )

    [

    ( 1) ddr

    (had ad) + 22s

    d

    ad

    d d/d

    (

    2s2

    +

    )]

    .

    ad = /2

    had = h/2

    T = 4000 K

    R = 70 R M = 0,8 M ve 35km s1

    =k T

    m+ 0,5v2,

    kb mH

  • Tef

    =kbTefmH

    .

    15km s1Tef [10

    4 105]K

    Tef

    q

    d(qh)

    dr= q

    dh

    dr= 0.

    h = ht ht

    (r) Mcum +MBH

  • = 0

    c2s = dP/d T

    100 KT 0

    T

  • 0 2 4 6 8 10

    r(r0)

    0

    1

    2

    3

    4

    5

    6

    7

    f s

    T = 100000 KT = 50811 K T = 10000 K T = 2000 K T = 1000 K

    fs() 1 1032103 1104 5104 1105 K

    M

    1 103 2 103 1 1045 104 1 105 K M

    fs = 0

    r < rest

    T % 2103 K

    intson

  • rest

    T ! 30000K

    fs() = 0 < tidal

    fs() = 0

    h

    0

    fs() = dad

    d+

    (hadtidal ad)

    ,

    c2s =

    (hadt ad)/2 dad/dr =ad/r

    hadt

    = 0.

    ht = 0 u

    d/d = 0 > marea u = 0

  • 5

  • m

  • m0

    AV = V V0.

    EBV = (B V ) (B V )0.

    A = m

    EBV = (B B0) (V V0) = AB AV .

    A

    R

    R = A/E(B V ).

    E(B V )

    R

  • R

    RV

    RV 3,1

    RV

    RV

    d

  • d

    I Id

    d

    + d ddl

    I

    Idds

    dIds

    = I + .

    = 0

    I,0

    I(s) = I,0 exp

    (

    s

    0

    ds

    )

    ,

    s

    T

  • = ne,

    e n = polvo/mpolvo

    103 gasgas

    a q

    e = qa2.

    I = I,0 expe

    s0

    n(s)ds .

    I m

    m = 2,5 log I+cte

    1 m

  • mm0 = X X0 = 2,5 log(

    IX0 exp s0

    X(s)(r)ds

    IX0

    )

    = 2,5 log(expX s

    0

    (r)ds)

    = 2,5 log(expe,X s

    0

    n(r)ds)

    m0

    A

    A = 1,08e

    s

    0

    n(r)ds.

    AV

    AAV

    =e,

    e,V.

    EV = 1,08e,

    s

    0

    n(s)ds 1,08e,V s

    0

    n(s)ds

    = 1,08

    s

    0

    n(s)ds(e, e,V )

    = 1,08

    s

    0

    n(s)ds e,V (e,

    e,V 1)

    = 1,08

    s

    0

    n(s)ds e,V (AAV

    1).

  • A/AV RV

    |A/AV | = a(x) + b(x)/RV ,

    x = 1 m1

    a(x) b(x)

    A/AV

    E(B V )

    0,1 r04 r0 4 r0

    rp 1m mp 1014g q = 0,1

    s

  • sen

    p

    p

    Rt

    z

    T = 5000, 9976

    12559 K

    MBH = 0, 398, 1000 3981 M

    E(BV )E(BV )T = 5000 K

    T ! 10000K

    Rt z

  • E(B V )5000 K

    M = 398 1000 M

  • MBH = 1000 MMBH = 3981 M

  • E(B V )9976 K

    M = 398 1000 3981 M

    T = 5000 K

  • MBH = 1000 MMBH = 3981 M

  • 102

    MBH

    103

  • max{E(B V })1,32 1061,13 1075,52 1051,38 107

    E(B V )

    1000 M

    T = 9976 K NGC 6681

    100 M

    MBH !600 M

  • E(B V )12556 K

    M = 398 1000 3981 M

    T = 5000 K

  • MBH = 1000 MMBH = 3981 M

  • 1017kg m3

    p+ e n+ .

    c = 3,2 1014kg m3

    R 106 cm

  • > 1011 kg m3

    P 1015s1P/P 107 yr

  • http : //www.naic.edu/pfreire/GCpsr.html

  • P < 0

    r % 3 r0

    P

    Pint

    al al

    Pint

    as

    aG

  • rc RTa

    al

    ac

    (P /P ) =a

    c+

    a

    c+

    a

    c+ (P /P ) ,

    P a

    a

    c=

    2D

    c,

    D c

  • a

    1(R, z) =G M1

    {R2+[a1+(z2+b21)1/2]2}1/2

    ,

    2(R, z) =G M2

    {R2+[a2+(z2+b22)1/2]2}1/2

    ,

    3(r) = G Mcrc[

    12ln(

    1 + r2

    r2c

    )

    + rrcarctan

    (

    rrc

    )]

    ,

    R r

    as aG

    (P /P )obs

    (P /P ) al ac

  • (P /P ) = P/(2 ).

    (P /P )

    a(r)

    al

    al = a = ar ( (RT/r)),

    RT

    al(r)

    M = 1000M

    RT

    r z

    z

    (P /P )int

    (P /P ) = (P /P ) ac

    (P /P ) = (P /P ) ac

    ,

  • 0 20 40 60 80 100

    r (r0)

    0

    0.1

    0.2

    0.3

    0.4

    |an

    orm

    al |(!

    2/r

    0)

    Rt = 0.94 r0

    Rt = 0.27 r0

    M

    (P /P ) < (P /P ) < (P /P )

    (P /P )

  • P /P int (s1)1,4 10181,43 10181,66 10181,47 10181,33 10181,41 10181,29 1018

    P /P int

  • 0 2 4 6 8 10 12 14

    Pulsar #

    -6e-17

    -4e-17

    -2e-17

    0

    2e-17

    4e-17

    6e-17

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximo

    47 Tuc

    0 2 4 6 8 10 12

    Pulsar #

    -6e-17

    -4e-17

    -2e-17

    0

    2e-17

    4e-17

    6e-17

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximo

    47 Tuc

    0 1 2 3 4 5 6

    Pulsar #

    -5e-17

    0

    5e-17

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximo

    NGC 6440

    0 1 2 3 4 5 6

    Pulsar #

    -5e-17

    0

    5e-17

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximoNGC 6440

    -1 0 1 2 3 4

    Pulsar #

    -1e-16

    -5e-17

    0

    5e-17

    1e-16

    1.5e-16

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximoNGC 6441

    -1 0 1 2 3 4

    Pulsar #

    -5e-17

    0

    5e-17

    1e-16

    1.5e-16

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximoNGC 6441

    (P /P )int

    P /P

  • -1 0 1 2 3 4 5 6

    Pulsar #

    -2e-16

    -1e-16

    0

    1e-16

    2e-16

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximoM 62

    -1 0 1 2 3 4 5 6

    Pulsar #

    -3e-16

    -2e-16

    -1e-16

    0

    1e-16

    2e-16

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximoM 62

    -1 0 1 2 3 4 5 6 7 8

    Pulsar #

    -3e-16

    -2e-16

    -1e-16

    0

    1e-16

    2e-16

    3e-16

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximoM 15

    -1 0 1 2 3 4 5 6 7

    Pulsar #

    -5e-16

    -4e-16

    -3e-16

    -2e-16

    -1e-16

    0

    1e-16

    2e-16

    3e-16

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximo

    M 15

    -1 0 1 2 3 4 5

    Pulsar #

    -1e-16

    0

    1e-16

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximoNGC 6752

    -1 0 1 2 3 4 5

    Pulsar #

    -2e-15

    -1e-15

    0

    1e-15

    2e-15

    Vari

    acio

    n i

    ntr

    inse

    ca (

    s-1)

    MinimoMaximoNGC 6752

    (P /P )int

    P /P(P /P )int < 0

  • DM

    z

    (r)

    z

    DMcum

    DM

    DM = DMcum +

    z

    z

    ne(r(z))dz.

    DMcum (P /P )int

    2 =

    NP

    1

    (DM DM)2DM2

    ,

    (P /P )int

  • P DMobs

    DM

    2

    RT

    z

    z

  • 0.06 0.08 0.1 0.12 0.14

    Rt (arcmin)

    219

    220

    221

    222

    223

    224

    225

    DM

    (pc

    cm-3

    )

    T = 5000 K T = 9976 K T = 12559 K

    0.06 0.08 0.1 0.12 0.14

    Rt (arcmin)

    220

    221

    222

    223

    224

    DM

    (pc

    cm-3

    )

    T = 5000 K T = 9976 K T = 12559 K

    100 M

    Rt z

  • 0 0.05 0.1 0.15 0.2 0.25 0.3

    Rt (arcmin)

    24.32

    24.34

    24.36

    24.38

    24.4

    24.42

    24.44

    DM

    (pc

    cm-3

    )

    100 1000 M

    MBH % 100 M

    M 6000 M

    3981 6309

    10000 M

    [1014 8 1012]yr1

    1000 M

  • 0 0.1 0.2 0.3 0.4

    Rt (arcmin)

    113

    113.5

    114

    114.5

    115

    115.5

    116D

    M (

    pc

    cm-3

    )

    T = 5000 K T = 9976 K T = 12559 K

    2511 M

    Rt z

  • 0.015 0.02 0.025 0.03 0.035 0.04

    Rt (arcmin)

    67.1

    67.15

    67.2

    67.25

    67.3

    67.35

    67.4

    DM

    (pc

    cm-3

    )

    T = 5000 K T = 9976 K T = 12559 K

    0.015 0.02 0.025 0.03 0.035 0.04

    Rt (arcmin)

    67.1

    67.15

    67.2

    67.25

    67.3

    67.35

    67.4

    DM

    (pc

    cm-3

    )

    T = 5000 K T = 9976 K T = 12559 K

    0.015 0.02 0.025 0.03 0.035 0.04

    Rt (arcmin)

    67.1

    67.15

    67.2

    67.25

    67.3

    67.35

    67.4

    DM

    (pc

    cm-3

    )

    T = 6294 K T = 9976 K T = 12559 K

    3981 M6309 M 10000 M

    M ! 6000 M

  • 0.1 0.15 0.2 0.25

    Rt (arcmin)

    33.24

    33.26

    33.28

    33.3

    33.32

    33.34

    33.36

    DM

    (p

    c cm

    -3)

    T = 5000 K T = 9976 K T = 12559 K

    0.08 0.1 0.12 0.14 0.16 0.18 0.2

    Rt (arcmin)

    33.2

    33.25

    33.3

    33.35

    DM

    (p

    c cm

    -3)

    T = 5000 K T = 9976 K T = 12559 K

    100 M1000 M

    MBH % 100 M

  • 6

  • % 109

  • rest % r0

  • E(BV )

  • PortadaResumenAbstractndice generalndice de figurasAgradecimientos1. Introduccin2. Consideraciones generales3. Acrecin global de materia no barinica4. Acrecin global de materia barinica5. Efectos del IMBH sobre el medio intracmulo...6. ConclusionesBibliografa