act 8

6

Click here to load reader

Upload: raul-vanegas

Post on 08-Jul-2015

456 views

Category:

Internet


1 download

DESCRIPTION

bueno

TRANSCRIPT

Page 1: Act 8

Técnicas para el Análisis y Solución de Circuitos Eléctricos

Existen diversas técnicas para la solución y el análisis de Circuitos Eléctricos, los cuales se fundamentan en las principales leyes de Teoría de Circuitos que son: La Ley de Ohm, las leyes de Voltaje y Corriente de Kirchoff y el análisis de redes de

Thévenin y Norton.

Cada una de ellas arroja diversas formas de comprensión y tratamiento sobre cada uno de los parámetros que hacen parte de un circuito en particular. Algunas

de éstas técnicas pueden parecer más sencillas que otras, sin embargo, dependiendo el tipo de circuito ellas pueden presentar un comportamiento más

adecuado o no, facilitando su análisis y obtención de resultados.

Las técnicas más utilizadas son las siguientes: División de Tensión y división de corriente (Ley de Ohm), Análisis de Mallas y Nodos (Leyes de Kirchoff), Transformación de Fuentes y Reducción de redes (Thévenin y Norton).

A continuación se explican los pasos a seguir para implementar cada una de ellas según sea necesario.

ANÁLISIS DE CIRCUITOS POR EL MÉTODO DE MALLAS

Es una de las técnicas más conocidas y aplicadas a nivel mundial; consiste en calcular cada una de las corrientes que circulan por las diversas mallas que

componen el circuito eléctrico. Vale la pena recalcar, que aunque ésta técnica permite la obtención de cada una de las corrientes, se fundamenta en la Ley de Voltajes de Kirchoff, la cual dice: “que la sumatoria de voltajes a través de un

circuito cerrado es igual a CERO”.

La metodología para realizar el análisis de mallas es la siguiente:

1. Identificar y clasificar el número total de mallas en el circuito, a cada malla asignarle una corriente de malla.

2. Aplique la LVK a cada malla, siempre y cuando no esté presente una fuente de corriente, expresando los voltajes en función de las corrientes de malla.

3. Si existe una fuente de corriente y ésta afecta a una sola malla, entonces la corriente de malla toma el valor de la fuente de corriente, verificando el sentido

de la corriente de malla respecto al sentido de la fuente de corriente.

4. Si existe una fuente de corriente que afecta a dos mallas, entonces se dice que hay una supermalla, para obtener la ecuación de la supermalla es

necesario:

Eliminar la fuente de corriente (circuito abierto). Aplicar la LVK a la supermalla resultante expresando los voltajes en función de

las corrientes de las malla que la integran.

5. Resolver las ecuaciones resultantes

6. ANÁLISIS DE CIRCUITOS POR EL MÉTODO DE NODOS 7. Esta técnica al igual que la correspondiente al análisis de mallas, hace

parte de las técnicas por excelencia para el análisis de Circuitos Eléctricos. Este método se basa en la Ley Kirchhoff de corrientes (LKC) y permite

Page 2: Act 8

establecer las ecuaciones que entregan como resultado el valor presente en cada uno de los voltajes de nodo vistos desde un nodo de referencia

común. 8. Este sistema nos permite obtener los valores de las tensiones

desconocidas en los distintos elementos que conforman el circuito. Si un circuito tiene n nodos, debe tener (n-1) voltajes desconocidos, por lo tanto

debemos plantear (n-1) ecuaciones. 9. Las ecuaciones resultantes (n-1) se pueden resolver por cualquiera de los

sistemas conocidos aunque se recomienda utilizar el método de matrices. Vale la pena recordar que un nodo es simplemente el punto de unión de

dos o más elementos.

La metodología para realizar el análisis de nodos es la siguiente:

1. Identifique el total de nodos del circuito y clasifíquelos.

2. Seleccione un nodo como referencia, en donde el voltaje será de 0 V.

3. Aplique la LCK a cada nodo excepto al de referencia, siempre y cuando no esté presente una fuente de voltaje, expresando las corrientes en función de

los voltajes de nodo. (I=GV)

4. Si existe una fuente de voltaje conectada al nodo de referencia, entonces el voltaje de nodo toma el valor de la fuente de voltaje, verificando la polaridad

del voltaje de nodo respecto a la polaridad de la fuente.

5. Si existe una fuente de voltaje conectada entre dos nodos y ninguno de ellos es referencia, entonces se dice que hay un supernodo, para obtener la

ecuación del supernodo es necesario:

Eliminar la fuente de voltaje (corto circuito). Aplicar la LCK al supernodo resultante expresando las corrientes en función de

los voltajes de los nodos que lo conforman.

6. Resolver las ecuaciones resultantes

7. Teorema de Superposición 8. Una de las técnicas más antiguas y de gran importancia en el campo de la

Teoría de circuitos es el Teorema de Superposición. El término superposición significa sumatoria, lo cual obedece a que el resultado de

aplicar ésta técnica proviene de la sumatoria de cada uno de los resultados obtenidos según el efecto producido por cada fuente de alimentación, ya

sea de voltaje o corriente que haga parte del circuito en particular. 9. Por su definición este teorema se aplica a circuitos que tienen dos o más

mallas con varias fuentes. Su enunciado dice así: 10. “Dado un circuito con elementos lineales únicamente y con más de

una fuente, la corriente o tensión en cualquier rama o elemento es igual a la suma algebraica de los efectos producidos por cada fuente

considerada individualmente, cuando el resto de las fuentes se eliminan, de tal forma que todas la fuentes de voltaje se cortocircuitan

y la fuentes de corriente se ponen a circuito abierto” . 11. Ello es posible debido a que la intensidad o diferencia de potencial entre

dos puntos cualesquiera del circuito se debe a la contribución simultánea de las distintas fuentes distribuidas en el circuito.

12. Para aplicar el teorema de superposición a un circuito con un número m de fuentes, hay que resolver otros tantos m circuitos sencillos que contengan

Page 3: Act 8

cada vez una sola fuente cortocircuitando las fuentes de tensión y abriendo las de corriente.

13. Técnicas para al análisis de Redes de Circuitos 14. Existen dos técnicas de gran utilidad y de uso común, aplicadas al análisis

de redes de circuitos. Una red de circuitos es un sistema complejo de componentes que interactúan entre sí cumpliendo una función en particular.

Estos sistemas pueden estar compuestos por cientos de elementos resistivos, fuentes de alimentación entre otros.

15. La importancia de ésta técnica consiste en que es posible representar cualquier sistema visto desde dos puntos como una fuente de voltaje y una

resistencia en serie, o como una fuente de corriente en paralelo con una resistencia.

16. Teorema de Thévenin 17. Cualquier circuito, por complejo que sea, visto desde dos terminales cualesquiera A y B, es equivalente a una fuente ideal de tensión en serie con una resistencia, donde: la fuerza electromotriz de la fuente de tensión

es igual al voltaje que se mide en circuito abierto en dichos terminales 18. La resistencia es la que presenta el circuito vista desde dichos terminales,

cortocircuitando todas las fuentes de tensión y dejando en circuito abierto las de corriente. (Se la conoce como la resistencia equivalente Thévenin)

19. Teorema de Norton 20. Es el recíproco del Teorema de Thevenin y dice: "Todo circuito por complejo que sea, compuesto de fuentes y resistencias visto desde dos terminales determinados, se puede reemplazar por una fuente ideal de

corriente en paralelo con una resistencia, donde: 21. La corriente de la fuente es la que se mide en el cortocircuito entre los

terminales en cuestión. 22. La resistencia es la que presenta el circuito vista desde dichos terminales,

cortocircuitando todas las fuentes de tensión y dejando en circuito abierto las de corriente. ( es igual a la resistencia equivalente Thévenin)

23. Teorema de Máxima Transferencia de Potencia 24. Es una técnica que permite calcular cuál deberá ser el valor exacto de

resistencia que se debe aplicar entre dos puntos para obtener como su nombre lo indica máxima transferencia de potencia desde la fuente.

25. Cuando realizamos análisis de circuitos es necesario en algunas oportunidades determinar la máxima transferencia de potencia que puede ser entregada a la carga. Para ello podemos utilizar una de las técnicas vistas anteriormente como es el teorema de Thévenin, la cual permite

establecer que el valor resistivo de la carga para obtener máxima transferencia de potencia, deberá ser igual a la resistencia Thévenin

presente en el sistema. 26. La ley aplicada a la técnica correspondiente al análisis de mallas para la

solución de circuitos eléctricos es:

27. Su respuesta : 28. Ley de Voltajes de Kirchoff

29. 30. Correcto

La metodología para realizar el análisis de mallas es la siguiente: (Seleccione las afirmaciones correctas)

Su respuesta :

Page 4: Act 8

Identificar y clasificar el número total de mallas en el circuito, a cada malla asignarle una corriente de malla. Aplique la LVK a cada malla, siempre y cuando no esté presente una fuente de corriente, expresando los voltajes en función de las corrientes de malla. Si existe una fuente de corriente y ésta afecta a una sola malla, entonces la corriente de malla toma el valor de la fuente de corriente, verificando el sentido de la corriente de malla respecto al sentido de la fuente de corriente. Si existe una fuente de corriente que afecta a dos mallas, entonces se dice que hay una supermalla, para obtener la ecuación de la supermalla es necesario: Eliminar la fuente de corriente (circuito abierto), Aplicar la LVK a la supermalla resultante expresando los voltajes en función de las corrientes de las malla que la integran y resolver las ecuaciones resultantes

Correcto

Cuando se tiene un sistema representado por equivalente Thévenin y se requiere representarlo en el equivalente Norton, es necesario aplicar:

Su respuesta :

Transformación de Fuentes

Correcto

El siguiente enunciado “la sumatoria de todas las corrientes que entran por un punto de unión de dos o más elementos es igual a la sumatoria de corrientes que salen de él”, es un concepto aplicado a:

Su respuesta :

Análisis de Nodos

Correcto

Si existe una fuente de voltaje conectada entre dos nodos y ninguno de ellos es referencia, entonces se dice que hay un

Su respuesta :

Super Nodo

Page 5: Act 8

Correcto

Si existe una fuente de corriente y ésta afecta a una sola malla, entonces la corriente de malla toma el valor de

Su respuesta :

La fuente de Corriente

Correcto

Es una de las técnicas más conocidas y aplicadas a nivel mundial; consiste en calcular cada una de las corrientes que circulan por las diversas mallas que componen el circuito eléctrico. Fundamentándose en el siguiente enunciado “que la sumatoria de voltajes a través de un circuito cerrado es igual a CERO”.

Su respuesta :

Análisis de Circuitos por el método de Mallas

Correcto

Esta técnica, hace parte de las técnicas por excelencia para el análisis de Circuitos Eléctricos. Este método permite establecer las ecuaciones que entregan como resultado el valor presente en cada uno de los voltajes de nodo vistos desde un nodo de referencia común y nos permite obtener los valores de las tensiones desconocidas en los distintos elementos que conforman el circuito.

Su respuesta :

Análisis de Circuitos por el método de Nodos

Correcto

Técnica que se aplica a circuitos que tienen dos o más mallas con varias fuentes:

Su respuesta :

Análisis de Circuitos por medio del Teorema de Superposición

Page 6: Act 8

Correcto

Técnica que permite calcular cuál deberá ser el valor exacto de resistencia que se debe

aplicar entre dos puntos para obtener la máxima transferencia de potencia desde la

fuente.

Su respuesta :

Análisis de circuitos por medio del Teorema de la Máxima Transferencia de Potencia

Correcto