35. tecnologia vocacional i (4to electronic a)

116
Tecnología Vocacional I Cuarto Grado de Bach. Ind. y Perito en Electrónica

Upload: oramnbeta

Post on 27-Jun-2015

1.037 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional

I

Cuarto Grado de

Bach. Ind. y Perito en Electrónica

Page 2: 35. Tecnologia Vocacional I (4to Electronic A)
Page 3: 35. Tecnologia Vocacional I (4to Electronic A)

Tabla de contenidoUnidad 1...................................................................................................................................................... 1

Competencia 1.1...................................................................................................................................... 1

Indicador 1.1.1......................................................................................................................................... 1

Historia de la electricidad......................................................................................................................... 2

Historia de la electrónica........................................................................................................................ 10

La electrónica..................................................................................................................................... 11

Aplicaciones de la electrónica............................................................................................................11

Conceptos generales de la electrónica...............................................................................................12

Principios de los circuitos electrónicos...............................................................................................13

Simbología electrónica....................................................................................................................... 14

Funcionamiento de componentes electrónicos...................................................................................14

Generación y transportación eléctrica....................................................................................................18

Como se genera la electricidad..........................................................................................................18

Instalación de la electricidad...............................................................................................................19

Propiedades eléctricas de los sólidos....................................................................................................21

Conductor eléctrico............................................................................................................................. 21

Resistencia eléctrica........................................................................................................................... 22

Cargas eléctricas................................................................................................................................ 22

Intensidad de la corriente...................................................................................................................24

Diferencia de potencial....................................................................................................................... 24

Resistencia-inductancia-capacidad....................................................................................................24

Magnetismo y electromagnetismo..........................................................................................................25

Teoría electromagnética..................................................................................................................... 28

Unidad 2.................................................................................................................................................... 33

Competencia 2.1.................................................................................................................................... 33

Indicador 2.1.1....................................................................................................................................... 33

Leyes teoremas...................................................................................................................................... 34

Ley de ohm......................................................................................................................................... 34

Código internacional para resistencias...............................................................................................35

Leyes de Kirchhoff.............................................................................................................................. 36

Teorema de Thevenin......................................................................................................................... 37

Ley de la mano derecha.....................................................................................................................40

Potencia................................................................................................................................................. 41

i

Page 4: 35. Tecnologia Vocacional I (4to Electronic A)

Teoría de la máxima transferencia de potencia..................................................................................41

Ley de Lenz........................................................................................................................................ 42

Regulador de voltaje.............................................................................................................................. 43

Divisor de voltaje................................................................................................................................ 43

Transformadores.................................................................................................................................... 44

Transformadores de potencia.............................................................................................................45

Tipos de transformadores................................................................................................................... 46

Unidad 3.................................................................................................................................................... 49

Competencia 3.1.................................................................................................................................... 49

Indicador 3.1.1....................................................................................................................................... 49

Semiconductores................................................................................................................................... 50

Diodos................................................................................................................................................ 51

Transistores........................................................................................................................................ 55

Indicador 3.1.2....................................................................................................................................... 56

Ondas..................................................................................................................................................... 56

Ondas sonoras................................................................................................................................... 56

Ondas de radio................................................................................................................................... 59

Ondas electromagnéticas en la radio.................................................................................................60

Unidad 4.................................................................................................................................................... 62

Competencia 4.1.................................................................................................................................... 62

Indicador 4.1.......................................................................................................................................... 62

La radio.................................................................................................................................................. 63

Introducción a la radio........................................................................................................................ 63

La radiotransmisión............................................................................................................................ 64

Superheterodinaje.............................................................................................................................. 69

Introducción a la TV blanco y negro.......................................................................................................71

Historia de la T.V................................................................................................................................ 71

Introducción........................................................................................................................................ 73

Imágenes de televisión....................................................................................................................... 74

Transmisión de televisión................................................................................................................... 78

Receptores de televisión.................................................................................................................... 79

ii

Page 5: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Unidad 1Competencia 1.1

Que manejes los principios básicos de la electricidad y de esta manera logres entender sobre el funcionamiento de aparatos simples y los conceptos correctos de la electricidad y el funcionamiento de los aparatos electrónicos.

Indicador 1.1.1

Que relaciones tienen todos los avances sociales que la electricidad y la electrónica han aportado a traves de la evolución en la historia.

1

Page 6: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Historia de la electricidadUn fragmento de ámbar como el que pudo utilizar Tales de Mileto en su experimentación del efecto triboeléctrico. El nombre en griego de este material (ελεκτρον, elektron) se utilizó para nombrar al fenómeno y la ciencia que lo estudia, a partir del libro De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure, de William Gilbert (1600).

Grabado mostrando la teoría del galvanismo según los experimentos de Luigi Galvani. De viribus electricitatis in motu musculari commentarius, 1792.

La historia de la electricidad se refiere al estudio y uso humano de la electricidad, al descubrimiento de sus leyes como fenómeno físico y a la invención de artefactos para su uso práctico.

El fenómeno en sí, fuera de su relación con el observador humano, no tiene historia; y si se la considerase como parte de la historia natural, tendría tanta como el tiempo, el espacio, la materia y la energía. Como también se denomina electricidad a la rama de la ciencia que estudia el fenómeno y a la rama de la tecnología que lo aplica, la historia de la electricidad es la rama de la historia de la ciencia y de la historia de la tecnología que se ocupa de su surgimiento y evolución.

Uno de sus hitos iniciales puede situarse hacia el año 600 a. C., cuando el filósofo griego Tales de Mileto observó que frotando una varilla de ámbar con una piel o con lana, se obtenían pequeñas cargas (efecto triboeléctrico) que atraían pequeños objetos, y frotando mucho tiempo podía causar la aparición de una chispa. Cerca de la antigua ciudad griega de Magnesia se encontraban las denominadas piedras de Magnesia, que incluían magnetita. Los antiguos griegos observaron que los trozos de este material se atraían entre sí, y también a pequeños objetos de hierro. Las palabras magneto (equivalente en español a imán) y magnetismo derivan de ese topónimo.

La electricidad evolucionó históricamente desde la simple percepción del fenómeno, a su tratamiento científico, que no se haría sistemático hasta el siglo XVIII. Se registraron a lo largo de la Edad Antigua y Media otras observaciones aisladas y simples especulaciones, así como intuiciones médicas (uso de peces eléctricos en enfermedades como la gota y el dolor de cabeza) referidas por autores como Plinio el Viejo y Escribonio Largo,1 u objetos arqueológicos de interpretación discutible, como la Batería de Bagdad,2 un objeto encontrado en Iraq en 1938, fechado alrededor de 250 a. C., que se asemeja a una celda electroquímica. No se han encontrado documentos que evidencien su utilización, aunque hay otras descripciones anacrónicas de dispositivos eléctricos en muros egipcios y escritos antiguos.

Esas especulaciones y registros fragmentarios son el tratamiento casi exclusivo (con la notable excepción del uso del magnetismo para la brújula) que hay desde la Antigüedad hasta la Revolución científica del siglo XVII; aunque todavía entonces pasa a ser poco más que un espectáculo para exhibir en los salones. Las primeras aportaciones que pueden entenderse como aproximaciones sucesivas al fenómeno eléctrico fueron realizadas por investigadores sistemáticos como William Gilbert, Otto von Guericke, Du Fay, Pieter van Musschenbroek (botella de Leyden) o William Watson. Las observaciones sometidas a método científico empiezan a dar sus frutos con Luigi Galvani, Alessandro Volta, Charles-Augustin de Coulomb o Benjamin Franklin, proseguidas a comienzos del siglo XIX por André-Marie Ampère, Michael Faraday o Georg Ohm. Los nombres de estos pioneros terminaron bautizando las unidades hoy utilizadas en la medida de las distintas magnitudes del fenómeno. La comprensión final de la electricidad se logró recién con su unificación con el magnetismo en un único fenómeno electromagnético descrito por las ecuaciones de Maxwell (1861-1865).

2

Page 7: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

El telégrafo eléctrico (Samuel Morse, 1833, precedido por Gauss y Weber, 1822) puede considerarse como la primera gran aplicación en el campo de las telecomunicaciones, pero no será en la primera revolución industrial, sino a partir del cuarto final del siglo XIX cuando las aplicaciones económicas de la electricidad la convertirán en una de las fuerzas motrices de la segunda revolución industrial. Más que de grandes teóricos como Lord Kelvin, fue el momento de ingenieros, como Zénobe Gramme, Nikola Tesla, Frank Sprague, George Westinghouse, Ernst Werner von Siemens, Alexander Graham Bell y sobre todo Thomas Alva Edison y su revolucionaria manera de entender la relación entre investigación científico-técnica y mercado capitalista. Los sucesivos cambios de paradigma de la primera mitad del siglo XX (relativista y cuántico) estudiarán la función de la electricidad en una nueva dimensión: atómica y subatómica.

Multiplicador de tensión Cockcroft-Walton utilizado en un acelerador de partículas de 1937, que alcanzaba un millón de voltios.

La electrificación no sólo fue un proceso técnico, sino un verdadero cambio social de implicaciones extraordinarias, comenzando por el alumbrado y siguiendo por todo tipo de procesos industriales (motor eléctrico, metalurgia, refrigeración...) y de comunicaciones (telefonía, radio). Lenin, durante la Revolución bolchevique, definió el socialismo como la suma de la electrificación y el poder de los soviets,3 pero fue sobre todo la sociedad de consumo que nació en los países capitalistas, la que dependió en mayor medida de la utilización doméstica de la electricidad en los electrodomésticos, y fue en estos países donde la retroalimentación entre ciencia, tecnología y sociedad desarrolló las complejas estructuras que permitieron los actuales sistemas de I+D e I+D+I, en que la iniciativa pública y privada se interpenetran, y las figuras individuales se difuminan en los equipos de investigación.

La energía eléctrica es esencial para la sociedad de la información de la tercera revolución industrial que se viene produciendo desde la segunda mitad del siglo XX (transistor, televisión, computación, robótica, internet...). Únicamente puede comparársele en importancia la motorización dependiente del petróleo (que también es ampliamente utilizado, como los demás combustibles fósiles, en la generación de electricidad). Ambos procesos exigieron cantidades cada vez mayores de energía, lo que está en el origen de la crisis energética y medioambiental y de la búsqueda de nuevas fuentes de energía, la mayoría con inmediata utilización eléctrica (energía nuclear y energías alternativas, dadas las limitaciones de la tradicional hidroelectricidad). Los problemas que tiene la electricidad para su almacenamiento y transporte a largas distancias, y para la autonomía de los aparatos móviles, son retos técnicos aún no resueltos de forma suficientemente eficaz.

El impacto cultural de lo que Marshall McLuhan denominó Edad de la Electricidad, que seguiría a la Edad de la Mecanización (por comparación a cómo la Edad de los Metales siguió a la Edad de Piedra), radica en la altísima velocidad de propagación de la radiación electromagnética (300.000 km/s) que hace que se perciba de forma casi instantánea. Este hecho conlleva posibilidades antes inimaginables, como la simultaneidad y la división de cada proceso en una secuencia. Se impuso un cambio cultural que provenía del enfoque en "segmentos especializados de atención" (la adopción de una perspectiva particular) y la idea de la "conciencia sensitiva instantánea de la totalidad", una atención al "campo total", un "sentido de la estructura total". Se hizo evidente y prevalente el sentido de "forma y función como una unidad", una "idea integral de la estructura y configuración". Estas nuevas concepciones mentales tuvieron gran impacto en todo tipo de ámbitos científicos, educativos e incluso artísticos (por ejemplo, el cubismo). En el ámbito de lo espacial y político, "la electricidad no centraliza, sino que descentraliza... mientras que el ferrocarril requiere un espacio político uniforme, el avión y la radio permiten la mayor discontinuidad y diversidad en la organización espacial".

3

Page 8: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Siglo XVII

La Revolución científica que se venía produciendo desde Copérnico en la astronomía y Galileo en la física no va a encontrar aplicaciones muy tempranas al campo de la electricidad, limitándose la actividad de los pocos autores que tratan sobre ella a la recopilación baconiana de datos experimentales, que por el momento no alcanzan a inducir modelos explicativos.

William Gilbert: materiales eléctricos y materiales aneléctricos (1600)

El científico inglés William Gilbert (1544-1603) publicó su libro De Magnete, en donde utiliza la palabra latina electricus, derivada del griego elektron, que significa ámbar, para describir los fenómenos descubiertos por los griegos.[5]

Previamente, el italiano Gerolamo Cardano había ya distinguido, quizá por primera vez, entre las fuerzas magnéticas y las eléctricas (De Subtilitate 1550). Gilbert estableció las diferencias entre ambos fenómenos a raíz de que la reina Isabel I de Inglaterra le ordenara estudiar los imanes para mejorar la exactitud de las brújulas usadas en la navegación, consiguiendo con este trabajo la base principal para la definición de los fundamentos de la electrostática y magnetismo. A través de sus experiencias clasificó los materiales en eléctricos (aislantes) y aneléctricos (conductores) e ideó el primer electroscopio. Descubrió la imantación por influencia, y observó que la imantación del hierro se pierde cuando se calienta al rojo. Estudió la

inclinación de una aguja magnética concluyendo que la Tierra se comporta como un gran imán. El Gilbert es la unidad de medida de la fuerza magnetomotriz.[]

Siglo XVIII: la Revolución industrial

La crisis de la conciencia europea renueva el panorama intelectual de finales del siglo XVII a principios del siglo XVIII y abre las puertas al llamado Siglo de las luces o de la Ilustración. Instituciones científicas de nuevo cuño, como la Royal Academy inglesa, y el espíritu crítico que los enciclopedistas franceses extienden por todo el continente, conviven con el inicio de la Revolución industrial. No obstante, la retroalimentación entre ciencia, tecnología y sociedad, aún no se había producido. Aparte del pararrayos, ninguna de las innovaciones técnicas del siglo tuvo que ver con las investigaciones científicas sobre la electricidad, hecho que no es exclusivo de este campo: la mismísima máquina de vapor precedió en cien años a la definición de la termodinámica por:

Benjamín Franklin: el pararrayos (1752)

1752 El polifacético estadounidense Benjamín Franklin (1706-1790) investigó los fenómenos eléctricos naturales. Es particularmente famoso su experimento en el que, haciendo volar una cometa durante una tormenta, demostró que los rayos eran descargas eléctricas de tipo electrostático. Como consecuencia de estas experimentaciones inventó el pararrayos. También formuló una teoría según la cual la electricidad era un fluido único existente en toda materia y calificó a las substancias en eléctricamente positivas y eléctricamente negativas, de acuerdo con el exceso o defecto de ese fluido[.

Charles-Agustín de Coulomb: fuerza entre dos cargas (1777)

4

Page 9: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

El físico e ingeniero francés Charles-Agustín de Coulomb (1736 - 1806) fue el primero en establecer las leyes cuantitativas de la electrostática, además de realizar muchas investigaciones sobre magnetismo, rozamiento y electricidad. Sus investigaciones científicas están recogidas en siete memorias, en las que expone teóricamente los fundamentos del magnetismo y de la electrostática. En 1777 inventó la balanza de torsión para medir la fuerza de atracción o repulsión que ejercen entre sí dos cargas eléctricas y estableció la función que liga esta fuerza con la distancia. Con este invento, culminado en 1785, Coulomb pudo establecer la expresión de la fuerza entre dos cargas eléctricas q y Q en función de la distancia d que las separa, actualmente conocida como Ley de Coulomb: F = k (q Q) / d2. Coulomb también estudió la electrización por frotamiento y la polarización e introdujo el concepto de momento magnético. El Coulomb (símbolo C), castellanizado a Culombio, es la unidad del SI para la medida de la cantidad de carga eléctrica.[]

Alessandro Volta: la pila de Volta (1800)

El físico italiano Alessandro Volta (1745-1827) inventa la pila, precursora de la batería eléctrica. Con un apilamiento de discos de cinc y cobre, separados por discos de cartón humedecidos con un electrólito, y unidos en sus extremos por un circuito exterior, Volta logró, por primera vez, producir corriente eléctrica continua a voluntad.[15] Dedicó la mayor parte de su vida al estudio de los fenómenos eléctricos, inventó el electrómetro y el eudiómetro y escribió numerosos tratados científicos. Por su trabajo en el campo de la electricidad, Napoleón le nombró conde en 1801. La unidad de tensión eléctrica o fuerza electromotriz, el Volt (símbolo V), castellanizado como Voltio, recibió ese nombre en su honor.[]

Principios del siglo XIX: el tiempo de los teóricos

El propósito de la ciencia optimista surgida de la Ilustración era la comprensión total de la realidad. En el ámbito de la electricidad la clave sería describir estas fuerzas a distancia como en las ecuaciones de la mecánica newtoniana. Pero la realidad era mucho más compleja como para dar fácil cumplimiento a este programa. La capacidad de desviar agujas imantadas, descubierta por Oersted (1820), y la inducción electromagnética descubierta por Faraday (1821), acabaron por interrelacionar la electricidad con el magnetismo y los movimientos mecánicos. La teoría completa del campo electromagnético tuvo que esperar a Maxwell, e incluso entonces (1864), al comprobarse que una de las constantes que aparecían en su teoría tenía el mismo valor que la velocidad de la luz, se apuntó la necesidad de englobar también la óptica en el electromagnetismo.[]

El romanticismo, con su gusto por lo tétrico y su desconfianza en la razón, añadió un lado oscuro a la consideración de la electricidad, que excitaba la imaginación de la forma más morbosa: ¿el dominio humano de tal fuerza de la naturaleza le pondría al nivel creador que hasta entonces sólo se imaginaba al alcance de seres divinos? Con cadáveres y electricidad Mary Wollstonecraft Shelley compuso la trama de Frankenstein o el moderno Prometeo (1818), novela precursora tanto del género de terror como de la ciencia ficción.

Hans Christian Ørsted: el electromagnetismo (1819)

5

Page 10: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

El físico y químico danés Hans Christian Ørsted (1777-1851) fue un gran estudioso del electromagnetismo. En 1813 predijo la existencia de los fenómenos electromagnéticos y en 1819 logró demostrar su teoría empíricamente al descubrir, junto con Ampere, que una aguja imantada se desvía al ser colocada en dirección perpendicular a un conductor por el que circula una corriente eléctrica. Este descubrimiento fue crucial en el desarrollo de la electricidad, ya que puso en evidencia la relación existente entre la electricidad y el magnetismo. En homenaje a sus contribuciones se denominó Oersted (símbolo Oe) a la unidad de intensidad de campo magnético en el sistema Gauss. Se cree que también fue el primero en aislar el aluminio, por electrólisis, en 1825. En 1844 publicó su Manual de Física Mecánica.[]

André-Marie Ampère: el solenoide (1822)

El físico y matemático francés André-Marie Ampère (1775-1836) está considerado como uno de los descubridores del electromagnetismo. Es conocido por sus importantes aportaciones al estudio de la corriente eléctrica y el magnetismo que constituyeron, junto con los trabajos del danés Hans Chistian Oesterd, el desarrollo del electromagnetismo. Sus teorías e interpretaciones sobre la relación entre electricidad y magnetismo se publicaron en 1822, en su Colección de observaciones sobre electrodinámica y en 1826, en su Teoría de los fenómenos electrodinámicos. Ampère descubrió las leyes que determinan el desvío de una aguja magnética por una corriente eléctrica, lo que hizo posible el funcionamiento de los actuales aparatos de medida.

Descubrió las acciones mutuas entre corrientes eléctricas, al demostrar que dos conductores paralelos por los que circula una corriente en el mismo sentido, se atraen, mientras que si los sentidos de la corriente son opuestos, se repelen. La unidad de intensidad de corriente eléctrica, el Ampère (símbolo A), castellanizada como Amperio, recibe este nombre en su honor.[]

William Sturgeon: el electroimán (1825), el conmutador (1832) y el galvanómetro (1836)

El físico británico William Sturgeon (1783-1850) inventó en 1825 el primer electroimán. Era un trozo de hierro con forma de herradura envuelto por una bobina enrollada sobre él mismo. Sturgeon demostró su potencia levantando 4 kg con un trozo de hierro de 200 g envuelto en cables por los que hizo circular la corriente de una batería. Sturgeon podía regular su electroimán, lo que supuso el principio del uso de la energía eléctrica en máquinas útiles y controlables, estableciendo los cimientos para las comunicaciones electrónicas a gran escala. Este dispositivo condujo a la invención del telégrafo, el motor eléctrico y muchos otros dispositivos que fueron base de la tecnología moderna. En 1832 inventó el conmutador para motores eléctricos y en 1836 inventó el primer galvanómetro de bobina giratoria.

[]

Georg Simon Ohm: la ley de Ohm (1827)

Georg Simon Ohm (1789-1854) fue un físico y matemático alemán que estudió la relación entre el voltaje V aplicado a una resistencia R y la intensidad de

6

Page 11: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

corriente I que circula por ella. En 1827 formuló la ley que lleva su nombre (la ley de Ohm), cuya expresión matemática es V = I · R. También se interesó por la acústica, la polarización de las pilas y las interferencias luminosas. En su honor se ha bautizado a la unidad de resistencia eléctrica con el nombre de Ohm (símbolo Ω),

Joseph Henry: inducción electromagnética (1830)

El estadounidense Joseph Henry (1797-1878) fue un físico que investigó el electromagnetismo y sus aplicaciones en electroimanes y relés. Descubrió la inducción electromagnética, simultánea e independientemente de Faraday, cuando observó que un campo magnético variable puede inducir una fuerza electromotriz en un circuito cerrado. En su versión más simple, el experimento de Henry consiste en desplazar un segmento de conductor perpendicularmente a un campo magnético, lo que produce una diferencia de potencial entre sus extremos. Esta fuerza electromotriz inducida se explica por la fuerza de Lorentz que ejerce el campo magnético sobre los electrones libres del conductor. En su honor se denominó Henry (símbolo H) a la unidad de inductancia, castellanizada como Henrio.[]

Johann Carl Friedrich Gauss: Teorema de Gauss de la electrostática

1832-1835. El matemático, astrónomo y físico alemán Johann Carl Friedrich Gauss (1777-1855), hizo importantes contribuciones en campos como la teoría de números, el análisis matemático, la geometría diferencial, la geodesia, la electricidad, el magnetismo y la óptica. Considerado uno de los matemáticos de mayor y más duradera influencia, se contó entre los primeros en extender el concepto de divisibilidad a conjuntos diferentes de los numéricos. En 1831 se asoció al físico Wilhelm Weber durante seis fructíferos años durante los cuales investigaron importantes problemas como las Leyes de Kirchhoff y del magnetismo, construyendo un primitivo telégrafo eléctrico. Su contribución más importante a la electricidad es la denominada Ley de Gauss, que relaciona la

carga eléctrica q contenida en un volumen V con el flujo del campo eléctrico sobre la cerrada superficie S que encierra el volumen V, cuya expresión matemática es:

.

En su honor se dio el nombre de Gauss (símbolo G) a la unidad de intensidad de campo magnético del Sistema Cegesimal de Unidades (CGS). Su relación con la correspondiente unidad del Sistema Internacional de Unidades (SI), el Tesla (símbolo T), es 1 G = 10-4 T.[24]

Michael Faraday: inducción (1831), generador (1831-1832), leyes y jaula de Faraday

El físico y químico inglés Michael Faraday (1791-1867), discípulo de Humphry Davy, es conocido principalmente por su descubrimiento de la inducción electromagnética, que ha permitido la construcción de generadores y motores eléctricos, y de las leyes de la electrólisis por lo que es considerado como el verdadero fundador del electromagnetismo y de la electroquímica. En 1831

7

Page 12: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

trazó el campo magnético alrededor de un conductor por el que circula una corriente eléctrica, ya descubierto por Oersted, y ese mismo año descubrió la inducción electromagnética, demostró la inducción de una corriente eléctrica por otra, e introdujo el concepto de líneas de fuerza para representar los campos magnéticos. Durante este mismo periodo, investigó sobre la electrólisis y descubrió las dos leyes fundamentales que llevan su nombre: 1ª). La masa de sustancia liberada en una electrólisis es directamente proporcional a la cantidad de electricidad que ha pasado a través del electrólito [masa = equivalente electroquímico, por la intensidad y por el tiempo (m = c I t)]; 2ª) Las masas de distintas sustancia liberadas por la misma cantidad de electricidad son directamente proporcionales a sus pesos equivalentes. Con sus investigaciones se dio un paso fundamental en el desarrollo de la electricidad al establecer que el magnetismo produce electricidad a través del movimiento. En su honor se denominó Farad (símbolo F), castellanizado como Faradio, a la unidad de capacidad eléctrica del SI de unidades. El Faradio se define como la capacidad de un condensador tal que cuando su carga es un Culombio, adquiere una diferencia de potencial electrostático de un voltio.[]

Samuel Morse: telégrafo

El inventor estadounidense Samuel Finley Breese Morse (1791-1872) es principalmente conocido por la invención del telégrafo eléctrico y la invención del código Morse. Su interés por los asuntos de la electricidad se concretó durante el regreso de un viaje por Europa. Cuando estudiaba en Yale aprendió que si se interrumpía un circuito se veía un fulgor y se le ocurrió que esas interrupciones podían llegar a usarse como un medio de comunicación. Al desembarcar de aquel viaje en 1832, ya había diseñado un incipiente telégrafo y comenzaba a desarrollar la idea de un sistema telegráfico de alambres con un electromagneto incorporado. El 6 de enero de 1833, Morse realizó su primera demostración pública con su telégrafo mecánico óptico y efectuó con éxito las primeras pruebas en febrero de 1837 en un concurso convocado por el

Congreso de los Estados Unidos. También inventó un alfabeto, que representa las letras y números por una serie de puntos y rayas, conocido actualmente como código Morse, para poder utilizar su telégrafo. En el año 1843, el Congreso de los Estados Unidos le asignó 30.000 dólares para que construyera la primera línea de telégrafo entre Washington y Baltimore, en colaboración con Joseph Henry. El 24 de mayo de 1844 Morse envió su famoso primer mensaje: «¿Que nos ha traído Dios?». Fue objeto de muchos honores y en sus últimos años se dedicó a experimentar con la telegrafía submarina por cable.[28]

Gustav Robert Kirchhoff: leyes de Kirchhoff (1845)

Las principales contribuciones a la ciencia del físico alemán Gustav Robert Kirchhoff (1824-1887), estuvieron en el campo de los circuitos eléctricos, la teoría de placas, la óptica, la espectroscopía y la emisión de radiación de cuerpo negro. Kirchhoff propuso el nombre de radiación de cuerpo negro en 1862. Es responsable de dos conjuntos de leyes fundamentales en la teoría

8

Page 13: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

clásica de circuitos eléctricos y en la emisión térmica. Aunque ambas se denominan Leyes de Kirchhoff, probablemente esta denominación es más común en el caso de las Leyes de Kirchhoff de la ingeniería eléctrica. Estas leyes permiten calcular la distribución de corrientes y tensiones en las redes eléctricas con derivaciones y establecen lo siguiente: 1ª) La suma algebraica de las intensidades que concurren en un punto es igual a cero. 2ª) La suma algebraica de los productos parciales de intensidad por resistencia, en una malla, es igual a la suma algebraica de las fuerzas electromotrices en ella existentes, cuando la intensidad de corriente es constante. Junto con los químicos alemanes Robert Wilhelm Bunsen y Joseph von Fraunhofer, fue de los primeros en desarrollar las bases teóricas y experimentales de la espectroscopia, desarrollando el espectroscopio moderno para el análisis químico. En 1860 Kirchhoff y

Bunsen descubrieron el cesio y el rubidio .

Actividad 1

Hacer una investigación sobre la historia de la electricidad, como se genera y como se transporta.

Paso 1

Consulta información sobre historia de la electricidad, transportación y generación

Paso 2

Formar grupos de 4 integrantes para discutir la información de la historia de la electricidad.

Paso 3

Redactar un resumen y entregarlo al catedrático sobre la electricidad y su transportación, su generación (formas de generar energía), tomando en cuenta los lineamientos de un resumen.

Historia de la electrónica

Se considera que la electrónica comenzó con el diodo de vacío inventado por John Ambrose Fleming en 1904. El funcionamiento de este dispositivo está basado en el efecto Edison. Edison fue el primero que observó en 1883 la emisión termoiónica, al colocar una lámina dentro de una bombilla para evitar el ennegrecimiento que producía en la ampolla de vidrio el filamento de carbón. Cuando se polarizaba

9

RESUMEN: Es una técnica que consiste en adquirir información de un contenido y extraer las ideas principales de una forma, manteniendo las palabras del autor.

Page 14: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

positivamente la lámina metálica respecto al filamento, se producía una pequeña corriente entre el filamento y la lámina. Este hecho se producía porque los electrones de los átomos del filamento, al recibir una gran cantidad de energía en forma de calor, escapaban de la atracción del núcleo (emisión termoiónica) y, atravesando el espacio vacío dentro de la bombilla, eran atraídos por la polaridad positiva de la lámina.

El otro gran paso lo dio Lee De Forest cuando inventó el triodo en 1906. Este dispositivo es básicamente como el diodo de vacío, pero se le añadió una rejilla de control situada entre el cátodo y la placa, con el objeto de modificar la nube electrónica del cátodo, variando así la corriente de placa. Este fue un paso muy importante para la fabricación de los primeros amplificadores de sonido, receptores de radio, televisores, etc.

Conforme pasaba el tiempo, las válvulas de vacío se fueron perfeccionando y mejorando, apareciendo otros tipos, como los tetrodos (válvulas de cuatro electrodos), los pentodos (cinco electrodos), otras válvulas para aplicaciones de alta potencia, etc. Dentro de los perfeccionamientos de las válvulas se encontraba su miniaturización.

Pero fue definitivamente con el transistor, aparecido de la mano de Bardeen y Brattain, de la Bell Telephone, en 1948, cuando se permitió aún una mayor miniaturización de aparatos tales como las radios. El transistor de unión apareció algo más tarde, en 1949. Este es el dispositivo utilizado actualmente para la mayoría de las aplicaciones de la electrónica. Sus ventajas respecto a las válvulas son entre otras: menor tamaño y fragilidad, mayor rendimiento energético, menores tensiones de alimentación, etc. El transistor no funciona en vacío como las válvulas, sino en un estado sólido semiconductor (silicio), razón por la que no necesita centenares de voltios de tensión para funcionar.

A pesar de la expansión de los semiconductores, todavía se siguen utilizando las válvulas en pequeños círculos audiófilos, porque constituyen uno de sus mitos más extendidos.

El transistor tiene tres terminales (el emisor, la base y el colector) y se asemeja a un triodo: la base sería la rejilla de control, el emisor el cátodo, y el colector la placa. Polarizando adecuadamente estos tres terminales se consigue controlar una gran corriente de colector a partir de una pequeña corriente de base.

En 1958 se desarrolló el primer circuito integrado, que alojaba seis transistores en un único chip. En 1970 se desarrolló el primer microprocesador, Intel 4004. En la actualidad, los campos de desarrollo de la electrónica son tan vastos que se ha dividido en varias disciplinas especializadas. La mayor división es la que distingue la electrónica analógica de la electrónica digital.

La electrónica es, por tanto, una de las ramas de la ingeniería con mayor proyección en el futuro, junto con la informática.

La electrónica

La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente.

Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la construcción de circuitos electrónicos para resolver problemas

10

Page 15: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

prácticos forma parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales.

Aplicaciones de la electrónica

La electrónica desarrolla en la actualidad una gran variedad de tareas. Los principales usos de los circuitos electrónicos son el control, el procesado, la distribución de información, la conversión y la distribución de la energía eléctrica. Estos dos usos implican la creación o la detección de campos electromagnéticos y corrientes eléctricas. Entonces se puede decir que la electrónica abarca en general las siguientes áreas de aplicación:

Electrónica de control Telecomunicaciones Electrónica de potencia

Sistemas electrónicos

Un sistema electrónico es un conjunto de circuitos que interactúan entre sí para obtener un resultado. Una forma de entender los sistemas electrónicos consiste en dividirlos en las siguientes partes:

1. Entradas o Inputs – Sensores (o transductores) electrónicos o mecánicos que toman las señales (en forma de temperatura, presión, etc.) del mundo físico y las convierten en señales de corriente o voltaje. Ejemplo: El termopar, la foto resistencia para medir la intensidad de la luz, etc.

2. Circuitos de procesamiento de señales – Consisten en piezas electrónicas conectadas juntas para manipular, interpretar y transformar las señales de voltaje y corriente provenientes de los transductores.

3. Salidas o Outputs – Actuadores u otros dispositivos (también transductores) que convierten las señales de corriente o voltaje en señales físicamente útiles. Por ejemplo: un display que nos registre la temperatura, un foco o sistema de luces que se encienda automáticamente cuando este obscureciendo.

Básicamente son tres etapas: La primera (transductor), la segunda (circuito procesador) y la tercera (circuito actuador).

Como ejemplo supongamos un televisor. Su entrada es una señal de difusión recibida por una antena o por un cable. Los circuitos de procesado de señales del interior del televisor extraen la información sobre el brillo, el color y el sonido de esta señal. Los dispositivos de salida son un tubo de rayos catódicos que convierte las señales electrónicas en imágenes visibles en una pantalla y unos altavoces. Otro ejemplo puede ser el de un circuito que ponga de manifiesto la temperatura de un proceso, el transductor puede

11

Page 16: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

ser un termocouple, el circuito de procesamiento se encarga de convertir la señal de entrada en un nivel de voltaje (comparador de voltaje o de ventana) en un nivel apropiado y mandar la información decodificándola a un display donde nos dé la temperatura real y si esta excede un límite preprogramado activar un sistema de alarma (circuito actuador) para tomar las medida pertinentes.

Señales electrónicas

Es la representación de un fenómeno físico o estado material a través de una relación establecida; las entradas y salidas de un sistema electrónico serán señales variables.

En electrónica se trabaja con variables que toman la forma de Tensión o corriente estas se pueden denominar comúnmente señales. Las señales primordialmente pueden ser de dos tipos:

Variable analógica – Son aquellas que pueden tomar un número infinito de valores comprendidos entre dos límites. La mayoría de los fenómenos de la vida real dan señales de este tipo. (presión, temperatura, etc.)

Variable digital– También llamadas variables discretas, entendiéndose por estas, las variables que pueden tomar un número finito de valores. Por ser de fácil realización los componentes físicos con dos estados diferenciados, es este el número de valores utilizado para dichas variables, que por lo tanto son binarias. Siendo estas variables más fáciles de tratar (en lógica serian los valores V y F) son los que generalmente se utilizan para relacionar varias variables entre sí y con sus estados anteriores.

Conceptos generales de la electrónica

Tensión

Es la diferencia de potencial generada entre los extremos de un componente o dispositivo eléctrico.

Corriente

También denominada intensidad, es el flujo de electrones libres a través de un conductor o semiconductor en un sentido. La unidad de medida de este parámetro es el amperio (A). Al igual que existen tensiones continuas o alternas, las intensidades también pueden ser continuas o alternas, dependiendo del tipo de tensión que se utiliza para generar estos flujos de corriente.

Resistencia

Es la propiedad física mediante la cual todos los materiales tienden a oponerse al flujo de la corriente. La unidad de este parámetro es el Ohmio (Ω). No debe confundirse con el componente resistor

Principios de los circuitos electrónicos

Se denomina circuito electrónico a una serie de elementos o componentes eléctricos (tales como resistencias, inductancias, condensadores y fuentes) o electrónicos, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas. Los circuitos electrónicos o eléctricos se pueden clasificar de varias maneras:

12

Page 17: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Por el tipo de información

Por el tipo de régimen Por el tipo de señal Por su configuración

AnalógicosDigitalesMixtos

PeriódicoTransitorioPermanente

De corriente continuaDe corriente alternaMixtos

SerieParaleloMixtos

Componentes

Para la síntesis de circuitos electrónicos se utilizan componentes electrónicos e instrumentos electrónicos. A continuación se presenta una lista de los componentes e instrumentos más importantes en la electrónica, seguidos de su uso más común:

Altavoz: reproducción de sonido. Cable: conducción de la electricidad. Conmutador: reencaminar una entrada a una salida elegida entre dos o más. Interruptor: apertura o cierre de circuitos, manualmente. Pila: generador de energía eléctrica. Transductor: transformación de una magnitud física en una eléctrica (ver enlace). Visualizador: muestra de datos o imágenes.

Dispositivos analógicos (algunos ejemplos)

Amplificador operacional: amplificación, regulación, conversión de señal, conmutación. Capacitor: almacenamiento de energía, filtrado, adaptación impedancias. Diodo: rectificación de señales, regulación, multiplicador de tensión. Diodo Zener: regulación de tensiones. Inductor: adaptación de impedancias. Potenciómetro: variación de la corriente eléctrica o la tensión. Relé: apertura o cierre de circuitos mediante señales de control. Resistor o Resistencia: división de intensidad o tensión, limitación de intensidad. Transistor: amplificación, conmutación.

Dispositivos digitales

Biestable: control de sistemas secuenciales. Memoria: almacenamiento digital de datos. Microcontrolador: control de sistemas digitales. Puerta lógica: control de sistemas combinacionales.

Dispositivos de potencia

DIAC: control de potencia. Fusible: protección contra sobre-intensidades. Tiristor: control de potencia. Transformador: elevar o disminuir tensiones, intensidades, e impedancia aparente. Triac: control de potencia.

13

Page 18: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Varistor: protección contra sobre-tensiones.

Simbología electrónica.

Funcionamiento de componentes electrónicos

1) Batería

Función: Almacena energía eléctrica, su letra en el esquema es la B.

2) Interruptores Swiches.

Función: Un interruptor es un dispositivo que abre o cierra un circuito eléctrico. Pueden tener cualquier número de terminales. Son necesarios, al menos dos. Su letra esquemática es la S.

3) Resistor

Función: Un resistor es un dispositivo que limita o controla la corriente que fluye a través de un circuito, presentando una oposición o resistencia al paso de la corriente, su letra esquemática es R.

4) Potenciómetro

Función: Es una resistencia variable, que controla también el paso de la corriente, su letra esquemática es la R.

14

Page 19: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

5) Fotocelda

Función: Es un tipo especial de resistencia, que varia de acuerdo a la intensidad de la luz, que incide en su superficie, su letra esquemática es: P

6) Capacitores o condensadores de cerámica

Función: Un capacitor o condensador actúa como una batería temporal, pues almacena electricidad. Los de cerámica almacenan pequeñas cantidades de electricidad, su letra esquemática es: C

7) Capacitores o condensadores electrolíticos

Función: Este tipo de condensadores almacenan cantidades relativamente grandes de energía eléctrica. A diferencia de los de cerámica poseen polaridad; lo que significa que tienen un terminal positivo y uno negativo y por lo tanto se debe tener cuidado al conectarlos en un circuito. Deben instalarse en la dirección correcta. Su letra esquemática es: C.

8) Diodos

Función: Es un dispositivo en el cual circula la corriente en una sola dirección. Puede compararse el diodo como una calle de una sola vía, o una válvula (De chorro de agua). Posee dos terminales, uno es el ánodo y el otro es el cátodo. En la parte física el cátodo se indica con una banda que rodea el cuerpo del diodo. Su letra esquemática es la D.

9) Diodos emisores de luz (LED)

Función: Es una clase especial de diodo, que emite luz cuando fluye una corriente a través de el, tiene dos terminales llamados ánodo y cátodo. El cátodo es indicado por un lado plano en la cubierta de plástico del LED o por el terminal más corto, su letra esquemática es D.

10) SCR

Función: Es un tipo de diodo especial que permite el paso de corriente solo luego que un voltaje positivo sea aplicado momentáneamente a uno de sus terminales. Este dispositivo consta de tres terminales: Anodo, cátodo y puerta ( gate). Cuando hablamos de aplicar voltaje positivo es al terminal puerta. Su letra esquemática es SCR.

11) Transistor

Función: Es un componente usado para conmutar, amplificar, oscilar, demodular, modular, rectificar, y regular corriente. Tiene tres terminales llamados, Emisor, base y colector. Dependiendo de su fabricación son: NPN y PNP, su letra esquemática es Q.

12) Circuito integrado

15

Page 20: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Función: Los circuitos integrados contienen muchos componentes como por ejemplo transistores, diodos, resistores, condensadores, etc. Colocados dentro de un paquete muy pequeño llamado CHIP. Cada clase de circuitos integrados efectúan una función distinta de acuerdo con los componentes que posea y a la forma de cómo están conectados con otros componentes, su letra esquemática es IC.

13) Parlantes

Función: El propósito de el parlante es producir sonido convirtiendo la corriente que fluye a través de el en ondas sonoras. Se puede usar como micrófono convirtiendo las ondas sonoras en flujo de corriente. Su letra esquemática es SP.

Indicador 1.1.2

Que conozcas y practiques las formas de obtener energía eléctrica por medio de elementos químicos .

Datos importantes:

Realizar el siguiente experimento:

Pila voltaica: Una pila voltaica aprovecha la electricidad de una reacción química espontánea para encender una bombilla (foco). Las tiras de cinc y cobre, dentro de disoluciones de ácido sulfúrico diluido y sulfato de cobre respectivamente, actúan como electrodos. El puente salino (en este caso cloruro de potasio) permite a los electrones fluir entre las cubetas sin que se mezclen las disoluciones. Cuando el circuito entre los dos sistemas se completa (como se muestra a la derecha), la reacción genera una corriente eléctrica. Obsérvese que el metal de la tira de cinc se consume (oxidación) y la tira desaparece. La tira de cobre crece al reaccionar los electrones con la disolución de sulfato de cobre para producir metal adicional (reducción).

Paso 1

Conseguir dos recipientes del tamaño de un vaso grande.

Paso 2

Obtener una tira de zinc y una tira de sulfato de cobre de 15 cm. Cada una.

Paso 3

16

Page 21: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Llenar cada un recipiente con acido sulfúrico y el otro con sulfato de cobre

Paso 4

En medio usar cloruro de potasio.

Paso 5

Entre vaso y vaso colocar un bombillo tal como lo muestra la figura y un intermedio de cloruro de potasio entre vaso y vaso.

Si se sustituye la bombilla por una batería la reacción se invertirá, creando una célula electrolítica.

Pila eléctrica, dispositivo que convierte la energía química en eléctrica. Todas las pilas consisten en un electrólito (que puede ser líquido, sólido o en pasta), un electrodo positivo y un electrodo negativo. El electrólito es un conductor iónico; uno de los electrodos produce electrones y el otro electrodo los recibe. Al conectar los electrodos al circuito que hay que alimentar, se produce una corriente eléctrica.

Generación y transportación eléctrica.

Como se genera la electricidad.

Generación y transporte de electricidad, conjunto de instalaciones que se utilizan para transformar otros tipos de energía en electricidad y transportarla hasta los lugares donde se consume. La generación y transporte de energía en forma de electricidad tiene importantes ventajas económicas debido al coste por unidad generada. Las instalaciones eléctricas también permiten utilizar la energía hidroeléctrica a mucha distancia del lugar donde se genera. Estas instalaciones suelen utilizar corriente alterna, ya que es fácil reducir o elevar el voltaje con transformadores. De esta manera, cada parte del sistema puede funcionar con el voltaje apropiado. Las instalaciones eléctricas tienen seis elementos principales: la central

17

Page 22: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

eléctrica, los transformadores, que elevan el voltaje de la energía eléctrica generada a las altas tensiones utilizadas en las líneas de transporte, las líneas de transporte, las subestaciones donde la señal baja su voltaje para adecuarse a las líneas de distribución, las líneas de distribución y los transformadores que bajan el voltaje al valor utilizado por los consumidores.

En una instalación normal, los generadores de la central eléctrica suministran voltajes de 26.000 voltios; voltajes superiores no son adecuados por las dificultades que presenta su aislamiento y por el riesgo de cortocircuitos y sus consecuencias. Este voltaje se eleva mediante transformadores a tensiones entre 138.000 y 765.000 voltios para la línea de transporte primaria (cuanto más alta es la tensión en la línea, menor es la corriente y menores son las pérdidas, ya que éstas son proporcionales al cuadrado de la intensidad de corriente). En la subestación, el voltaje se transforma en tensiones entre 69.000 y 138.000 voltios para que sea posible transferir la electricidad al sistema de distribución. La tensión se baja de nuevo con transformadores en cada punto de distribución. La industria pesada suele trabajar a 33.000 voltios (33 kilovoltios), y los trenes eléctricos requieren de 15 a 25 kilovoltios. Para su suministro a los consumidores se baja más la tensión: la industria suele trabajar a tensiones entre 380 y 415 voltios, y las viviendas reciben entre 220 y 240 voltios en algunos países y entre 110 y 125 en otros.

El desarrollo actual de los rectificadores de estado sólido para alta tensión hace posible una conversión económica de alta tensión de corriente alterna a alta tensión de corriente continua para la distribución de electricidad (véase Rectificación). Esto evita las pérdidas inductivas y capacitivas que se producen en la transmisión de corriente alterna (véase más abajo).

La estación central de una instalación eléctrica consta de una máquina motriz, como una turbina de combustión, que mueve un generador eléctrico.

La mayor parte de la energía eléctrica del mundo se genera en centrales térmicas alimentadas con carbón, aceite, energía nuclear o gas; una pequeña parte se genera en centrales hidroeléctricas, diesel o provistas de otros sistemas de combustión interna.

Las líneas de conducción se pueden diferenciar según su función secundaria en líneas de transporte (altos voltajes) y líneas de distribución (bajos voltajes). Las primeras se identifican a primera vista por el tamaño de las torres o apoyos, la distancia entre conductores, las largas series de platillos de que constan los aisladores y la existencia de una línea superior de cable más fino que es la línea de tierra. Las líneas de distribución, también denominadas terciarias, son las últimas existentes antes de llegar la electricidad al usuario, y reciben aquella denominación por tratarse de las que distribuyen la electricidad al último eslabón de la cadena.

Las líneas de conducción de alta tensión suelen estar formadas por cables de cobre, aluminio o acero recubierto de aluminio o cobre. Estos cables están suspendidos de postes o pilones, altas torres de acero, mediante una sucesión de aislantes de porcelana. Gracias a la utilización de cables de acero recubierto y altas torres, la distancia entre éstas puede ser mayor, lo que reduce el coste del tendido de las líneas de conducción; las más modernas, con tendido en línea recta, se construyen con menos de cuatro torres por kilómetro. En algunas zonas, las líneas de alta tensión se cuelgan de postes de madera; para las líneas de distribución, a menor tensión, suelen ser postes de madera, más adecuados que las torres de acero. En las ciudades y otras áreas donde los cables aéreos son peligrosos se utilizan cables aislados subterráneos. Algunos cables tienen el centro hueco para que circule aceite a baja presión. El aceite proporciona una protección temporal contra el agua, que podría producir fugas en el cable. Se utilizan con frecuencia tubos rellenos con muchos cables y aceite a alta presión (unas 15 atmósferas) para la transmisión de tensiones de hasta 345 kilovoltios.

18

Page 23: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Cualquier sistema de distribución de electricidad requiere una serie de equipos suplementarios para proteger los generadores, transformadores y las propias líneas de conducción. Suelen incluir dispositivos diseñados para regular la tensión que se proporciona a los usuarios y corregir el factor de potencia del sistema (véase más abajo).

Los cortacircuitos se utilizan para proteger todos los elementos de la instalación contra cortocircuitos y sobrecargas y para realizar las operaciones de conmutación ordinarias. Estos cortacircuitos son grandes interruptores que se activan de modo automático cuando ocurre un cortocircuito o cuando una circunstancia anómala produce una subida repentina de la corriente. En el momento en el que este dispositivo interrumpe la corriente se forma un arco eléctrico entre sus terminales. Para evitar este arco, los grandes cortacircuitos, como los utilizados para proteger los generadores y las secciones de las líneas de conducción primarias, están sumergidos en un líquido aislante, por lo general aceite. También se utilizan campos magnéticos para romper el arco. En tiendas, fábricas y viviendas se utilizan pequeños cortacircuitos diferenciales. Los aparatos eléctricos también incorporan unos cortacircuitos llamados fusibles, consistentes en un alambre de una aleación de bajo punto de fusión; el fusible se introduce en el circuito y se funde si la corriente aumenta por encima de un valor predeterminado.

Instalación de la electricidad

Las largas líneas de conducción presentan inductancia, capacitancia y resistencia al paso de la corriente eléctrica (véase Circuito eléctrico). El efecto de la inductancia y de la capacitancia de la línea es la variación de la tensión si varía la corriente, por lo que la tensión suministrada varía con la carga acoplada. Se utilizan muchos tipos de dispositivos para regular esta variación no deseada. La regulación de la tensión se consigue con reguladores de la inducción y motores síncronos de tres fases, también llamados condensadores síncronos. Ambos varían los valores eficaces de la inductancia y la capacitancia en el circuito de transmisión. Ya que la inductancia y la capacitancia tienden a anularse entre sí, cuando la carga del circuito tiene mayor reactancia inductiva que capacitiva (lo que suele ocurrir en las grandes instalaciones) la potencia suministrada para una tensión y corriente determinada es menor que si las dos son iguales. La relación entre esas dos cantidades de potencia se llama factor de potencia. Como las pérdidas en las líneas de conducción son proporcionales a la intensidad de corriente, se aumenta la capacitancia para que el factor de potencia tenga un valor lo más cercano posible a 1. Por esta razón se suelen instalar grandes condensadores en los sistemas de transmisión de electricidad.

Producción mundial de energía eléctrica

Durante el periodo comprendido entre 1959 y 1990, la producción y consumo anual de electricidad aumentó de poco más de 1 billón de kWh a más de 11,5 billones. También tuvo lugar un cambio en el tipo de generación de energía. En 1950 las dos terceras partes de la energía eléctrica se generaban en centrales térmicas y un tercio en centrales hidroeléctricas. En 1990 las centrales térmicas seguían produciendo alrededor del 60% de la electricidad, pero la producción de las centrales hidroeléctricas descendió hasta poco más del 20% y la energía nuclear generaba el 15% de la producción mundial. Sin embargo, el crecimiento de la energía nuclear descendió en algunos países debido a consideraciones de seguridad. En Estados Unidos las centrales nucleares generaron el 20% de la electricidad en 1990, mientras que en Francia, líder mundial del uso de energía atómica, las centrales nucleares proporcionan el 75% de su producción eléctrica.

Impacto ambiental de las líneas de conducción

19

Page 24: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Como toda actividad humana, la generación y transporte de energía eléctrica produce una serie de impactos ambientales. Los impactos producidos en el proceso de generación son altamente específicos de la fuente de energía utilizada: hidráulica, nuclear, térmica… Sin embargo, las líneas de transporte producen unos tipos definidos de impacto, con independencia del origen de la energía eléctrica transportada. Así, cabe destacar el impacto producido sobre la fauna, y en concreto las aves, que sufren electrocución al posarse en los apoyos de los postes, especialmente los de distribución, ya que en estos los conductores están más juntos entre sí y respecto de la estructura de apoyo, y las cadenas de aisladores son más cortas, lo que provoca que sea relativamente fácil que un ave posada en el poste toque un conductor y se produzca la electrocución. En el caso de las líneas de transporte, los accidentes por electrocución son raros, afectando sólo a grandes aves que pueden tocar a un tiempo dos conductores o un conductor y el apoyo. La clase de accidente más común en este tipo de líneas es la colisión con los cables, sobre todo con el de tierra, más fino y situado por encima del resto. El mayor riesgo para la vegetación en una línea en servicio es el de incendio por caída de un cable en caso de accidente, como la caída de un rayo. En cualquier caso, las compañías eléctricas son cada vez más sensibles a estos problemas, por lo que están actuando en zonas especialmente afectadas y considerando estos riesgos en líneas de nueva construcción.

Actividad

Realizar el siguiente proyecto:

Al haber estudiado los medios de transportación y generación de corriente podemos realizar un telégrafo el cual consta de una tabla de madera de aproximadamente 12 pulgadas cuadradas, 1 clavo de 3 pulgadas, un gancho de folder, alambre de cobre esmaltado no. 20 y un switch normalmente abierto,(para timbre de casa).

Propiedades eléctricas de los sólidos.

El primer fenómeno eléctrico artificial que se observó fue la propiedad que presentan algunas sustancias resinosas como el ámbar, que adquieren una carga negativa al ser frotadas con una piel o un trapo de lana, tras lo cual atraen objetos pequeños. Un cuerpo así tiene un exceso de electrones. Una varilla de vidrio frotada con seda tiene una capacidad similar para atraer objetos no cargados, y atrae los cuerpos cargados negativamente con una fuerza aún mayor. El vidrio tiene una carga positiva, que puede describirse como un defecto de electrones o un exceso de protones.

20

Page 25: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Cuando algunos átomos se combinan para formar sólidos, frecuentemente quedan libres uno o más electrones, que pueden moverse con facilidad a través del material. En algunos materiales, llamados conductores, ciertos electrones se liberan fácilmente. Los metales, en particular el cobre y la plata, son buenos conductores.

Los materiales en los que los electrones están fuertemente ligados a los átomos se conocen como aislantes, no conductores o dieléctricos. Algunos ejemplos son el vidrio, la goma o la madera seca.

Existe un tercer tipo de materiales en los que un número relativamente pequeño de electrones puede liberarse de sus átomos de forma que dejan un ‘hueco’ en el lugar del electrón. El hueco, que representa la ausencia de un electrón negativo, se comporta como si fuera una unidad de carga positiva. Un campo eléctrico hace que tanto los electrones negativos como los huecos positivos se desplacen a través del material, con lo que se produce una corriente eléctrica. Generalmente, un sólido de este tipo, denominado semiconductor, tiene una resistencia mayor al paso de corriente que un conductor como el cobre, pero menor que un aislante como el vidrio. Si la mayoría de la corriente es transportada por los electrones negativos, se dice que es un semiconductor de tipo n. Si la mayoría de la corriente corresponde a los huecos positivos, se dice que es de tipo P.

Si un material fuera un conductor perfecto, las cargas circularían por él sin ninguna resistencia; por su parte, un aislante perfecto no permitiría que se movieran las cargas por él. No se conoce ninguna sustancia que presente alguno de estos comportamientos extremos a temperatura ambiente. A esta temperatura, los mejores conductores ofrecen una resistencia muy baja (pero no nula) al paso de la corriente y los mejores aislantes ofrecen una resistencia alta (pero no infinita). Sin embargo, la mayoría de los metales pierden toda su resistencia a temperaturas próximas al cero absoluto; este fenómeno se conoce como superconductividad.

Conductor eléctrico

Conductor eléctrico, cualquier material que ofrezca poca resistencia al flujo de electricidad. La diferencia entre un conductor y un aislante, que es un mal conductor de electricidad o de calor, es de grado más que de tipo, ya que todas las sustancias conducen electricidad en mayor o en menor medida. Un buen 0conductor de electricidad, como la plata o el cobre, puede tener una conductividad mil millones de veces superior a la de un buen aislante, como el vidrio o la mica. El fenómeno conocido como superconductividad se produce cuando al enfriar ciertas sustancias a un temperatura cercana al cero absoluto su conductividad se vuelve prácticamente infinita. En los conductores sólidos la corriente eléctrica es transportada por el movimiento de los electrones; y en disoluciones y gases, lo hace por los iones.

Resistencia eléctrica

Resistencia, propiedad de un objeto o sustancia que hace que se resista u oponga al paso de una corriente eléctrica. La resistencia de un circuito eléctrico determina —según la llamada ley de Ohm— cuánta corriente fluye en el circuito cuando se le aplica un voltaje determinado. La unidad de resistencia es el ohmio, que es la resistencia de un conductor si es recorrido por una corriente de un amperio cuando se le aplica una tensión de 1 voltio. La abreviatura habitual para la resistencia eléctrica es R, y el símbolo del ohmio es la letra griega omega, Ω. En algunos cálculos eléctricos se emplea el inverso de la resistencia, 1/R, que se denomina conductancia y se representa por G. La unidad de conductancia es siemens, cuyo símbolo es S. Aún puede encontrarse en ciertas obras la denominación antigua de esta unidad, mho.

21

Page 26: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

La resistencia de un conductor viene determinada por una propiedad de la sustancia que lo compone, conocida como conductividad, por la longitud por la superficie transversal del objeto, así como por la temperatura. A una temperatura dada, la resistencia es proporcional a la longitud del conductor e inversamente proporcional a su conductividad y a su superficie transversal. Generalmente, la resistencia de un material aumenta cuando crece la temperatura.

El término resistencia también se emplea cuando se obstaculiza el flujo de un fluido o el flujo de calor. El rozamiento crea resistencia al flujo de fluido en una tubería, y el aislamiento proporciona una resistencia térmica que reduce el flujo de calor desde una temperatura más alta a una más baja.

Cargas eléctricas

El electroscopio es un instrumento cualitativo empleado para demostrar la presencia de cargas eléctricas. En la figura 1 se muestra el instrumento tal como lo utilizó por primera vez el físico y químico británico Michael Faraday. El electroscopio está compuesto por dos láminas de metal muy finas (a, a_) colgadas de un soporte metálico (b) en el interior de un recipiente de vidrio u otro material no conductor (c). Una esfera (d) recoge las cargas eléctricas del cuerpo cargado que se quiere observar; las cargas, positivas o negativas, pasan a través del soporte metálico y llegan a ambas láminas. Al ser iguales, las cargas se repelen y las láminas se separan. La distancia entre éstas depende de la cantidad de carga.

Electroscopio

El electroscopio se emplea para detectar la presencia de cargas eléctricas, para determinar el signo de las mismas y para medir e indicar su magnitud. Este dibujo esquemático muestra las partes básicas del dispositivo: (a) y (a_) son láminas metálicas delgadas colgadas de un soporte metálico (b); (c) es un recipiente de vidrio, y (d) es una bola que recoge las cargas eléctricas. Las cargas (positivas o negativas) se conducen hasta las láminas a través del soporte metálico. Como las cargas iguales se repelen, las láminas se separan. La cantidad de carga se calcula midiendo la distancia entre las láminas.

Pueden utilizarse tres métodos para cargar eléctricamente un objeto: 1) contacto con otro objeto de distinto material (como por ejemplo, ámbar y piel) seguido por separación; 2) contacto con otro cuerpo cargado; 3) inducción.

El efecto de las cargas eléctricas sobre conductores y no conductores se muestra en la figura 2. Un cuerpo cargado negativamente, A, está situado entre un conductor neutro, B, y un no conductor neutro, C. Los electrones libres del conductor son repelidos hacia la zona del conductor alejada de A, mientras que las cargas positivas se ven atraídas hacia la zona próxima. El cuerpo B en su conjunto es atraído hacia A, porque la atracción de las cargas distintas más próximas entre sí es mayor que la repulsión de las cargas iguales más separadas (las fuerzas entre las cargas eléctricas son inversamente proporcionales al cuadrado de la distancia entre las cargas). En el no conductor, C, los electrones no pueden moverse libremente, pero los átomos o moléculas del mismo se reorientan de forma que sus electrones constituyentes estén lo más lejos posible de A; el no conductor también es atraído por A, pero en menor medida que el conductor.

22

Page 27: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

El movimiento de los electrones en el conductor B de la figura 2 y la reorientación de los átomos del no conductor C proporciona a esos cuerpos cargas positivas en los lados más próximos a A y negativas en los lados más distantes de A. Las cargas generadas de esta forma se denominan cargas inducidas.

Unidades eléctricas

Unidades eléctricas, unidades empleadas para medir cuantitativamente toda clase de fenómenos electrostáticos y electromagnéticos, así como las características electromagnéticas de los componentes de un circuito eléctrico. Las unidades eléctricas empleadas en técnica y ciencia se definen en el Sistema Internacional de unidades. Sin embargo, se siguen utilizando algunas unidades más antiguas.

Prefijos decimales - utilidad de los prefijos en medidas electrónicas

El Sistema Internacional de unidades emplea unidades básicas como el metro o el segundo. A dichas unidades se les pueden añadir prefijos correspondientes a la multiplicación o división por potencias de 10, lo que evita el uso de excesivas cifras decimales (por ejemplo, es más cómodo decir 3 centímetros que 0,03 metros).

Sistema internacional

La unidad de intensidad de corriente en el Sistema Internacional de unidades es el amperio. La unidad de carga eléctrica es el culombio, que es la cantidad de electricidad que pasa en un segundo por cualquier punto de un circuito por el que fluye una corriente de 1 amperio. El voltio es la unidad SI de diferencia de potencial y se define como la diferencia de potencial que existe entre dos puntos cuando es necesario realizar un trabajo de 1 julio para mover una carga de 1 culombio de un punto a otro. La unidad de potencia eléctrica es el vatio, y representa la generación o consumo de 1 julio de energía eléctrica por segundo. Un kilovatio es igual a 1.000 vatios.

Las unidades también tienen las siguientes definiciones prácticas, empleadas para calibrar instrumentos: el amperio es la cantidad de electricidad que deposita 0,001118 gramos de plata por segundo en uno de los electrodos si se hace pasar a través de una solución de nitrato de plata; el voltio es la fuerza electromotriz necesaria para producir una corriente de 1 amperio a través de una resistencia de 1 ohmio, que a su vez se define como la resistencia eléctrica de una columna de mercurio de 106,3 cm de altura y 1 mm2 de sección transversal a una temperatura de 0 ºC. El voltio también se define a partir de una pila voltaica patrón, la denominada pila de Weston, con polos de amalgama de cadmio y sulfato de mercurio (I) y un electrólito de sulfato de cadmio. El voltio se define como 0,98203 veces el potencial de esta pila patrón a 20 ºC.

En todas las unidades eléctricas prácticas se emplean los prefijos convencionales del sistema métrico para indicar fracciones y múltiplos de las unidades básicas. Por ejemplo, un microamperio es una millonésima de amperio, un milivoltio es una milésima de voltio y 1 megaohmio es un millón de ohmios.

Intensidad de la corriente

El flujo de carga, o intensidad de corriente, que recorre un cable conductor se mide por el número de culombios que pasan en un segundo por una sección determinada del cable. Un culombio por segundo equivale a 1 amperio, unidad de intensidad de corriente eléctrica llamada así en honor al físico francés André Marie Ampere. Véase el siguiente apartado, Corriente eléctrica.

23

Page 28: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Cuando una carga de 1 culombio se desplaza a través de una diferencia de potencial de 1 voltio, el trabajo realizado equivale a 1 julio, unidad llamada así en honor al físico británico James Prescott Joule. Esta definición facilita la conversión de cantidades mecánicas en eléctricas.

Una unidad de energía muy usada en física atómica es el electronvoltio (eV). Corresponde a la energía adquirida por un electrón acelerado por una diferencia de potencial de 1 voltio. Esta unidad es muy pequeña y muchas veces se multiplica por un millón o mil millones, abreviándose el resultado como 1 MeV o 1 GeV.

Diferencia de potencial

Diferencia de potencial, también llamada tensión eléctrica, es el trabajo necesario para desplazar una carga positiva unidad de un punto a otro en el interior de un campo eléctrico; en realidad se habla de diferencia de potencial entre ambos puntos (VA - VB). La unidad de diferencia de potencial es el voltio (V). Véase Electricidad.

Un generador de corriente eléctrica permite mantener una diferencia de potencial constante y, en consecuencia, una corriente eléctrica permanente entre los extremos de un conductor. Sin embargo, para una determinada diferencia de potencial, los distintos conductores difieren entre sí en el valor de la intensidad de corriente obtenida, aunque el campo eléctrico sea el mismo. Existe una relación de proporcionalidad, dada por la ley de Ohm, entre la diferencia de potencial entre los extremos de un conductor y la intensidad que lo recorre (véase Circuito eléctrico). La constante de proporcionalidad se denomina resistencia del conductor y su valor depende de su naturaleza, de sus dimensiones geométricas y de las condiciones físicas, especialmente de la temperatura.

La diferencia de potencial entre dos puntos de un circuito se mide con un voltímetro, instrumento que se coloca siempre en derivación entre los puntos del circuito cuya diferencia de potencial se quiere medir.

Resistencia-inductancia-capacidad

Todos los componentes de un circuito eléctrico exhiben en mayor o menor medida una cierta resistencia, capacidad e inductancia. La unidad de resistencia comúnmente usada es el ohmio, que es la resistencia de un conductor en el que una diferencia de potencial de 1 voltio produce una corriente de 1 amperio. La capacidad de un condensador se mide en faradios: un condensador de 1 faradio tiene una diferencia de potencial entre sus placas de 1 voltio cuando éstas presentan una carga de 1 culombio. La unidad de inductancia es el henrio. Una bobina tiene una autoinductancia de 1 henrio cuando un cambio de 1 amperio/segundo en la corriente eléctrica que fluye a través de ella provoca una fuerza electromotriz opuesta de 1 voltio. Un transformador, o dos circuitos cualesquiera magnéticamente acoplados, tienen una inductancia mutua de 1 henrio cuando un cambio de 1 amperio por segundo en la corriente del circuito primario induce una tensión de 1 voltio en el circuito secundario.

Si dos cuerpos de carga igual y opuesta se conectan por medio de un conductor metálico, por ejemplo un cable, las cargas se neutralizan mutuamente. Esta neutralización se lleva a cabo mediante un flujo de electrones a través del conductor, desde el cuerpo cargado negativamente al cargado positivamente (en ingeniería eléctrica, se considera por convención que la corriente fluye en sentido opuesto, es decir, de la carga positiva a la negativa). En cualquier sistema continuo de conductores, los electrones fluyen desde el punto de menor potencial hasta el punto de mayor potencial. Un sistema de esa clase se denomina circuito eléctrico. La corriente que circula por un circuito se denomina corriente continua (c.c.) si fluye siempre en el mismo sentido y corriente alterna (c.a.) si fluye alternativamente en uno u otro sentido.

24

Page 29: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Magnetismo y electromagnetismo

El movimiento de la aguja de una brújula en las proximidades de un conductor por el que circula una corriente indica la presencia de un campo magnético (véase Magnetismo) alrededor del conductor. Cuando dos conductores paralelos son recorridos cada uno por una corriente, los conductores se atraen si ambas corrientes fluyen en el mismo sentido y se repelen cuando fluyen en sentidos opuestos. El campo magnético creado por la corriente que fluye en una espira de alambre es tal que si se suspende la espira cerca de la Tierra se comporta como un imán o una brújula, y oscila hasta que la espira forma un ángulo recto con la línea que une los dos polos magnéticos terrestres.

Puede considerarse que el campo magnético en torno a un conductor rectilíneo por el que fluye una corriente se extiende desde el conductor igual que las ondas creadas cuando se tira una piedra al agua. Las líneas de fuerza del campo magnético tienen sentido antihorario cuando se observa el conductor en el mismo sentido en que se desplazan los electrones. El campo en torno al conductor es estacionario mientras la corriente fluya por él de forma uniforme.

Cuando un conductor se mueve de forma que atraviesa las líneas de fuerza de un campo magnético, este campo actúa sobre los electrones libres del conductor desplazándolos y creando una diferencia de potencial y un flujo de corriente en el mismo. Se produce el mismo efecto si el campo magnético es estacionario y el cable se mueve que si el campo se mueve y el cable permanece estacionario. Cuando una corriente empieza a circular por un conductor, se genera un campo magnético que parte del conductor. Este campo atraviesa el propio conductor e induce en él una corriente en sentido opuesto a la corriente que lo causó (según la llamada regla de Lenz). En un cable recto este efecto es muy pequeño, pero si el cable se arrolla para formar una bobina, el efecto se amplía ya que los campos generados por cada espira de la bobina cortan las espiras vecinas e inducen también una corriente en ellas. El resultado es que cuando se conecta una bobina así a una fuente de diferencia de potencial, impide el flujo de corriente cuando empieza a aplicarse la diferencia de potencial. De forma similar, cuando se elimina la diferencia de potencial, el campo magnético se desvanece, y las líneas de fuerza vuelven a cortar las espiras de la bobina. La corriente inducida en estas circunstancias tiene el mismo sentido que la corriente original, y la bobina tiende a mantener el flujo de corriente. Debido a estas propiedades, una bobina se resiste a los cambios en el flujo de corriente, por lo que se dice que posee inercia eléctrica o autoinducción. Esta inercia tiene poca importancia en circuitos de corriente continua, ya que no se observa cuando la corriente fluye de forma continuada, pero es muy importante en los circuitos de corriente alterna (véase más adelante el apartado Corrientes alternas).

25

Page 30: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Campos magnéticos y electricidad

En 1813, Hans Christian Oersted predijo que se hallaría una conexión entre la electricidad y el magnetismo. En 1819 colocó una brújula cerca de un hilo recorrido por una corriente y observó que la aguja magnética se desviaba. Con ello demostró que las corrientes eléctricas producen campos magnéticos. Aquí vemos cómo las líneas de campo magnético rodean el cable por el que fluye la corriente.

Magnetismo, uno de los aspectos del electromagnetismo, que es una de las fuerzas fundamentales de la naturaleza. Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que aúna ambas fuerzas se denomina teoría electromagnética (véase Radiación electromagnética). La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales magnéticos como el hierro. Sin embargo, en toda la materia se pueden observar efectos más sutiles del magnetismo. Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia.

Electromagnetismo

El fenómeno del magnetismo se conoce desde tiempos antiguos. La piedra imán o magnetita, un óxido de hierro que tiene la propiedad de atraer los objetos de hierro, ya era conocida por los griegos, los romanos y los chinos. Cuando se pasa una piedra imán por un pedazo de hierro, éste adquiere a su vez la capacidad de atraer otros pedazos de hierro. Los imanes así producidos están ‘polarizados’, es decir, cada uno de ellos tiene dos partes o extremos llamados polos norte y sur. Los polos iguales se repelen, y los polos opuestos se atraen.

26

Page 31: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

La brújula se empezó a utilizar en Occidente como instrumento de navegación alrededor del 1300 d.C. En el siglo XIII, el erudito francés Petrus Peregrinus realizó importantes investigaciones sobre los imanes. Sus descubrimientos no se superaron en casi 300 años, hasta que el físico y médico británico William Gilbert publicó su libro, De magnete en 1600. Gilbert aplicó métodos científicos al estudio de la electricidad y el magnetismo. Observó que la Tierra también se comporta como un imán gigante, y a través de una serie de experimentos investigó y refutó varios conceptos incorrectos sobre el magnetismo aceptado en la época. Posteriormente, en 1750, el geólogo británico John Michell inventó una balanza que utilizó para estudiar las fuerzas magnéticas. Michell demostró que la atracción o repulsión entre dos polos magnéticos disminuye a medida que aumenta el cuadrado de la distancia entre ellos. El físico francés Charles de Coulomb, que había medido las fuerzas entre cargas eléctricas, verificó posteriormente la observación de Michell con una gran precisión.

Alternador

Alternador, máquina dinamoeléctrica generadora de energía eléctrica alterna a partir de energía mecánica con medios electromagnéticos.

Los elementos de un alternador elemental son: el imán que crea el campo magnético, denominado inductor; la espira móvil, gracias al consumo de energía mecánica, en la que aparece la corriente inducida y que por ello recibe el nombre de inducido, y los dos anillos colectores con sus respectivas escobillas que constituyen el sistema colector el cual se une, mediante bornas fijas a las escobillas, al circuito exterior.

En la práctica el rotor o inductor está constituido por un electroimán multipolar giratorio, y el inducido contiene tantas bobinas como polos el rotor.

Los alternadores de baja velocidad se fabrican con hasta 100 polos para mejorar su rendimiento y para obtener con facilidad la frecuencia deseada. Los alternadores de alta velocidad tienen dos polos. La frecuencia de la corriente que suministra un alternador es igual a la mitad del producto del número de polos por el número de revoluciones por segundo de la armadura. Véase también Motores y generadores eléctricos.

Electricidad y magnetismo

Aunque los antiguos griegos conocían las propiedades electrostáticas del ámbar, y los chinos ya fabricaban imanes con magnetita en el 2700 a.C., los fenómenos eléctricos y magnéticos no empezaron a comprenderse hasta finales del siglo XVIII, cuando comenzaron a realizarse experimentos en estos campos. En 1785, el físico francés Charles de Coulomb confirmó por primera vez de forma experimental que las cargas eléctricas se atraen o se repelen con una intensidad inversamente proporcional al cuadrado de la distancia que las separa (ley de Coulomb). Más tarde el matemático francés Siméon Denis Poisson y su colega alemán Carl Friedrich Gauss desarrollaron una potente teoría para calcular el efecto de un número indeterminado de cargas eléctricas estáticas arbitrariamente distribuidas.

27

Page 32: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Charles de Coulomb

El físico francés Charles de Coulomb destacó por sus trabajos realizados en el campo de la electricidad. En 1785 confirmó experimentalmente la ley que lleva su nombre, y que permite calcular la fuerza entre las cargas eléctrica.

Dos partículas con cargas opuestas se atraen, por lo que tienden a acelerarse una hacia la otra. Si el medio a través del cual se mueven ofrece resistencia, pueden acabar moviéndose con velocidad constante (en lugar de moverse con aceleración constante) a la vez que el medio se calienta y sufre otras alteraciones. La posibilidad de mantener una fuerza electromotriz capaz de impulsar de forma continuada partículas eléctricamente cargadas llegó con el desarrollo de la pila

química en 1800, debido al físico italiano Alessandro Volta. La teoría clásica de un circuito eléctrico simple supone que los dos polos de una pila se mantienen cargados positiva y negativamente debido a las propiedades internas de la misma. Cuando los polos se conectan mediante un conductor, las partículas cargadas negativamente son repelidas por el polo negativo y atraídas por el positivo, con lo que se mueven hacia él y calientan el conductor, ya que ofrece resistencia a dicho movimiento. Al llegar al polo positivo las partículas son obligadas a desplazarse dentro de la pila hasta el polo negativo, en contra de las fuerzas que se oponen a ello según la ley de Coulomb. El físico alemán Georg Simon Ohm descubrió la existencia de una constante de proporcionalidad sencilla entre la corriente que fluye por el circuito y la fuerza electromotriz suministrada por la pila. Esta constante es la resistencia eléctrica del circuito, R. La ley de Ohm, que afirma que la resistencia es igual a la fuerza electromotriz, o tensión, dividida entre la intensidad de corriente, no es una ley fundamental de la física de aplicación universal, sino que describe el comportamiento de una clase limitada de materiales sólidos.

Teoría electromagnética

A finales del siglo XVIII y principios del XIX se investigaron simultáneamente las teorías de la electricidad y el magnetismo. En 1819, el físico danés Hans Christian Oersted llevó a cabo un importante descubrimiento al observar que una aguja magnética podía ser desviada por una corriente eléctrica. Este descubrimiento, que mostraba una conexión entre la electricidad y el magnetismo, fue desarrollado por el científico francés André Marie Ampère, que estudió las fuerzas entre cables por los que circulan corrientes eléctricas, y por el físico francés Dominique François Arago, que magnetizó un pedazo de hierro colocándolo cerca de un cable recorrido por una corriente. En 1831, el científico británico Michael Faraday descubrió que el movimiento de un imán en las proximidades de un cable induce en éste una corriente eléctrica; este efecto era inverso al hallado por Oersted. Así, Oersted demostró que una corriente eléctrica crea un campo magnético, mientras que Faraday demostró que puede emplearse un campo magnético para crear una corriente eléctrica. La unificación plena de las teorías de la electricidad y el magnetismo se debió al físico británico James Clerk Maxwell, que predijo la existencia de ondas electromagnéticas e identificó la luz como un fenómeno electromagnético (véase Física).

Hans Christian Oersted (1777-1851), físico y químico danés, que demostró la existencia de un campo magnético en torno a una corriente eléctrica. Nació en Rudköbing y estudió en la Universidad de Copenhague. Fue profesor de física en esa universidad en 1806. En 1819 descubrió que una aguja imantada se desvía colocándose en dirección perpendicular a un conductor por el que circula una

28

Page 33: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

corriente eléctrica, iniciando así el estudio del electromagnetismo (véase Magnetismo). Al parecer, también fue el primero en aislar el (1825) aluminio. En 1844 apareció su Manual de física moderna.

Los estudios posteriores sobre el magnetismo se centraron cada vez más en la comprensión del origen atómico y molecular de las propiedades magnéticas de la materia. En 1905, el físico francés Paul Langevin desarrolló una teoría sobre la variación con la temperatura de las propiedades magnéticas de las sustancias paramagnéticas (ver más adelante), basada en la estructura atómica de la materia. Esta teoría es uno de los primeros ejemplos de la descripción de propiedades macroscópicas a partir de las propiedades de los electrones y los átomos. Posteriormente, la teoría de Langevin fue ampliada por el físico francés Pierre Ernst Weiss, que postuló la existencia de un campo magnético interno, molecular, en los materiales como el hierro. Este concepto, combinado con la teoría de Langevin, sirvió para explicar las propiedades de los materiales fuertemente magnéticos como la piedra imán.

Después de que Weiss presentara su teoría, las propiedades magnéticas se estudiaron de forma cada vez más detallada. La teoría del físico danés Niels Bohr sobre la estructura atómica, por ejemplo, hizo que se comprendiera la tabla periódica y mostró por qué el magnetismo aparece en los elementos de transición, como el hierro, en los lantánidos o en compuestos que incluyen estos elementos. Los físicos estadounidenses Samuel Abraham Goudsmit y George Eugene Uhlenbeck demostraron en 1925 que los electrones tienen espín y se comportan como pequeños imanes con un ‘momento magnético’ definido. El momento magnético de un objeto es una magnitud vectorial (véase Vector) que expresa la intensidad y orientación del campo magnético del objeto. El físico alemán Werner Heisenberg dio una explicación detallada del campo molecular de Weiss en 1927, basada en la recientemente desarrollada mecánica cuántica (véase Teoría cuántica). Más tarde, otros científicos predijeron muchas estructuras atómicas del momento magnético más complejas, con diferentes propiedades magnéticas.

El campo magnético

Una barra imantada o un cable que transporta corriente pueden influir en otros materiales magnéticos sin tocarlos físicamente porque los objetos magnéticos producen un ‘campo magnético’. Los campos magnéticos suelen representarse mediante ‘líneas de campo magnético’ o ‘líneas de fuerza’. En cualquier punto, la dirección del campo magnético es igual a la dirección de las líneas de fuerza, y la intensidad del campo es inversamente proporcional al espacio entre las líneas. En el caso de una barra imantada, las líneas de fuerza salen de un extremo y se curvan para llegar al otro extremo; estas líneas pueden considerarse como bucles cerrados, con una parte del bucle dentro del imán y otra fuera. En los extremos del imán, donde las líneas de fuerza están más próximas, el campo magnético es más intenso; en los lados del imán, donde las líneas de fuerza están más separadas, el campo magnético es más débil. Según su forma y su fuerza magnética, los distintos tipos de imán producen diferentes esquemas de líneas de fuerza. La estructura de las líneas de fuerza creadas por un imán o por cualquier objeto que genere un campo magnético puede visualizarse utilizando una brújula o limaduras de hierro. Los imanes tienden a orientarse siguiendo las líneas de campo magnético. Por tanto, una brújula, que es un pequeño imán que puede rotar libremente, se orientará en la dirección de las líneas. Marcando la dirección que señala la brújula al colocarla en diferentes puntos alrededor de la fuente del campo magnético, puede deducirse el esquema de líneas de fuerza. Igualmente, si se agitan limaduras de hierro sobre una hoja de papel o un plástico por encima de un objeto que crea un campo magnético, las limaduras se orientan siguiendo las líneas de fuerza y permiten así visualizar su estructura.

Los campos magnéticos influyen sobre los materiales magnéticos y sobre las partículas cargadas en movimiento. En términos generales, cuando una partícula cargada se desplaza a través de un campo magnético, experimenta una fuerza que forma ángulos rectos con la velocidad de la partícula y con la dirección del campo. Como la fuerza siempre es perpendicular a la velocidad, las partículas se mueven

29

Page 34: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

en trayectorias curvas. Los campos magnéticos se emplean para controlar las trayectorias de partículas cargadas en dispositivos como los aceleradores de partículas o los espectrógrafos de masas.

Tipos de materiales magnéticos

Las propiedades magnéticas de los materiales se clasifican siguiendo distintos criterios. Una de las clasificaciones de los materiales magnéticos —que los divide en diamagnéticos, paramagnéticos y ferromagnéticos— se basa en la reacción del material ante un campo magnético. Cuando se coloca un material diamagnético en un campo magnético, se induce en él un momento magnético de sentido opuesto al campo. En la actualidad se sabe que esta propiedad se debe a las corrientes eléctricas inducidas en los átomos y moléculas individuales. Estas corrientes producen momentos magnéticos opuestos al campo aplicado. Muchos materiales son diamagnéticos; los que presentan un diamagnetismo más intenso son el bismuto metálico y las moléculas orgánicas que, como el benceno, tienen una estructura cíclica que permite que las corrientes eléctricas se establezcan con facilidad.

El comportamiento paramagnético se produce cuando el campo magnético aplicado alinea todos los momentos magnéticos ya existentes en los átomos o moléculas individuales que componen el material. Esto produce un momento magnético global que se suma al campo magnético. Los materiales paramagnéticos suelen contener elementos de transición o lantánidos con electrones desapareados. El paramagnetismo en sustancias no metálicas suele caracterizarse por una dependencia de la temperatura: la intensidad del momento magnético inducido varía inversamente con la temperatura. Esto se debe a que al ir aumentando la temperatura, cada vez resulta más difícil alinear los momentos magnéticos de los átomos individuales en la dirección del campo magnético.

Las sustancias ferromagnéticas son las que, como el hierro, mantienen un momento magnético incluso cuando el campo magnético externo se hace nulo. Este efecto se debe a una fuerte interacción entre los momentos magnéticos de los átomos o electrones individuales de la sustancia magnética, que los hace alinearse de forma paralela entre sí. En circunstancias normales, los materiales ferromagnéticos están divididos en regiones llamadas ‘dominios’; en cada dominio, los momentos magnéticos atómicos están alineados en paralelo. Los momentos de dominios diferentes no apuntan necesariamente en la misma dirección. Aunque un trozo de hierro normal puede no tener un momento magnético total, puede inducirse su magnetización colocándolo en un campo magnético, que alinea los momentos de todos los dominios. La energía empleada en la reorientación de los dominios desde el estado magnetizado hasta el estado desmagnetizado se manifiesta en un desfase de la respuesta al campo magnético aplicado, conocido como ‘histéresis’.

Un material ferromagnético acaba perdiendo sus propiedades magnéticas cuando se calienta. Esta pérdida es completa por encima de una temperatura conocida como punto de Curie, llamada así en honor del físico francés Pierre Curie, que descubrió el fenómeno en 1895. (El punto de Curie del hierro metálico es de unos 770 °C).

Otros ordenamientos magnéticos

En los últimos años, una mejor comprensión de los orígenes atómicos de las propiedades magnéticas ha llevado al descubrimiento de otros tipos de ordenamiento magnético. Se conocen casos en los que los momentos magnéticos interactúan de tal forma que les resulta energéticamente favorable alinearse entre sí en sentido antiparalelo; estos materiales se llaman antiferromagnéticos. Existe una temperatura análoga al punto de Curie, llamada temperatura de Néel, por encima de la cual desaparece el orden antiferromagnético.

30

Page 35: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

También se han hallado otras configuraciones más complejas de los momentos magnéticos atómicos. Las sustancias ‘ferrimagnéticas’ tienen al menos dos clases distintas de momento magnético atómico, que se orientan de forma antiparalela. Como ambos momentos tienen magnitudes diferentes, persiste un momento magnético neto, al contrario que en un material antiferromagnético, donde todos los momentos magnéticos se anulan entre sí. Curiosamente, la piedra imán es ferrimagnética, y no ferromagnética; en este mineral existen dos tipos de ion hierro, con momentos magnéticos diferentes. Se han encontrado disposiciones aún más complejas en las que los momentos magnéticos están ordenados en espiral. Los estudios de estos ordenamientos han proporcionado mucha información sobre las interacciones entre los momentos magnéticos en sólidos.

Aplicaciones

En los últimos 100 años han surgido numerosas aplicaciones del magnetismo y de los materiales magnéticos. El electroimán, por ejemplo, es la base del motor eléctrico y el transformador. En épocas más recientes, el desarrollo de nuevos materiales magnéticos ha influido notablemente en la revolución de los ordenadores o computadoras. Es posible fabricar memorias de computadora utilizando ‘dominios burbuja’. Estos dominios son pequeñas regiones de magnetización, paralelas o antiparalelas a la magnetización global del material. Según que el sentido sea uno u otro, la burbuja indica un uno o un cero, por lo que actúa como dígito en el sistema binario empleado por los ordenadores. Los materiales magnéticos también son componentes importantes de las cintas y discos para almacenar datos.

Los imanes grandes y potentes son cruciales en muchas tecnologías modernas. Los trenes de levitación magnética utilizan poderosos imanes para elevarse por encima de los raíles y evitar el rozamiento. En la exploración mediante resonancia magnética nuclear, una importante herramienta de diagnóstico empleada en medicina, se utilizan campos magnéticos de gran intensidad. Los imanes superconductores se emplean en los aceleradores de partículas más potentes para mantener las partículas aceleradas en una trayectoria curva y enfocarlas.

Conducción en líquidos y gases

Cuando fluye una corriente eléctrica por un conductor metálico, el flujo sólo tiene lugar en un sentido, ya que la corriente es transportada en su totalidad por los electrones. En cambio en los líquidos y gases, se hace posible un flujo en dos sentidos debido a la ionización (véase Electroquímica). En una solución líquida, los iones positivos se mueven en la disolución de los puntos de potencial más alto a los puntos de potencial más bajo; los iones negativos se mueven en sentido opuesto. De forma similar, en los gases —que pueden ser ionizados por radiactividad, por los rayos ultravioletas de la luz solar, por ondas electromagnéticas o por un campo eléctrico muy intenso— se produce un movimiento de iones en dos sentidos que produce una corriente eléctrica a través del gas. Véase Arco eléctrico; Iluminación eléctrica.

Fuentes de fuerza electromotriz

Para producir un flujo de corriente en cualquier circuito eléctrico es necesaria una fuente de fuerza electromotriz. Las fuentes disponibles son las siguientes: 1) máquinas electrostáticas, que se basan en el principio de inducir cargas eléctricas por medios mecánicos; 2) máquinas electromagnéticas, en las que se genera corriente desplazando mecánicamente un conductor a través de un campo o campos magnéticos; 3) células voltaicas, que producen una fuerza electromotriz a través de una acción electroquímica; 4) dispositivos que producen una fuerza electromotriz a través de la acción del calor; 5) dispositivos que generan una fuerza electromotriz por la acción de la luz; 6) dispositivos que producen

31

Page 36: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

una fuerza electromotriz a partir de una presión física, como los cristales piezoeléctricos (véase Efecto piezoeléctrico).

Medidores eléctricos

Los medidores eléctricos permiten determinar distintas magnitudes eléctricas. Dos de estos dispositivos son el amperímetro y el voltímetro, ambos variaciones del galvanómetro. En un galvanómetro, un imán crea un campo magnético que genera una fuerza medible cuando pasa corriente por una bobina cercana. El amperímetro desvía la corriente por una bobina a través de una derivación (ilustrada debajo del amperímetro) y mide la intensidad de la corriente que fluye por el circuito, al que se conecta en serie. El voltímetro, en cambio, se conecta en paralelo y permite medir diferencias de potencial. Para que la corriente que pase por él sea mínima, la resistencia del voltímetro (indicada por la línea quebrada situada debajo) tiene que ser muy alta, al contrario que en el amperímetro.

En A, B y C se supone que NO SE CONECTO NINGUNA CARGA EXTERNA al divisor de voltaje; si se conectara una o varias cargas, no estarían correctas las divisiones de voltaje mostradas, ya que la resistencia de la carga formaría un circuito paralelo con la parte del divisor a que estuviera conectada. Con esto cambiaria la resistencia de esa sección del divisor y, por lo tanto, la resistencia total, la corriente, y todos los voltajes tendrían otros valores. Por tal razón los divisores de voltaje se diseñan para las condiciones especificas de carga, en las cuales habrán de funcionar.

Actividad

Proyecto en protoboard.

Circuito en el cual ingrese corriente alterna (AC), convertirla en Corriente directa (DC) y luego cargar y descargar un capacitor.

32

Page 37: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Unidad 2

Competencia 2.1Que puedas reconocer y recordar las diferentes leyes y teoremas relacionados al principio de la electricidad y aplicados a la electrónica.

Indicador 2.1.1Es necesario que identifiques en que consiste principalmente la ley de Ohm para resolver circuitos ya sea en serie o en paralelo a través de dicha ley.

33

Page 38: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Leyes teoremas

Ley de ohm

La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente es la ley de Ohm, así llamada en honor a su descubridor, el físico alemán Georg Ohm. Según la ley de Ohm, la cantidad de corriente que fluye por un circuito formado por resistencias puras es directamente proporcional a la fuerza electromotriz aplicada al circuito, e inversamente proporcional a la resistencia total del circuito. Esta ley suele expresarse mediante la fórmula I = V/R, siendo I la intensidad de corriente en amperios, V la fuerza electromotriz en voltios y R la resistencia en ohmios. La ley de Ohm se aplica a todos los circuitos eléctricos, tanto a los de corriente continua (CC) como a los de corriente alterna (CA), aunque para el análisis de circuitos complejos y circuitos de CA deben emplearse principios adicionales que incluyen inductancias y capacitancias.

Un circuito en serie es aquél en que los dispositivos o elementos del circuito están dispuestos de tal manera que la totalidad de la corriente pasa a través de cada elemento sin división ni derivación en circuitos paralelos.

Cuando en un circuito hay dos o más resistencias en serie, la resistencia total se calcula sumando los valores de dichas resistencias. Si las resistencias están en paralelo, el valor total de la resistencia del circuito se obtiene mediante la fórmula.

V=E Esto es voltaje o tensión.

I Esto es corriente o intensidad.

R Esto es Resistencia.

E=I X R

I= E/R

R= V/I

En un circuito en paralelo los dispositivos eléctricos, por ejemplo las lámparas incandescentes o las celdas de una batería, están dispuestos de manera que todos los polos, electrodos y terminales positivos (+) se unen en un único conductor, y todos los negativos (-) en otro, de forma que cada unidad se encuentra, en realidad, en una derivación paralela. El valor de dos resistencias iguales en paralelo es igual a la mitad del valor de las resistencias componentes y, en cada caso, el valor de las resistencias en paralelo es menor que el valor de la más pequeña de cada una de las resistencias implicadas. En los circuitos de CA, o circuitos de corrientes variables, deben considerarse otros componentes del circuito además de la resistencia.

34

Page 39: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Código internacional para resistencias.

Cómo leer el código de colores: 

Las resistencias y condensadores tienen cuatro colores. tres de los cuales indican el valor del mismo y último es o plateado o dorado e indica la tolerancia del valor que indica

Los dos primero colores indican directamente un número y el tercero indica el multiplicador (o número de ceros que hay que añadir). 

Veamos un par de ejemplos:

En esta resistencia tenemos la secuencia de colores Rojo, amarillo, rojo, dorado que traducimos por:

Rojo : un 2 Amarillo : un 4 Rojo : dos ceros Dorado : +-5%

Uniéndolo todo nos queda: 2400 Ohmios o escrito de otra forma 2K4 Ohmios.

 

 

En esta segunda resistencia tenemos la secuencia de colores Rojo, Rojo, Amarillo, Dorado que traducimos por:

Rojo : un 2 Rojo : otro 2 Amarillo : cuatro ceros Dorado : +-5%

Uniéndolo todo nos queda: 220000 Ohmios o escrito de otra forma 220K Ohmios.

35

Page 40: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Si un circuito tiene un número de derivaciones interconectadas, es necesario aplicar otras dos leyes para obtener el flujo de corriente que recorre las distintas derivaciones. Estas leyes, descubiertas por el físico alemán Gustav Robert Kirchhoff, son conocidas como las leyes de Kirchhoff. La primera, la ley de los nudos, enuncia que en cualquier unión en un circuito a través del cual fluye una corriente constante, la suma de las intensidades que llegan a un nudo es igual a la suma de las intensidades que salen del mismo. La segunda ley, la ley de las mallas afirma que, comenzando por cualquier punto de una red y siguiendo cualquier trayecto cerrado de vuelta al punto inicial, la suma neta de las fuerzas electromotrices halladas será igual a la suma neta de los productos de las resistencias halladas y de las intensidades que fluyen a través de ellas. Esta segunda ley es sencillamente una ampliación de la ley de Ohm.

Leyes de Kirchhoff

En este circuito eléctrico formado por dos generadores, de fuerzas electromotrices 1 y 2, y tres resistencias, R1, R2 y R3, se puede aplicar la ley de los nudos al nudo B y la ley de las mallas a las redes ABEF y BCDE.

La aplicación de la ley de Ohm a los circuitos en los que existe una corriente alterna se complica por el hecho de que siempre estarán presentes la capacitancia y la inductancia. La inductancia hace que el valor máximo de una corriente alterna sea menor que el valor máximo de la tensión; la capacitancia hace que el valor máximo de la tensión sea menor que el valor máximo de la corriente. La capacitancia y la inductancia inhiben el flujo de corriente alterna y deben tomarse en cuenta al calcularlo. La intensidad de corriente en los circuitos de CA puede determinarse gráficamente mediante vectores o con la ecuación algebraica

36

Page 41: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

en la que L es la inductancia, C la capacitancia y f la frecuencia de la corriente. El valor obtenido en el denominador de la fracción se denomina impedancia del circuito y suele representarse por la letra Z. Por consiguiente, la ley de Ohm para los circuitos integrados suele expresarse por la ecuación sencilla I =  / Z.

Teorema de Thevenin

Este teorema de La teoría de circuitos es uno de los más importantes ya que permite una gran simplificación a la hora de analizar circuitos. Se puede aplicar sobre circuitos lineales (por tanto, sobre resistencias siempre) en C.C. o en C.A.

El teorema:

Sea una resistencia conectada entre los terminales A y B de una red lineal (un circuito en el que la tensión eléctrica en cualquier punto del mismo está relacionada linealmente con la corriente eléctrica que pasa por dicho punto, o sea, V = I x constante):

Entonces, la corriente que circula por la resistencia R es la misma que si dicha resistencia estuviera conectada a un generador (de C.C. o de C.A. según el caso) de tensión Vth y resistencia interna Rth:

37

Page 42: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

¿Cuál será el valor de Vth? El que se mediría con un voltímetro entre los terminales A y B con la resistencia R desconectada.

¿Cuál sería el valor de Rth? El que resulte de aplicar la ley de Ohm tomando el valor de Vth y el valor de la corriente de cortocircuito medida entre los terminales A y B.

Sí, pero ¿de qué dependen los valores de Vth y Rth? Del circuito que forma la red lineal, o sea, de la forma en cómo se conectan los componentes de dicha red.

¿Se pueden calcular de forma teórica estos valores? Sí, pero las reglas concretas de cálculo, o más bien la forma de llevarlo a cabo, difieren de un circuito a otro.

La utilidad del teorema de Thevenin:

Imagínese que tiene que analizar el funcionamiento de un circuito complejo por el motivo que sea (¿tal vez para repararlo?). Thevenin le puede simplificar la tarea ya que permite que una parte de dicho circuito (parte que puede ser muy grande) se pueda sustituir por un generador con su resistencia interna. O quizás está diseñando un circuito y desea estudiar su comportamiento ante determinadas circunstancias. También Thevenin le puede ser de utilidad en este caso.

Un caso práctico:

Sea el circuito de la figura en el que A y B son los terminales de uso. Simplificar dicho circuito a su equivalente Thevenin.

Como los terminales A y B están entre extremos de la resistencia de 560, habrá que calcular la tensión que caerá en dicha resistencia, ya que será la tensión entre A y B si no conectamos nada entre dichos

38

Page 43: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

terminales. Por tanto, habrá que empezar por calcular la resistencia total del circuito vista desde la fuente de tensión:

La corriente total del circuito será, aplicando la Ley de Ohm,

De esta It, por la rama de la resistencia de 560 irán

Por tanto, entre los terminales A y B aparecerá una tensión de:

Pasemos ahora a calcular la resistencia Thevenin que se "ve" desde los terminales A y B. Para ello consideraremos las fuentes de tensión como cortocircuitos y se calculará la resistencia equivalente vista desde los terminales A y B:

Tendremos que la resistencia vista desde A y B es:

39

Page 44: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Por último, el equivalente Thevenin pedido es el siguiente:

Lo bueno del Teorema de Thevenin es que, y considerando el circuito de arriba, es válido para cualquier valor de resistencia que se conecte entre A y B, es decir, no hay que andar recalculando el equivalente Thevenin para cada valor de resistencia que se conecte entra A y B. Además, lo que se calcule en el equivalente es válido para el circuito original, es decir, si conectamos una resistencia R entre A y B y calculamos en el equivalente Thevenin el valor de la corriente que la atraviesa y el valor de la tensión entre sus extremos, estos valores de tensión y corriente serían los que aparecerían si conectásemos esa resistencia no ya en el equivalente Thevenin, sino en el circuito de partida.

Ley de la mano derecha.

Regla de la mano derecha, regla que permite recordar la relación que existe entre las direcciones y sentidos de ciertas magnitudes físicas.

En el estudio del movimiento circular, la regla de la mano derecha se utiliza para determinar la dirección y sentido de la velocidad angular. El dedo pulgar indica la dirección y sentido de la velocidad angular cuando los otros cuatro dedos siguen el sentido de la rotación.

En el electromagnetismo esta regla permite recordar las relaciones que existen entre las direcciones y los sentidos del campo magnético y de la intensidad de la corriente eléctrica. En el caso del campo magnético creado por la corriente eléctrica que circula por un hilo conductor rectilíneo y largo, si el pulgar de la mano derecha se coloca a lo largo del hilo en la dirección y sentido de la corriente, los dedos de dicha mano se curvan en la dirección y sentido del campo magnético. Análogamente, en el caso del campo magnético originado por la corriente que circula por una espira circular, si los dedos de la mano derecha se curvan en el sentido de la intensidad de la corriente eléctrica, el dedo pulgar indicará la dirección y sentido del campo magnético.

40

Page 45: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

REGLA DE LA MANO DERECHA

Potencia.

Teoría de la máxima transferencia de potencia.

Las fuentes de tensión reales tienen el siguiente circuito equivalente:

donde V = I x Ri + VL

Si el valor de Ri (resistencia interna en las fuentes de alimentación) es alto, en la carga aparecerá solamente una pequeña parte del voltaje debido a la caída que hay en la resistencia interna de la fuente. Si la caída en la resistencia interna es pequeña (el caso de la fuente de tensión nueva con Ri pequeña) casi todo el voltaje aparece en la carga.

¿Cuál es la potencia que se entrega a la carga?

Si en el circuito anterior Ri = 8 Ohmios, RL = 8 Ohmios y V = 24 Voltios

I = V / Ri + RL  = 24 / 16 = 1.5 amperios.

41

Page 46: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Esto significa que la tensión en RL es:   VRL = I x R = 1.5 x 8 = 12 Voltios.

Este dato nos dice que cuando la resistencia interna y RL son iguales solo la mitad de la tensión original aparece en la carga (RL).

La potencia en RL será: P = I2  x RL  = 1.52 x 8 = 18 Watts (vatios), lo que significa que en la resistencia interna se pierde la misma potencia.

Si ahora se aumenta y disminuye el valor de la resistencia de carga y se realizan los mismos cálculos anteriores para averiguar la potencia entregada a la carga se puede ver que esta siempre es menor a los 18 Watts que se obtienen cuando RL = Ri  (recordar que Ri siempre es igual a 8 ohmios).

- Si RL = 4 ohmiosI = V / Ri + RL = 24 / 12 = 2 amperiosP = I2  x RL = 22 x 4 = 16 Watts

- Si RL = 12 ohmiosI = V / Ri + RL = 24 / 20 = 1.2 amperiosP = I2  x RL = 1.22 x 12 = 17.28 Watts

Así se concluye que el teorema de máxima entrega de potencia dice:

"La potencia máxima será desarrollada en la carga cuando la resistencia de carga RL sea igual a la resistencia interna de la fuente Ri"

Nota: Cuando es importante obtener la máxima transferencia de potencia, la resistencia de carga debe adaptarse a la resistencia interna de la fuente.

Ley de Lenz

Ley de Lenz, ley que permite predecir el sentido de la fuerza electromotriz inducida en un circuito eléctrico. Fue definida en 1834 por el físico alemán Heinrich Lenz.

El sentido de la corriente o de la fuerza electromotriz inducida es tal que sus efectos electromagnéticos se oponen a la variación del flujo del campo magnético que la produce.

Así, si el flujo del campo magnético a través de una espira aumenta, la corriente eléctrica que en ella se induce crea un campo magnético cuyo flujo a través de la espira es negativo, disminuyendo el aumento original del flujo.

Por ejemplo, si se aproxima el polo sur de un imán a una espira, ésta crea un fuerza electromotriz inducida que se opone a la causa que la produce, y la corriente circula por ella de manera que la espira se comporta como un polo sur frente al imán, al que trata de repeler.

En realidad, la ley de Lenz es otra forma de enunciar el principio de conservación de la energía. Si no fuera así, la cara de la espira enfrentada al polo sur del imán se comportaría como un polo norte, atrayendo al imán y realizando un trabajo sobre él, a la vez que se produce una corriente eléctrica que origina más trabajo. Esto sería creación de energía a partir de la nada. Sin embargo, para acercar el imán a la espira hay que realizar un trabajo que se convierte en energía eléctrica.

42

Page 47: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Regulador de voltaje.Las largas líneas de conducción presentan inductancia, capacitancia y resistencia al paso de la corriente eléctrica (véase Circuito eléctrico). El efecto de la inductancia y de la capacitancia de la línea es la variación de la tensión si varía la corriente, por lo que la tensión suministrada varía con la carga acoplada. Se utilizan muchos tipos de dispositivos para regular esta variación no deseada. La regulación de la tensión se consigue con reguladores de la inducción y motores síncronos de tres fases, también llamados condensadores síncronos. Ambos varían los valores eficaces de la inductancia y la capacitancia en el circuito de transmisión. Ya que la inductancia y la capacitancia tienden a anularse entre sí, cuando la carga del circuito tiene mayor reactancia inductiva que capacitiva (lo que suele ocurrir en las grandes instalaciones) la potencia suministrada para una tensión y corriente determinadas es menor que si las dos son iguales. La relación entre esas dos cantidades de potencia se llama factor de potencia. Como las pérdidas en las líneas de conducción son proporcionales a la intensidad de corriente, se aumenta la capacitancia para que el factor de potencia tenga un valor lo más cercano posible a 1. Por esta razón se suelen instalar grandes condensadores en los sistemas de transmisión de electricidad.

Divisor de voltaje

En muchos sistemas una sola fuente de alimentación proporciona dos o mas voltajes. Para lograr esto el filtro esta provisto de resistores dispuestos en serie o una resistencia con tomas, en lugar de un solo resistor de carga. La corriente de salida del rectificador al pasar por los resistores en serie produce una caida total de voltaje, igual ala voltaje de salida del filtro; pero dicho valor se compone de las caidas de voltaje producidas en cada uno de los resistores.

Los circuitos R1, R2 y R3 forman un circuito DIVISOR DE VOLTAJE o tensión en la salida del filtro. Si no hay carga externa y el voltaje de salida del filtro es de 300 voltios, la corriente de 2 miliamperios fluira a traves del circuito divisor de voltaje, produciendo una caída de 100 voltios en cada resistor. Esto se calcula fácilmente, aplicando la LEY DE OHM.

Puente de Wheatstone

Este circuito, denominado puente de Wheatstone, está formado por tres resistencias conocidas y una desconocida, conectadas a una fuente de corriente continua y a un galvanómetro. Variando el valor de una de las resistencias conocidas, el puente se puede ajustar a cualquier valor de la resistencia desconocida, que se calcula a partir de los valores de las otras resistencias.

43

Page 48: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Normalmente, en algun punto del divisor de volltaje hay una Terminal que esta a tierra y todos los voltajes se miden con respecto a ese punto. Asi, pueden obtenerse diferentes voltajes de salida, dependiendo del punto que este conectado a tierra. Esto puede observarse en B y C.

Medidores eléctricos

Los medidores eléctricos permiten determinar distintas magnitudes eléctricas. Dos de estos dispositivos son el amperímetro y el voltímetro, ambos variaciones del galvanómetro. En un galvanómetro, un imán crea un campo magnético que genera una fuerza medible cuando pasa corriente por una bobina cercana. El amperímetro desvía la corriente por una bobina a través de una derivación (ilustrada debajo del amperímetro) y mide la intensidad de la corriente que fluye por el circuito, al que se conecta en serie. El voltímetro, en cambio, se conecta en paralelo y permite medir diferencias de potencial. Para que la corriente que pase por él sea mínima, la resistencia del voltímetro (indicada por la línea quebrada situada debajo) tiene que ser muy alta, al contrario que en el amperímetro.

En A, B y C se supone que NO SE CONECTO NINGUNA CARGA EXTERNA al divisor de voltaje; si se conectara una o varias cargas, no estarían correctas las divisiones de voltaje mostradas, ya que la resistencia de la carga formaría un circuito paralelo con la parte del divisor a que estuviera conectada. Con esto cambiaria la resistencia de esa sección del divisor y, por lo tanto, la resistencia total, la corriente, y todos los voltajes tendrían otros valores. Por tal razón los divisores de voltaje se diseñan para las condiciones específicas de carga, en las cuales habrán de funcionar.

Transformadores

Transformador, dispositivo eléctrico que consta de una bobina de cable situada junto a una o varias bobinas más, y que se utiliza para unir dos o más circuitos de corriente alterna (CA) aprovechando el efecto de inducción entre las bobinas (véase Electricidad). La bobina conectada a la fuente de energía se llama bobina primaria. Las demás bobinas reciben el nombre de bobinas secundarias. Un transformador

44

Page 49: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

cuyo voltaje secundario sea superior al primario se llama transformador elevador. Si el voltaje secundario es inferior al primario este dispositivo recibe el nombre de transformador reductor. El producto de intensidad de corriente por voltaje es constante en cada juego de bobinas, de forma que en un transformador elevador el aumento de voltaje de la bobina secundaria viene acompañado por la correspondiente disminución de corriente.

Sección transversal de un transformador

Esquema muy simplificado de un transformador de los denominados monofásicos. En la parte izquierda de la figura se puede ver la bobina o arrollamiento primario, y en la derecha el secundario. En el caso que se muestra, el transformador está funcionando sin carga, esto es, sin ningún dispositivo consumidor de electricidad conectado al secundario. En esas condiciones, la proporción entre los voltajes o tensiones U corresponde a la proporción entre los números de espiras N, cumpliéndose la relación U1/U2 = N1/N2.

Transformadores de potencia

Son grandes dispositivos usados en los sistemas de generación y transporte de electricidad y en pequeñas unidades electrónicas. Los transformadores de potencia industriales y domésticos, que operan a la frecuencia de la red eléctrica, pueden ser monofásicos o trifásicos y están diseñados para trabajar con voltajes y corrientes elevados. Para que el transporte de energía resulte rentable es necesario que en la planta productora de electricidad un transformador eleve los voltajes, reduciendo con ello la intensidad. Las pérdidas ocasionadas por la línea de alta tensión son proporcionales al cuadrado de la intensidad de corriente por la resistencia del conductor. Por tanto, para la transmisión de energía eléctrica a larga distancia se utilizan voltajes elevados con intensidades de corriente reducidas. En el extremo receptor los transformadores reductores reducen el voltaje, aumentando la intensidad, y adaptan la corriente a los niveles requeridos por las industrias y las viviendas, normalmente alrededor de los 240 voltios. Los transformadores de potencia deben ser muy eficientes y deben disipar la menor cantidad posible de energía en forma de calor durante el proceso de transformación. Las tasas de eficacia se encuentran normalmente por encima del 99% y se obtienen utilizando aleaciones especiales de acero para acoplar los campos magnéticos inducidos entre las bobinas primaria y secundaria. Una disipación de tan sólo un 0,5% de la potencia de un gran transformador genera enormes cantidades de calor, lo que hace

45

Page 50: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

necesario el uso de dispositivos de refrigeración. Los transformadores de potencia convencionales se instalan en contenedores sellados que disponen de un circuito de refrigeración que contiene aceite u otra sustancia. El aceite circula por el transformador y disipa el calor mediante radiadores exteriores.

Tipos de transformadores.

Transformadores Secos Encapsulados en Resina Epoxi.

Descripción:

Se utilizan en interior para distribución de energía eléctrica en media tensión, en lugares donde los espacios reducidos y los requerimientos de seguridad en caso de incendio imposibilitan la utilización de transformadores refrigerados en aceite. Son de aplicación en grandes edificios, hospitales, industrias, minería, grandes centros comerciales y toda actividad que requiera la utilización intensiva de energía eléctrica.

Características Generales:

Su principal característica es que son refrigerados en aire con aislamiento clase F, utilizándose resina epoxi como medio de protección de los arrollamientos, siendo innecesario cualquier mantenimiento posterior a la instalación. Se fabrican en potencias normalizadas desde 100 hasta 2500 kVA, tensiones primarias de 13.2, 15, 25, 33 y 35 kV y frecuencias de 50 y 60 Hz.

El transformador de núcleo distribuido.

Descripción:

Tiene un núcleo central y cuatro ramas exteriores. Se denomina transformadores de distribución, generalmente los transformadores de potencias iguales o inferiores a 500 kVA y de tensiones iguales o inferiores a 67 000 V, tanto monofásicos como trifásicos. Aunque la mayoría de tales unidades están proyectadas para montaje sobre postes, algunos de los tamaños de potencia superiores, por encima de las clases de 18 kV, se construyen para montaje en estaciones o en plataformas. Las aplicaciones típicas son para alimentar a granjas, residencias, edificios o almacenes públicos, talleres y centros comerciales.

El transformador de núcleo arrollado.

Descripción:

El núcleo consiste en una tira de hierro arrollado en forma de espiral en torno a una bobina preformada.

Los transformadores se pueden refrigerar con circulación natural o forzada de aire, pero su tensión nominal viene limitada por la baja rigidez dieléctrica del aire. El aire (o el Askerol o Pyranol) sirve tanto para aislante como para refrigerante. Los transformadores se pueden refrigerar mediante circulación natural o forzada en aceite. Para aumentar la superficie disipadora del calor, se sueldan los tubos de la cubierta o se empernan radiadores a ella. Para gobernar la tensión y la fase, algunos transformadores están equipados de mecanismos de tomas variables. Cuando se eleva la temperatura del transformador a causa de la carga, el aire o gas que se halle dentro del transformador se dilata y es expulsado; cuando se enfría el transformador, se contrae el aire o gas y penetra aire del exterior que contiene oxigeno y humedad. A este efecto se le da el nombre de respiración. La humedad y el oxigeno deterioran el sistema y ensucian el aceite. Para evitar esto, se emplea nitrógeno y un respirador elimina el oxigeno y la humedad del aire que penetra. Un pequeño tanque de expansión, llamado conservador, montado sobre la cubierta del transformador, reduce mucho la superficie del aceite expuesta al gas.

46

Page 51: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Los transformadores Auto Protegidos.

Aplicaciones

El transformador incorpora componentes para protección del sistema de distribución contra sobrecargas, corto-circuitos en la red secundaria y fallas internas en el transformador, para esto posee fusibles de alta tensión y disyuntor de baja tensión, montados internamente en el tanque, fusibles de alta tensión y disyuntor de baja tensión. Para protección contra sobretensiones el transformador está provisto de dispositivo para fijación de pararrayos externos en el tanque.

Características

Potencia: 45 a 150KVA

Alta Tensión: 15 o 24,2KV

Baja Tensión: 380/220 o 220/127V

El transformador de núcleo.

Descripción:

Los devanados rodean al núcleo. Éste está constituido por láminas rectangulares o en forma de L que se ensamblan y solapan alternativamente en capas adyacentes.

En los transformadores trifásico de núcleo hay tres núcleos unidos por sus partes superior e inferior mediante un yugo y sobre cada núcleo se devanan el primario y el secundario de cada fase. Este dispositivo es posible porque, en todo momento, la suma de los flujos es nula. Invirtiendo las conexiones de las bobinas centrales en el transformador trifásico acorazado, las secciones de los núcleos entre las ventanas es igual al valor que se obtendría sin invertir las conexiones, divididas por raíz de 3. El transformador trifásico mas compacto y ligero que los tres transformadores monofásicos equivalentes, pero disminuye la flexibilidad del sistema. En un auto transformador, parte del devanado es común a primario y secundario. Tan solo se transforma una parte de la potencia, yendo la restante de la carga por conducción. Cuando la razón de transformación es próxima ala unidad o es pequeña, se ahorra mucho material y pérdidas adoptando este sistema en vez del transformador clásico aparente.

Los transformadores Rurales

Descripción:Están diseñados para instalación monoposte en redes de electrificación suburbanas monofilares, bifilares y trifilares, de 7.6, 13.2 y 15 kV.

En redes trifilares se pueden utilizar transformadores trifásicos o como alternativa 3 monofásicos.

Los transformadores Herméticos de Llenado Integral,

Descripción:Se utilizan en intemperie o interior para distribución de energía eléctrica en media tensión, siendo muy útiles en lugares donde los espacios son reducidos. Son de aplicación en zonas urbanas, industrias,

47

Page 52: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

minería, explotaciones petroleras, grandes centros comerciales y toda actividad que requiera la utilización intensiva de energía eléctrica.

Características Generales:

Su principal característica es que al no llevar tanque de expansión de aceite no necesita mantenimiento, siendo esta construcción más compacta que la tradicional. Se fabrican en potencias normalizadas desde 100 hasta 1000 kVA, tensiones primarias de 13.2, 15, 25, 33 y 35 kV y frecuencias de 50 y 60 Hz.

48

Page 53: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Unidad 3

Competencia 3.1Debes conocer y definir correctamente todo lo relacionado al funcionamiento de los deferentes dispositivos electrónicos e identificar su forma externa y la estructura interna de cada uno de ellos.

Indicador 3.1.1Debes documentarte ampliamente sobre la construcción interna de cada dispositivo para que

relaciones y compares componentes de un circuito y de otro.

49

Page 54: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Semiconductores

Semiconductor, material sólido o líquido capaz de conducir la electricidad mejor que un aislante, pero peor que un metal. La conductividad eléctrica, que es la capacidad de conducir la corriente eléctrica cuando se aplica una diferencia de potencial, es una de las propiedades físicas más importantes. Ciertos metales, como el cobre, la plata y el aluminio son excelentes conductores. Por otro lado, ciertos aislantes como el diamante o el vidrio son muy malos conductores. A temperaturas muy bajas, los semiconductores puros se comportan como aislantes. Sometidos a altas temperaturas, mezclados con impurezas o en presencia de luz, la conductividad de los semiconductores puede aumentar de forma espectacular y llegar a alcanzar niveles cercanos a los de los metales. Las propiedades de los semiconductores se estudian en la física del estado sólido.

Electrones de conducción y lagunas

Entre los semiconductores comunes se encuentran elementos químicos y compuestos, como el silicio, el germanio, el selenio, el arseniuro de galio, el seleniuro de cinc y el telururo de plomo. El incremento de la conductividad provocado por los cambios de temperatura, la luz o las impurezas se debe al aumento del número de electrones conductores que transportan la corriente eléctrica. En un semiconductor característico o puro como el silicio, los electrones de valencia (o electrones exteriores) de un átomo están emparejados y son compartidos por otros átomos para formar un enlace covalente que mantiene al cristal unido. Estos electrones de valencia no están libres para transportar corriente eléctrica. Para producir electrones de conducción, se utiliza la luz o la temperatura, que excita los electrones de valencia y provoca su liberación de los enlaces, de manera que pueden transmitir la corriente. Las deficiencias o huecos que quedan contribuyen al flujo de la electricidad (se dice que estos huecos transportan carga positiva). Éste es el origen físico del incremento de la conductividad eléctrica de los semiconductores a causa de la temperatura.

Dopar

Otro método para obtener electrones para el transporte de electricidad consiste en añadir impurezas al semiconductor o doparlo. La diferencia del número de electrones de valencia entre el material dopante (tanto si acepta como si confiere electrones) y el material receptor hace que crezca el número de electrones de conducción negativos (tipo n) o positivos (tipo p). Este concepto se ilustra en el diagrama que se muestra a continuación, que representa un cristal de silicio dopado. Cada átomo de silicio tiene cuatro electrones de valencia (representados mediante puntos). Se requieren dos para formar el enlace covalente. En el silicio tipo n, un átomo como el del fósforo (P), con cinco electrones de valencia, reemplaza al silicio y proporciona electrones adicionales. En el silicio tipo p, los átomos de tres electrones de valencia como el aluminio (Al) provocan una deficiencia de electrones o huecos que se comportan como electrones positivos. Los electrones o los huecos pueden conducir la electricidad.

Cuando ciertas capas de semiconductores tipo p y tipo n son adyacentes, forman un diodo de semiconductor, y la región de contacto se llama unión pn. Un diodo es un dispositivo de dos terminales que tiene una gran resistencia al paso de la corriente eléctrica en una dirección y una baja resistencia en la otra. Las propiedades de conductividad de la unión pn dependen de la dirección del voltaje, que puede a su vez utilizarse para controlar la naturaleza eléctrica del dispositivo. Algunas series de estas uniones

50

Page 55: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

se usan para hacer transistores y otros dispositivos semiconductores como células solares, láseres de unión pn y rectificadores. Véase Electrónica; Energía solar.

Los dispositivos semiconductores tienen muchas aplicaciones en la ingeniería eléctrica. Los últimos avances de la ingeniería han producido pequeños chips semiconductores que contienen cientos de miles de transistores. Estos chips han hecho posible un enorme grado de miniaturización en los dispositivos electrónicos. La aplicación más eficiente de este tipo de chips es la fabricación de circuitos de semiconductores de metal-óxido complementario o CMOS, que están formados por parejas de transistores de canal p y n controladas por un solo circuito. Además, se están fabricando dispositivos extremadamente pequeños utilizando la técnica epitaxial de haz molecular.

Diodos

Diodo, componente electrónico que permite el paso de la corriente en un solo sentido. Los primeros dispositivos de este tipo fueron los diodos de tubo de vacío, que consistían en un receptáculo de vidrio o de acero al vacío que contenía dos electrodos: un cátodo y un ánodo. Ya que los electrones pueden fluir en un solo sentido, desde el cátodo hacia el ánodo, el diodo de tubo de vacío se podía utilizar en la rectificación. Los diodos más empleados en los circuitos electrónicos actuales son los diodos fabricados con material semiconductor. El más sencillo, el diodo con punto de contacto de germanio, se creó en los primeros días de la radio, cuando la señal radiofónica se detectaba mediante un cristal de germanio y un cable fino terminado en punta y apoyado sobre él. En los diodos de germanio (o de silicio) modernos, el cable y una minúscula placa de cristal van montados dentro de un pequeño tubo de vidrio y conectados a dos cables que se sueldan a los extremos del tubo.

Los diodos de unión constan de una unión de dos tipos diferentes de material semiconductor. El diodo Zener es un modelo especial de diodo de unión, que utiliza silicio, en el que la tensión en paralelo a la unión es independiente de la corriente que la atraviesa. Debido a esta característica, los diodos Zener se utilizan como reguladores de tensión. Otro modelo especial de diodo de unión se utiliza en las células solares, o heliopilas, en las que aparece espontáneamente una tensión al ser iluminada la unión. Por otra parte, en los diodos emisores de luz (LED, acrónimo inglés de Light-Emitting Diode), una tensión aplicada a la unión del semiconductor da como resultado la emisión de energía luminosa. Los LED se utilizan en paneles numéricos como los de los relojes digitales electrónicos y calculadoras de bolsillo. Véase Efecto fotoeléctrico.

 Calcular la resistencia para conectar un LED  (y otros trucos para a estas maravillosas bombillitas):

51

Page 56: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

 

Los micros tienen patillitas, los pines, a los que podemos hacer, mediante nuestro programa, que tengan 0V (estén conectados a masa) ó 5V (estén conectados a VDD). Una manera de saber si esto es realmente así es conectarle a nuestra patilla un diodo LED (esa maravillosa bombillita) que se debe encender cuando el pin tenga los susodichos 5V y apagarse en caso contrario. Cualquier aficionado novato debe empezar exactamente por aquí (Ver el primer experimento que propongo Wink).

El caso es que cualquier diodo LED admite un máximo de corriente (intensidad) y por encima de ella simplemente se funde y deja de iluminarnos para siempre (R.I.P.) Así que es fundamental que sepamos conectarlo correctamente para evitar que se nos muera prematuramente en una fulguración letal y única.

Por lo tanto debe de escogerse bien la corriente que atraviesa el LED para obtener una buena intensidad luminosa. El LED tiene un voltaje de operación que va de 1.5 V a 2.2 voltios. aproximadamente y la gama de corrientes que debe circular por él va de 10 mA a 20 mA en los diodos de color rojo y de entre 20 mA y 40 mA para los otros LEDs

La fórmula fundamental que debemos utilizar es :

Intensidad = (Voltaje - Voltaje de caída en el Led Nota1) / Resistencia

(Intensidad en Amperios, Voltajes en Voltios y Resistencia en Ohmios)

(Nota1 1.5V para leds infrarrojos, 1.8V para leds rojos, 2.3V para leds verdes y 3.8V para leds azules)

Sabemos que nuestro famoso pin del micro nos va a dar 5V y que Led solo admite 20 mA y que va a tener una caída de voltaje de 1.8V, por ejemplo en un Led rojo, así que debemos calcular la resistencia que debemos poner sustituyendo estos valores en la fórmula y haciendo una pequeña

operación matemática.

0.02A = (5v-1.8v) / RR = 3.2V / 0.02AR =  160 Ohmios

Consulto mi tabla de Resistencias Comerciales y veo que la mas parecida por arriba ya que deseo conservar la salud a mi Led es de 180Ω. Así que con una resistencia de 180Ω hará que

nuestro diodo LED luzca firme, alegre y seguro sin temor a que fallezca subiéndosele los colores.

El conexionado final debería ser algo así como :

   

52

Page 57: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Recuerda: La patilla larga del diodo LED es la que debe conectarse al positivo de la alimentación y la corta a masa. (En nuestro esquemilla la patilla larga va a los +5V y la corta a GND) La resistencia dá igual si la ponemos en uno u otro extremo del diodo.

Una unión pn (también denominada diodo) permite el flujo de corriente en un solo sentido. Los electrones del material tipo n pueden fluir hacia la izquierda, atravesando el material tipo p, pero la falta de un exceso de electrones en el material tipo p impedirá cualquier flujo de electrones hacia la derecha. Obsérvese que se define que la corriente fluye en un sentido opuesto al del flujo de los electrones.

53

Page 58: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Antiguos tubos de vacío

Un modelo de la válvula del físico inglés John Ambrose Fleming ilustra la tecnología que llevó al desarrollo del tubo de vacío, uno de los más importantes dispositivos electrónicos antiguos. Un tubo de vacío típico consta de electrodos (placas metálicas) y cables dentro de una bombilla o foco de vidrio al vacío, y se utiliza para regular corrientes eléctricas o señales electrónicas. Antes de la aparición del transistor, los tubos de vacío se utilizaban profusamente para el funcionamiento de aparatos tales como televisores, radios y computadoras. Fleming experimentó con el tubo de vacío diodo del inventor estadounidense Thomas Edison (un proyecto que no prosiguió) en los primeros años del siglo XX, y sus válvulas representan los primeros tubos de radio prácticos.

Diodo emisor de luz

Un diodo es un componente electrónico a través del cual la corriente pasa en un solo sentido. Los diodos emisores de luz (LED, acrónimo de Light-Emitting Diode) son semiconductores que generan luz al pasar una corriente a través de ellos. Se emplean en numerosos dispositivos comunes, como el sintonizador de un aparato de radio. Una disposición de siete LED en forma de ocho puede utilizarse para presentar cualquier número del 0 al 9. Esta disposición suele emplearse en calculadoras y relojes digitales.

54

Page 59: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Clases de diodos

Existen muchas clases de diodos, dependiendo de las combinaciones de los materiales semiconductores que se hagan. Entre ellos se pueden citar los diodos ZENER, los diodos de alta frecuencia, los diodos Schotky, los diodos de silicio controlado, los diodos de recuperacion rapida, etc. Existen diodos para uso comercial, industrial y de alta tecnología. Tambien se estan diseñando diodos de tamaño microscopico, diodos con dos compuertas, diodos damper y otros.

Transistores

BC107  BD140 TIP122 2N3055

55

Page 60: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Indicador 3.1.2

Aprenderás a interpretar las diferentes formas de ondas de audio y también conocerás el funcionamiento de cada circuito que forma la radio.

Ondas

Ondas sonoras

Sonido, fenómeno físico que estimula el sentido del oído. En los seres humanos, esto ocurre siempre que una vibración con frecuencia comprendida entre unos 15 y 20.000 hercios llega al oído interno. El hercio (Hz) es una unidad de frecuencia que corresponde a un ciclo por segundo. Estas vibraciones llegan al oído interno transmitidas a través del aire, y a veces se restringe el término “sonido” a la transmisión en este medio. Sin embargo, en la física moderna se suele extender el término a vibraciones similares en medios líquidos o sólidos. Los sonidos con frecuencias superiores a unos 20.000 Hz se denominan ultrasonidos. Véase Ultrasónica.

Ondas sonoras características

Cada instrumento musical produce una vibración característica. Las vibraciones se propagan por el aire formando ondas sonoras que al llegar al oído nos permiten identificar el instrumento aunque no lo veamos. Los cuatro ejemplos que se muestran representan formas de onda típicas de algunos instrumentos comunes. Un diapasón genera un sonido puro, y vibra regularmente con una forma de onda redondeada. Un violín genera un sonido claro y una forma de onda dentada. La flauta genera un sonido suave y una forma de onda relativamente redondeada. El diapasón, el violín y la flauta tocan la misma nota, por lo que la distancia entre los máximos de la onda es la misma en todas las formas de onda. Un gong no vibra de forma regular como los primeros tres instrumentos. Su forma de onda es dentada y aleatoria, y por lo general no se puede reconocer la nota.

Este artículo se ocupa de este campo de la física en líneas generales. Para lo relativo a la ciencia arquitectónica del diseño de estancias y edificios con propiedades adecuadas de propagación y recepción del sonido, véase Acústica. Para lo relativo a la naturaleza del proceso fisiológico de la audición de

56

Page 61: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

sonidos y la anatomía del mecanismo de audición en personas y animales, véase Oído. En cuanto a las propiedades generales de la producción y propagación de ondas vibracionales, entre ellas las ondas de sonido, véase Movimiento ondulatorio; Oscilación

En general, las ondas pueden propagarse de forma transversal o longitudinal. En ambos casos, sólo la energía y la cantidad de movimiento del movimiento ondulatorio se propagan en el medio; ninguna parte del propio medio se mueve físicamente a una gran distancia. Por ejemplo, imaginemos que atamos firmemente una cuerda a un poste por un extremo, la estiramos sin tensarla del todo y sacudimos el otro extremo. Una onda se desplazará por la cuerda hacia el poste, donde se reflejará y volverá hacia la mano. En realidad, ninguna parte de la cuerda se mueve longitudinalmente hacia el poste, pero todas las partes de la cuerda se mueven transversalmente. Este tipo de movimiento ondulatorio se denomina onda transversal. Del mismo modo, si tiramos una piedra a un estanque, una serie de ondas transversales se propaga desde el punto de impacto. Un corcho que flote cerca de dicho punto se moverá hacia arriba y hacia abajo, es decir, de forma transversal a la dirección del movimiento ondulatorio, pero apenas mostrará movimiento longitudinal. En cambio, una onda de sonido es una onda longitudinal. A medida que la energía del movimiento ondulatorio se propaga alejándose del centro de la perturbación, las moléculas de aire individuales que transmiten el sonido se mueven hacia delante y hacia atrás, de forma paralela a la dirección del movimiento ondulatorio. Por tanto, una onda de sonido es una serie de compresiones y enrarecimientos sucesivos del aire. Cada molécula individual transmite la energía a las moléculas vecinas, pero una vez que pasa la onda de sonido, las moléculas permanecen más o menos en la misma posición.

Características físicas

Cualquier sonido sencillo, como una nota musical, puede describirse en su totalidad especificando tres características de su percepción: el tono, la intensidad y el timbre. Estas características corresponden exactamente a tres características físicas: la frecuencia, la amplitud y la composición armónica o forma de onda. El ruido es un sonido complejo, una mezcla de diferentes frecuencias o notas sin relación armónica.

Frecuencia

Existen distintos métodos para producir sonido de una frecuencia deseada. Por ejemplo, un sonido de 440 Hz puede crearse alimentando un altavoz con un oscilador sintonizado a esa frecuencia (véase Grabación de sonido y reproducción). También puede interrumpirse un chorro de aire mediante una rueda dentada con 44 dientes que gire a 10 revoluciones por segundo; este método se emplea en las sirenas. Los sonidos de un altavoz y una sirena de la misma frecuencia tendrán un timbre muy diferente, pero su tono será el mismo, equivalente al la situado sobre el do central en un piano. El siguiente la del piano, la nota situada una octava por encima, tiene una frecuencia de 880 Hz. Las notas situadas una y dos octavas por debajo tienen frecuencias de 220 y 110 Hz respectivamente. Por definición, una octava es el intervalo entre dos notas cuyas frecuencias tienen una relación de uno a dos.

Una ley fundamental de la armonía afirma que dos notas separadas por una octava producen una combinación eufónica cuando suenan simultáneamente. Cuando el intervalo es de una quinta o de una tercera mayor, la combinación es progresivamente menos eufónica. En física, un intervalo de una quinta implica que la relación de las frecuencias de ambas notas es de tres a dos; en una tercera mayor, la relación es de cinco a cuatro. La ley de la armonía afirma que dos o más notas producen un sonido eufónico al sonar de forma simultánea si la relación entre sus frecuencias corresponde a números enteros

57

Page 62: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

pequeños; si las frecuencias no presentan dichas relaciones, se produce una disonancia. En un instrumento de tonos fijos, como un piano, no es posible establecer las notas de forma que todas estas relaciones sean exactas, por lo que al afinarlo es necesario un cierto compromiso de acuerdo con el sistema de tonos medios o escala temperada.

Amplitud

La amplitud de una onda de sonido es el grado de movimiento de las moléculas de aire en la onda, que corresponde a la intensidad del enrarecimiento y compresión que la acompañan. Cuanto mayor es la amplitud de la onda, más intensamente golpean las moléculas el tímpano y más fuerte es el sonido percibido. La amplitud de una onda de sonido puede expresarse en unidades absolutas midiendo la distancia de desplazamiento de las moléculas del aire, o la diferencia de presiones entre la compresión y el enrarecimiento, o la energía transportada. Por ejemplo, la voz normal presenta una potencia de sonido de aproximadamente una cienmilésima de vatio. Sin embargo, todas esas medidas son muy difíciles de realizar, y la intensidad de los sonidos suele expresarse comparándolos con un sonido patrón; en ese caso, la intensidad se expresa en decibelios (ver el apartado “Sensaciones de tono” más adelante).

Intensidad

La distancia a la que se puede oír un sonido depende de su intensidad, que es el flujo medio de energía por unidad de área perpendicular a la dirección de propagación. En el caso de ondas esféricas que se propagan desde una fuente puntual, la intensidad es inversamente proporcional al cuadrado de la distancia, suponiendo que no se produzca ninguna pérdida de energía debido a la viscosidad, la conducción térmica u otros efectos de absorción. Por ejemplo, en un medio perfectamente homogéneo, un sonido será nueve veces más intenso a una distancia de 100 metros que a una distancia de 300 metros. En la propagación real del sonido en la atmósfera, los cambios de propiedades físicas del aire como la temperatura, presión o humedad producen la amortiguación y dispersión de las ondas sonoras, por lo que generalmente la ley del inverso del cuadrado no se puede aplicar a las medidas directas de la

intensidad del sonido.

Velocidad de las ondas sonoras

La frecuencia de una onda de sonido es una medida del número de vibraciones por segundo de un punto determinado. La distancia entre dos compresiones o dos enrarecimientos sucesivos de la onda se denomina longitud de onda. El producto de la longitud de onda y la frecuencia es igual a la velocidad de propagación de la onda, que es la misma para sonidos de cualquier frecuencia (cuando el sonido se propaga por el mismo medio a la misma temperatura). Por ejemplo, la longitud de onda del la situado sobre el do central es de unos 78,2 cm, y la del la situado por debajo del do central es de unos 156,4 centímetros.

Velocidad del sonido

En la tabla se muestra la velocidad de propagación del sonido en distintos medios a una temperatura determinada.

SUSTANCI VELOCIDAD DEL SONIDO (m/s)

58

Page 63: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

A

Aire (0 ºC) 331,6

Aire (20 ºC) 344

Hidrógeno (0 ºC)

1.280

Agua (0 ºC) 1.390

Agua (20 ºC) 1.484

Cobre (20 ºC) 3.580

Acero (20 ºC) 5.050

Vidrio (20 ºC) 5.200

La velocidad de propagación del sonido en aire seco a una temperatura de 0 °C es de 331,6 m/s. Al aumentar la temperatura aumenta la velocidad del sonido; por ejemplo, a 20 °C, la velocidad es de 344 m/s. Los cambios de presión a densidad constante no tienen prácticamente ningún efecto sobre la velocidad del sonido. En muchos otros gases, la velocidad sólo depende de su densidad. Si las moléculas son pesadas, se mueven con más dificultad, y el sonido avanza más despacio por el medio. Por ejemplo, el sonido avanza ligeramente más deprisa en aire húmedo que en aire seco, porque el primero contiene un número mayor de moléculas más ligeras. En la mayoría de los gases, la velocidad del sonido también depende de otro factor, el calor específico, que afecta a la propagación de las ondas de sonido.

Generalmente, el sonido se mueve a mayor velocidad en líquidos y sólidos que en gases. Tanto en los líquidos como en los sólidos, la densidad tiene el mismo efecto que en los gases; la velocidad del sonido varía de forma inversamente proporcional a la raíz cuadrada de la densidad. La velocidad también varía de forma proporcional a la raíz cuadrada de la elasticidad. Por ejemplo, la velocidad del sonido en agua es de unos 1.500 m/s a temperaturas ordinarias, pero aumenta mucho cuando sube la temperatura. La velocidad del sonido en el cobre es de unos 3.500 m/s a temperaturas normales y decrece a medida que aumenta la temperatura (debido a la disminución de la elasticidad). En el acero, más elástico, el sonido se desplaza a unos 5.000 m/s; su propagación es muy eficiente.

Ondas de radio

Radio, sistema de comunicación mediante ondas electromagnéticas que se propagan por el espacio. Se utilizan ondas radiofónicas de diferente longitud para distintos fines; por lo general se identifican mediante su frecuencia, que es la inversa de la longitud de onda de la radiación. Las ondas más cortas poseen una frecuencia (número de ciclos por segundo) más alta; las ondas más largas tienen una frecuencia más baja (menos ciclos por segundo).

59

Page 64: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

El nombre del pionero alemán de la radio Heinrich Hertz ha servido para bautizar la unidad de medida de la frecuencia, el ciclo por segundo (hercio, Hz). Un kilohercio (kHz) es 1.000 ciclos por segundo, 1 megahercio (MHz) es 1 millón de ciclos por segundo y 1 gigahercio (GHz), 1.000 millones de ciclos por segundo. Las ondas de radio van desde algunos kilohercios a varios gigahercios. Las ondas de luz visible son mucho más cortas. En el vacío, toda radiación electromagnética se desplaza en forma de ondas a una velocidad uniforme de casi 300.000 kilómetros por segundo.

Las ondas de radio se utilizan no sólo en la radiodifusión, sino también en la telegrafía inalámbrica, la transmisión por teléfono, la televisión, el radar, los sistemas de navegación y la comunicación espacial. En la atmósfera, las características físicas del aire ocasionan pequeñas variaciones en el movimiento ondulatorio, que originan errores en los sistemas de comunicación radiofónica como el radar. Además, las tormentas o las perturbaciones eléctricas provocan fenómenos anormales en la propagación de las ondas de radio.

Modulación de radio

Las ondas de frecuencia audio hay que mezclarlas con ondas portadoras para poder ser emitidas por la radio. Es necesario modificar la frecuencia (ritmo de oscilación) o la amplitud (altura) mediante un proceso denominado modulación. Estos dos procesos explican la existencia de los dos tipos de estaciones AM o FM en la radio. Las señales son totalmente diferentes, por lo que no pueden recibirse simultáneamente.

Ondas electromagnéticas en la radio

Las ondas electromagnéticas dentro de una atmósfera uniforme se desplazan en línea recta, y como la superficie terrestre es prácticamente esférica, la comunicación radiofónica a larga distancia es posible gracias a la reflexión de las ondas de radio en la ionosfera. Las ondas radiofónicas de longitud de onda inferior a unos 10 m, que reciben los nombres de frecuencias muy alta, ultraalta y superalta (VHF, UHF y SHF), no se reflejan en la ionosfera; así, en la práctica, estas ondas muy cortas sólo se captan a distancia visual. Las longitudes de onda inferiores a unos pocos centímetros son absorbidas por las gotas de agua o por las nubes; las inferiores a 1,5 cm pueden quedar absorbidas por el vapor de agua existente en la atmósfera limpia.

60

Page 65: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Los sistemas normales de radiocomunicación constan de dos componentes básicos, el transmisor y el receptor. El primero genera oscilaciones eléctricas con una frecuencia de radio denominada frecuencia portadora. Se puede amplificar la amplitud o la propia frecuencia para variar la onda portadora. Una señal modulada en amplitud se compone de la frecuencia portadora y dos bandas laterales producto de la modulación. La frecuencia modulada (FM) produce más de un par de bandas laterales para cada frecuencia de modulación, gracias a lo cual son posibles las complejas variaciones que se emiten en forma de voz o cualquier otro sonido en la radiodifusión, y en las alteraciones de luz y oscuridad en las emisiones televisiva.

61

Page 66: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Unidad 4Competencia 4.1

Que puedas conocer y recordar como funciona una radio en sus diferentes etapas igualmente tener conceptos bien definidos en cuanto al funcionamiento en todo lo relacionado a la oscilación y amplificación en la radio en la T.V blanco y negro y al mismo tiempo que puedas aprender a detectar fallas en las diferentes etapas del circuito.

Indicador 4.1Es necesario que tengas conocimiento en la formación de cada circuito en el radio superheterodino y reconocer así de esa manera sus diferentes acoplamientos.

62

Page 67: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

La radio

Introducción a la radio

Configuración básica de un receptor de radio

Los componentes fundamentales de un receptor de radio son: 1) una antena para recibir las ondas electromagnéticas y convertirlas en oscilaciones eléctricas; 2) amplificadores para aumentar la intensidad de dichas oscilaciones; 3) equipos para la demodulación; 4) un altavoz para convertir los impulsos en ondas sonoras perceptibles por el oído humano (y en televisión, un tubo de imágenes para convertir la señal en ondas luminosas visibles), y 5) en la mayoría de los receptores, unos osciladores para generar ondas de radiofrecuencia que puedan mezclarse con las ondas recibidas.

La señal que llega de la antena, compuesta por una oscilación de la portadora de radiofrecuencia, modulada por una señal de frecuencia audio o vídeo que contiene los impulsos, suele ser muy débil. La sensibilidad de algunos receptores de radio modernos es tan grande que con que la señal de la antena sea capaz de producir una corriente alterna de unos pocos cientos de electrones, la señal se puede detectar y amplificar hasta producir un sonido inteligible por el altavoz. La mayoría de los receptores pueden funcionar aceptablemente con una entrada de algunas millonésimas de voltio. Sin embargo, el aspecto básico en el diseño del receptor es que las señales muy débiles no se convierten en válidas simplemente amplificando, de forma indiscriminada, tanto la señal deseada como los ruidos laterales (véase Ruido más adelante). Así, el cometido principal del diseñador consiste en garantizar la recepción prioritaria de la señal deseada.

Muchos receptores modernos de radio son de tipo superheterodino, en el que un oscilador genera una onda de radiofrecuencia que se mezcla con la onda entrante, produciendo así una onda de frecuencia menor; esta última se denomina frecuencia media. Para sintonizar el receptor a las distintas frecuencias se modifica la frecuencia de las oscilaciones, pero la media siempre permanece fija (en 455 kHz para la mayoría de los receptores de AM y en 10,7 MHz para los de FM). El oscilador se sintoniza modificando la capacidad del condensador en su circuito oscilador; el circuito de la antena se sintoniza de forma similar mediante un condensador.

En todos los receptores hay una o más etapas de amplificación de frecuencia media; además, puede haber una o más etapas de amplificación de radiofrecuencia. En la etapa de frecuencia media se suelen incluir circuitos auxiliares, como el control automático de volumen, que funciona rectificando parte de la salida de un circuito de amplificación y alimentando con ella al elemento de control del mismo circuito o de otro anterior (véase Rectificación). El detector, denominado a menudo segundo detector (el primero es el mezclador), suele ser un simple diodo que actúa de rectificador y produce una señal de frecuencia audio. Las ondas FM se demodulan o detectan mediante circuitos que reciben el nombre de discriminadores o radiodetectores; transforman las variaciones de la frecuencia en diferentes amplitudes de la señal.

63

Page 68: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

La radiotransmisión.

Los componentes fundamentales de un transmisor de radio son: un generador de oscilaciones (oscilador), para convertir la corriente eléctrica común en oscilaciones de una determinada frecuencia de radio; los amplificadores, para aumentar la intensidad de dichas oscilaciones conservando la frecuencia establecida, y un transductor, para convertir la información a transmitir en un voltaje eléctrico variable y proporcional a cada valor instantáneo de la intensidad. En el caso de la transmisión de sonido, el transductor es un micrófono; para transmitir imágenes se utiliza como transductor un dispositivo fotoeléctrico.

Otros componentes importantes de un transmisor de radio son el modulador, que aprovecha los voltajes proporcionales para controlar las variaciones en la intensidad de oscilación o la frecuencia instantánea de la portadora, y la antena, que radia una onda portadora igualmente modulada. Cada antena presenta ciertas propiedades direccionales, es decir, radia más energía en unas direcciones que en otras, pero la antena siempre se puede modificar de forma que los patrones de radiación varíen desde un rayo relativamente estrecho hasta una distribución homogénea en todas las direcciones; este último tipo de radiación se usa en la radiodifusión.

El método concreto utilizado para diseñar y disponer los diversos componentes depende del efecto buscado. Los requisitos principales de la radio de un avión comercial o militar, por ejemplo, son que tenga un peso reducido y que resulte inteligible; el coste es un aspecto secundario y la fidelidad de reproducción carece totalmente de importancia. En una emisora comercial de radio, sin embargo, el tamaño y el peso entrañan poca importancia, el coste debe tenerse en cuenta y la fidelidad resulta fundamental, sobre todo en el caso de emisoras FM; el control estricto de la frecuencia constituye una necesidad crítica. En Estados Unidos, por ejemplo, una emisora comercial típica de 1.000 kHz posee un ancho de banda de 10 kHz, pero este ancho sólo se puede utilizar para modulación; la frecuencia de la portadora propiamente dicha se tiene que mantener exactamente en los 1.000 kHz, ya que una desviación de una centésima del 1% originaría grandes interferencias con emisoras de la misma frecuencia, aunque se hallen distantes.

Aun cuando fueron necesarios muchos descubrimientos en el campo de la electricidad hasta llegar a la radio, su nacimiento data en realidad de 1873, año en el que el físico británico James Clerk Maxwell publicó su teoría sobre las ondas electromagnéticas.

La teoría de Maxwell se refería sobre todo a las ondas de luz; quince años más tarde, el físico alemán Heinrich Hertz logró generar eléctricamente tales ondas. Suministró una carga eléctrica a un condensador y a continuación le hizo un cortocircuito mediante un arco eléctrico. En la descarga eléctrica resultante, la corriente saltó desde el punto neutro, creando una carga de signo contrario en el condensador, y después continuó saltando de un polo al otro, creando una descarga eléctrica oscilante en forma de chispa. El arco eléctrico radiaba parte de la energía de la chispa en forma de ondas electromagnéticas. Hertz consiguió medir algunas de las propiedades de estas ondas “hercianas”, incluyendo su longitud y velocidad.

64

Page 69: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Las ondas de frecuencia audio hay que mezclarlas con ondas portadoras para poder ser emitidas por la radio. Es necesario modificar la frecuencia (ritmo de oscilación) o la amplitud (altura) mediante un proceso denominado modulación. Estos dos procesos explican la existencia de los dos tipos de estaciones AM o FM en la radio. Las señales son totalmente diferentes, por lo que no pueden recibirse simultáneamente.

65

Page 70: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Frecuencia

Percibimos la frecuencia de los sonidos como tonos más graves o más agudos. La frecuencia es el número de ciclos (oscilaciones) que una onda sonora efectúa en un tiempo dado; se mide en hercios (ciclos por segundo). En este ejemplo escuchamos una misma nota (la) a diferentes frecuencias, de 110,00 a 880,00

hercios (Hz). Los seres humanos sólo podemos percibir el sonido en un rango de frecuencias relativamente reducido, aproximadamente entre 20 y 20.000 hercios.

Antena de microondas

Las antenas son equipos que emiten o reciben ondas electromagnéticas. Las de microondas operan en longitudes de onda inferiores a 30 cm. La antena de microondas de la fotografía se encuentra en el Centro Espacial John F. Kennedy, en Florida.

Radiofrecuencia y longitudes de onda

Las ondas de radio poseen un campo muy amplio de aplicación, incluida la comunicación durante los rescates de emergencia (radiotransistores y de onda corta), emisiones internacionales (satélites) y hornos (microondas). Una onda de radio queda definida por su longitud de onda (la distancia entre dos crestas consecutivas) o por su frecuencia (el número de crestas que pasan por un punto durante un segundo). Las longitudes de las ondas de radio van desde 100.000 m hasta 1 mm. Las frecuencias varían de 3 kilohertzios a 300 gigahertzios.

FRECUENCIA DENOMINACIÓN ABR. LONG. ONDA

3-30 kHz Frecuencia muy baja VLF 100.000-10.000 m

30-300 kHz Frecuencia baja LF 10.000-1.000 m

300-3.000 kHz Frecuencia media MF 1.000-100 m

3-30 MHz Frecuencia alta (onda corta) HF 100-10 m

30-300 MHz Frecuencia muy alta VHF 10-1 m

300-3000 MHz Frecuencia ultraelevada UHF 1 m-10 cm

3-30 GHz Frecuencia superelevada SHF 10-1 cm

30-300 GHz Frecuencia extremadamente alta EHF 1 cm-1 mm

* kHz = kilohercio, o 1.000 Hz; MHz = megahercio, o 1.000 kHz; GHz = gigahercio, o 1.000 MHz.

66

Page 71: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Ondas electromagneticas

La idea de utilizar ondas electromagnéticas para la transmisión de mensajes de un punto a otro no era nueva; el heliógrafo, por ejemplo, transmitía mensajes por medio de un haz de rayos luminosos que se podía modular con un obturador para producir señales en forma de los puntos y las rayas del código Morse (véase Samuel F. B. Morse). A tal fin la radio presenta muchas ventajas sobre la luz, aunque no resultasen evidentes a primera vista. Las ondas de radio, por ejemplo, pueden cubrir distancias enormes, a diferencia de las microondas (usadas por Hertz).

Las ondas de radio pueden sufrir grandes atenuaciones y seguir siendo perceptibles, amplificables y detectadas; pero los buenos amplificadores no se hicieron una realidad hasta la aparición de las válvulas electrónicas. Por grandes que fueran los avances de la radiotelegrafía (por ejemplo, en 1901 Marconi desarrolló la comunicación transatlántica), la radiotelefonía nunca habría llegado a ser útil sin los avances de la electrónica. Desde el punto de vista histórico, los desarrollos en el mundo de la radio y en el de la electrónica han ocurrido de forma simultánea.

Para detectar la presencia de la radiación electromagnética, Hertz utilizó un aro parecido a las antenas circulares. En aquella época, el inventor David Edward Hughes había descubierto que un contacto entre una punta metálica y un trozo de carbón no conducía la corriente, pero si hacía circular ondas electromagnéticas por el punto de contacto, éste se hacía conductor. En 1879 Hughes demostró la recepción de señales de radio procedentes de un emisor de chispas alejado un centenar de metros. En dichos experimentos hizo circular una corriente de una célula voltaica a través de una válvula rellena de limaduras de cinc y plata, que se aglomeraban al ser bombardeadas con ondas de radio.

Este principio lo utilizó el físico británico Oliver Joseph Lodge en un dispositivo llamado cohesor para detectar la presencia de ondas de radio. El cohesor, una vez hecho conductor, se podía volver a hacer aislante golpeándolo y haciendo que se separasen las partículas. Aunque era mucho más sensible que la bocina en ausencia de amplificador, el cohesor sólo daba una única respuesta a las ondas de radio de suficiente potencia de diversas intensidades, por lo que servía para la telegrafía, pero no para la telefonía.

El ingeniero electrotécnico e inventor italiano Guglielmo Marconi está considerado universalmente el inventor de la radio. A partir de 1895 fue desarrollando y perfeccionando el cohesor y lo conectó a una forma primitiva de antena, con el extremo conectado a tierra. Además mejoró los osciladores de chispa conectados a antenas rudimentarias. El transmisor se modulaba mediante una clave ordinaria de telégrafo. El cohesor del receptor accionaba un instrumento telegráfico que funcionaba básicamente como amplificador.

En 1896 consiguió transmitir señales desde una distancia de 1,6 km, y registró su primera patente inglesa. En 1897 transmitió señales desde la costa hasta un barco a 29 km en alta mar. Dos años más tarde logró establecer una comunicación comercial entre Inglaterra y Francia capaz de funcionar con independencia del estado del tiempo; a principios de 1901 consiguió enviar señales a más de 322 km de distancia, y a finales de ese mismo año transmitió una carta entera de un lado a otro del océano Atlántico. En 1902 ya se enviaban de forma regular mensajes transatlánticos y en 1905 muchos barcos llevaban equipos de radio para comunicarse con emisoras de la costa. Como reconocimiento a sus trabajos en el campo de la telegrafía sin hilos, en 1909 Marconi compartió el Premio Nobel de Física con el físico alemán Karl Ferdinand Braun.

A lo largo de todos estos años se introdujeron diferentes mejoras técnicas. Para la sintonía se utilizaron circuitos resonantes dotados de inductancia y capacitancia. Las antenas se fueron perfeccionando, descubriéndose y aprovechándose sus propiedades direccionales. Se utilizaron los transformadores para

67

Page 72: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

aumentar el voltaje enviado a la antena. Se desarrollaron otros detectores para complementar al cohesor y su rudimentario descohesor. Se construyó un detector magnético basado en la propiedad de las ondas magnéticas para desmagnetizar los hilos de acero, un bolómetro que medía el aumento de temperatura de un cable fino cuando lo atravesaban ondas de radio y la denominada válvula de Fleming, precursora de la válvula termoiónica o lámpara de vacío.

SIGLO XX

El desarrollo de la válvula electrónica se remonta al descubrimiento que hizo el inventor estadounidense Thomas Alva Edison al comprobar que entre un filamento de una lámpara incandescente y otro electrodo colocado en la misma lámpara fluye una corriente y que además sólo lo hace en un sentido. La válvula de Fleming apenas difería del tubo de Edison. Su desarrollo se debe al físico e ingeniero eléctrico inglés John Ambrose Fleming en 1904 y fue el primer diodo, o válvula de dos elementos, que se utilizó en la radio. El tubo actuaba de detector, rectificador y limitador.

En 1906 se produjo un avance revolucionario, punto de partida de la electrónica, al incorporar el inventor estadounidense Lee de Forest un tercer elemento, la rejilla, entre el filamento y el cátodo de la válvula. El tubo de De Forest, que bautizó con el nombre de audión y que actualmente se conoce por triodo (válvula de tres elementos), en principio sólo se utilizó como detector, pero pronto se descubrieron sus propiedades como amplificador y oscilador; en 1915 el desarrollo de la telefonía sin hilos había alcanzado un grado de madurez suficiente como para comunicarse entre Virginia y Hawai (Estados Unidos) y entre Virginia y París (Francia).

Las funciones rectificadoras de los cristales fueron descubiertas en 1912 por el ingeniero eléctrico e inventor estadounidense Greenleaf Whittier Pickard, al poner de manifiesto que los cristales se pueden utilizar como detectores. Este descubrimiento permitió el nacimiento de los receptores con detector de cristal, tan populares en la década de 1920. En 1912, el ingeniero eléctrico estadounidense Edwin Howard Armstrong descubrió el circuito reactivo, que permite realimentar una válvula con parte de su propia salida. Éste y otros descubrimientos de Armstrong constituyen la base de muchos circuitos de los equipos modernos de radio.

En 1902, el ingeniero estadounidense Arthur Edwin Kennelly y el físico británico Oliver Heaviside (de forma independiente y casi simultánea) proclamaron la probable existencia de una capa de gas ionizado en la parte alta de la atmósfera que afectaría a la propagación de las ondas de radio. Esta capa, bautizada en principio como la capa de Heaviside o Kennelly-Heaviside, es una de las capas de la ionosfera. Aunque resulta transparente para las longitudes de onda más cortas, desvía o refleja las ondas de longitudes más largas. Gracias a esta reflexión, las ondas de radio se propagan mucho más allá del horizonte.

La propagación de las ondas de radio en la ionosfera se ve seriamente afectada por la hora del día, la estación y la actividad solar. Leves variaciones en la naturaleza y altitud de la ionosfera, que tienen lugar con gran rapidez, pueden afectar la calidad de la recepción a gran distancia. La ionosfera es también la causa de un fenómeno por el cual se recibe una señal en un punto muy distante y no en otro más próximo. Este fenómeno se produce cuando el rayo en tierra ha sido absorbido por obstáculos terrestres y el rayo propagado a través de la ionosfera no se refleja con un ángulo lo suficientemente agudo como para ser recibido a distancias cortas respecto de la antena.

La radio actual

68

Page 73: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Los enormes avances en el campo de la tecnología de la comunicación radiofónica a partir de la II Guerra Mundial han hecho posible la exploración del espacio (véase Astronáutica), puesta de manifiesto especialmente en las misiones Apolo a la Luna (1969-1972). A bordo de los módulos de mando y lunar se hallaban complejos equipos de transmisión y recepción, parte del compacto sistema de comunicaciones de muy alta frecuencia. El sistema realizaba simultáneamente funciones de voz y de exploración, calculando la distancia entre los dos vehículos mediante la medición del tiempo transcurrido entre la emisión de tonos y la recepción del eco. Las señales de voz de los astronautas también se transmitían simultáneamente a todo el mundo mediante una red de comunicaciones. El sistema de radio celular es una versión en miniatura de las grandes redes radiofónicas.

Superheterodinaje.

Los primeros radios que fueron diseñados como receptores fueron llamados radios de Galena. Los cuales consistían en un circuito sencillo en el que se usaban una bobina de antena, un condensador variable, un diodo de galena, y auriculares. Ver figura.

Pero este radio tenia un problema que solo podía captar las señales cercanas del transmisor (estación de radio). Fue entonces necesario construir algo diferente que pudiera mantener las señales de RF. (Radio frecuencia) a larga distancia. Entonces se diseño un nuevo receptor el cual hizo posible recibir las señales de RF y procesarlas por un procedimiento de mezcla, y a eso se le llamo SUPERHETERODINAJE.

Esto consiste en recibir la señal de RF, hacer que el receptor produzca otra señal similar que proviene de un oscilador local, mezclar ambas señales y sacar una tercera señal, llamada Frecuencia intermedia.(FI)

El receptor superheterodino lleva a cabo casi toda la amplificacíon de la frecuencia constante denominada Frecuencia intermedia, o FI, utilizando una frecuencia fija, con lo que se consiguen ajustes más precisos en los circuitos y se aprovecha todo lo que puede dar el componente utilizado (válvula termoiónica, transistor o circuito integrado). Fue inventado por Edwin Howard Armstrong, inventor también del circuito regenerativo, del receptor superregenerativo y de la radiodifusión de frecuencia modulada (FM).

En los receptores domésticos de AM (Onda media), la frecuencia intermedia es de 455 o 470 kHz; en los receptores de Frecuencia modulada (FM), generalmente es de 10,7 MHz.

Los receptores superheterodinos mezclan o heterodinan una frecuencia generada en un oscilador local (Floc), contenido en el receptor, con la señal entrante en antena (Fant).

69

Page 74: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

De esta heterodinación resultan dos frecuencias: una superior (Fant + Floc) y otra inferior (Fant - Floc) a la frecuencia entrante. Una de ellas, normalmente la inferior, es elegida como FI (frecuencia intermedia), filtrada con un filtro de alto factor Q, amplificada y posteriormente detectada o demodulada para obtener la audiofrecuencia que se oirá, después de convenientemente amplificada, a través de un altavoz.

El usuario sintoniza el receptor mediante el ajuste de la frecuencia del oscilador local (Floc) y la sintonización de las señales entrantes (Fant).

En la mayoría de los receptores estos ajustes se realizan de forma simultánea, actuando sobre un condensador variable con dos secciones en tándem, esto es, acopladas en el mismo eje. Una de las secciones de este condensador forma parte del circuito oscilador local y la otra del de sintonía de la señal entrante, de tal forma que cuando se varía la frecuencia sintonizada en la entrada, se varia también la frecuencia del oscilador local, manteniendo constante la diferencia entre ambas, que es la Frecuencia intermedia) (FI).

DIAGRAMA EN BLOQUES DE UN RECEPTOR SUPERHETERODINO.

70

Page 75: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Introducción a la TV blanco y negro.

Historia de la T.V.

Philo Taylor Farnsworth (1906 - 11 de marzo de 1971) fue un inventor estadounidense conocido por inventar la primera televisión totalmente electrónica. En concreto, trabajó en la creación de un dispositivo para la recolección de imágenes electrónicas (tubo de cámara de vídeo), y mostró por primera vez al público un sistema de televisión completamente electrónico. En etapas posteriores de su vida, Farnsworth inventó también un pequeño dispositivo de fusión nuclear conocido como fusor.

Philo T. Farnsworth nació el 19 de agosto de 1906 en Indian Springs, Utah, hijo de Lewis Edwin y Serena Bastian Farnsworth,que pertenecían a la iglesia mormona. Philo, que había nacido en una cabaña de madera, no conoció la electricidad hasta la primavera de 1919, cuando su familia se mudó a Rigby (Idaho), donde trabajaron como medieros. El joven Philo desarrolló un interés temprano por la electrónica después de su primera conversación telefónica y el descubrimiento de una serie de revistas científicas en el desván de la nueva casa de la familia en Rigby. Con estas revistas y libros de ciencia prestados aprendió Física por su cuenta, estudiando las teorías de Einstein, al tiempo que se dedicaba a reparar y construir dispositivos eléctricos con piezas encontradas por la granja. Interesado en la posibilidad de un sistema electrónico que uniese las características de la radio y el cine, transmitiendo a un tiempo imagen y sonido, descubrió que algunos inventores, como George Carey, W. E. Sawyer, Maurice Leblanc y Paul Nipkow ya habían trabajado en ese campo, aunque con escaso éxito, y pensó, acertadamente, que esos sistemas de televisión mecánica no funcionarían lo bastante rápido para captar una imagen nítida. En los libros y revistas científicas que leía había descubierto la existencia de una nueva partícula, el electrón, y pensaba que ahí estaba la solución para transformar la luz en elctricidad. Un día en que trabajaba con una cosechadora, se le ocurrió que un haz de electrones desviado magnéticamente para que operase línea por línea, como hacía la cosechadora, podía soportar la imagen, de un modo parecido a como trabajan los ojos al leer un libro.1 En aquel momento tenía 14 años y, junto con su profesor de química del instituto, Justin Tolman, desarrolló en seis meses los aspectos teóricos de su idea. Al año siguiente, su familia se trasladó a un lugar cercano a Provo, en Utah, donde compartían casa con otra familia, los Gardner. Philo, con sólo quince años, fue admitido en la Universidad de Brigham Young, pero la muerte de su padre dos años más tarde, en 1923, y las dificultades económicas familiares le obligaron a interrumpir sus estudios. En 1926 pidió a los Gardner, la familia con la que compartían vivienda, la mano de su hija Elma, a la que llamaban "Pem", aunque las circunstancias hicieron que el matrimonio tardase en celebrarse. Ese mismo año había abierto con Cliff Gardner, hermano de Pem, un negocio de instalación y reparación de aparatos de radio que había resultado un fracaso, así que, buscando un empleo, se inscribió en el servicio de colocaciones de la Universidad de Utah. Allí conoció a George Everson, un promotor de fondos profesional, que había contratado a Philo, junto con otros estudiantes, para realizar una encuesta. Farnsworth logró que éste y su socio financiaran su invento y le concedieran la mitad de las acciones de la compañía creada por los tres, que trabajaría en San Francisco. Se trasladó a Los Ángeles para llevar a cabo su investigación. Ya casado con Pem Garner, se mudó a San Francisco con esta y con su cuñado Cliff para trabajar en su invento. En esta época construyeron la primera cámara de válvula de la televisión electrónica, a la que Farnsworth llamó disector de imagen. Inventó además un tubo de rayos catódicos frío y utilizó un matraz Erlenmeyer de fondo plano, como los utilizados en las clases de química, como válvula de imagen, a la que llamó "oscilita de imagen". Tras varios ensayos y errores, el 7 de septiembre de 1927, el sistema transmitió su primera señal, una simple línea recta en movimiento. En 1928, Farnsworth había desarrollado el sistema lo suficiente como para hacer una manifestación pública,2 y un año después, su sistema de televisión no tenía partes mecánicas en movimiento. El invento de Farnsworth aún no estaba patentado, por lo que se guardaba en secreto, pero el entonces recién nombrado presidente de la RCA, David Sarnoff, temiendo que la televisión acabase por desplazar a la radio, contrató en 1930 a un ingeniero nacido en rusia, Vladimir Zworykin, que trbajaba en un diseño parecido al de Farnsworth, aunque había problemas que no sabía resolver. Este, sin decirle que trabajaba para la RCA, se presentó como un colega interesado en intercambiar opiniones y visitó su laboratorio durante tres días enteros,3 aprovechando la ocasión para espiar la investigación de Farnsworth. El proyecto de la RCA seguía utilizando un escáner mecánico, así que Sarnoff le dio a

71

Page 76: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Zworykin un generoso presupuesto y un año de plazo para desarrollar el dispositivo. Como no lo consiguió, en 1931 David Sarnoff le hace a Farnsworth, en nombre de la RCA, una oferta para comprar sus patentes, pero él se negó. En junio de este año, Farnsworth se unió a la empresa Philco y trasladó su laboratorio a Filadelfia. Mientras el invento de Farnsworth iba perfeccionándose, Sarnoff conseguía el monopolio de la reciente industria de la televisión, en la que las pequeñas compañías de radio no tenían muchas posibilidades de competir, en los años posteriores al hundimiento bursátil de 1929. en 1932 la RCA presentó una televisión electrónica similar a la de Farnsworth, atribuyéndole el invento a Zworykin. Esto los llevó a un proceso judicial que, a pesar del enorme poder de los abogados de la RCA, se falló a favor de Farnswotrh, y en el que incluso prestó declaración Justin Tolman, el profesor de química que, cuando Farnsworth era adolescente, había sido testigo del nacimiento del proyecto. La compañía apeló y perdió, pero el juicio había durado varios años, y para cuando Sarnoff accedió a pagarle las regalías al verdadero inventor, éste estaba arruinado y su salud se había deteriorado. En la Feria Mundial en Flushing Meadows, en Nueva York, RCA se presentó como patrocinador del Pabellón de la Televisión, obtuvo los derechos de reteransmisión del evento y logró el monopolio del sector. Farnsworth se había iniciado en la fabricación de televisores, pero la producción se detuvo cor la entrada en guerra de EE.UU., de modo que se vio obligado a vender los activos de su compañía a International Telephone and Telegraph, que poco después abandonaba la industria de la televisión para dedicarse a la producción de radares. Cuando terminaron sus patentes, que pasaron a ser de dominio público en 1947, no la había dado tiempo a hacer fortuna. Para entonces, RCA estaba produciendo seis mil televisores al año, cifra que se centuplicó en los años siguientes.

Farnsworth sufrió una crisis nerviosa de la que nunca se recuperó totalmente. Desde 1949, dejó de trabajar en proyectos relacionados con la televisión, aunque sí investigó sobre energía atómica y electrónica.Al final de su vida era un perfecto desconocido y estaba desilusionado e inmerso en la depresión y alcoholismo.

[En 1957] era tan desconocido para el público que actuó como invitado misterioso en el programa de televisión What's my Life?. Fansworth fue presentado como el doctor X. Se trataba de que los concursantes le hicieran preguntas y , en función de sus respuestas, determinaran qué había hecho en su vida para aparecer en ese programa. Uno de los concursantes le preguntó al dodtor X si había inventado algún tipo de máquina cuya utilización pudiera ser dolorosa. Él contestó: «Sí, a veces es muy dolorosa»HORVITZ,L.A.,¡Eureka! Descubrimientos científicos que cambiaron el mundo, Ed. Paidós,Barcelona, 2003, p. 117

Enfermó gravemente de neumonía y murió el 11 de marzo de 1971-curiosamente el mismo año que Sarnoff-, teniendo en su haber más de trescientas patentes.

Inventos

Tubo de televisión (Disector de imagen)

Farnsworth desarrolló el primer tubo de vacío para el rodaje de televisión, una idea que concibe a la edad de 14 años y desarrolla a los 21 años. Fue el primer paso hacia la televisión electrónica que suplantaría a la televisión electromecánica. Esta invención se utilizó en todos los televisores y otros tipos de aparatos hasta el final del siglo XX cuando la industria desarrolla los sensores CCD.

72

Page 77: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Primer reactor de fusión nuclear

El fusor Farnsworth-Hirsch, o simplemente fusor fue la primera experiencia de la fusión nuclear a fines del 1960.

Introducción.

La fotolitografía corriente se caracteriza por la división de la imagen en una enorme cantidad de puntos pequeños luminosos u oscuros. La transmisión facsímil (fax), sistema de transmisión eléctrica de fotografías, dibujos o elementos impresos, también se basa en esta subdivisión en puntos. En ambos casos, los puntos son tan pequeños y tan numerosos que la imagen aparece al ojo del observador como un todo integrado. Las imágenes de televisión están formadas análogamente por un esquema de elementos tonales que configuran una imagen completa. Sin embargo, a diferencia de los puntos de un grabado o de la transmisión facsímil, que aparecen simultáneamente en la superficie del papel, los diferentes elementos tonales de la imagen de televisión aparecen en la superficie de proyección uno tras otro en una secuencia temporal; forman la imagen porque la persistencia de la visión los combina para formar una imagen completa.

La Señal de Televisión.

La señal de televisión es una compleja onda electromagnética de variación de tensión o intensidad, compuesta por las siguientes partes: 1) una serie de fluctuaciones correspondientes a las fluctuaciones de la intensidad de luz de los elementos de la imagen a explorar; 2) una serie de impulsos de sincronización que adaptan el receptor a la misma frecuencia de barrido que el transmisor; 3) una serie adicional de los denominados impulsos de borrado, y 4) una señal de frecuencia modulada (FM) que transporta el sonido que acompaña a la imagen. Los tres primeros elementos conforman la señal de vídeo y se describen más adelante.

Las fluctuaciones de intensidad o tensión correspondientes a las variaciones de la intensidad de la luz, suelen llamarse señal de vídeo. Las frecuencias de dicha señal oscilan entre 30 millones y 4 millones de Hz, dependiendo del contenido de la imagen.

Los impulsos de sincronización son picos pequeños de energía eléctrica generados por los correspondientes osciladores en la estación emisora. Estos impulsos controlan la velocidad del barrido horizontal y vertical tanto de la cámara como del receptor. Los impulsos de sincronismo horizontal se producen a intervalos de 0,01 segundos y su duración es prácticamente la misma.

Los impulsos de borrado anulan el haz de electrones en la cámara y en el receptor durante el tiempo empleado por el haz de electrones en volver desde el final de una línea horizontal hasta el principio de la siguiente, así como desde la parte inferior del esquema vertical hasta la parte superior. La sincronización y estructura de estos impulsos resultan extremadamente complejas.

73

Page 78: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Tubo de Crookes

William Crookes construyó en la década de 1870 el precursor del tubo moderno de imágenes de televisión con el propósito de investigar las propiedades de los rayos catódicos. Cuando se hace el vacío en el tubo y se le aplica un voltaje elevado, uno de los extremos se ilumina debido a los rayos catódicos (que hoy se sabe que son electrones) que impactan en el cristal. El moderno tubo de imágenes de televisión proviene directamente del tubo de Crookes. Las diferencias principales estriban en que el tubo de rayos catódicos utiliza un cátodo incandescente para aumentar el número de electrones, a diferencia del tubo de Crookes, y en que el primero posee electrodos adicionales para enfocar y desviar el haz en su trayectoria hasta la pantalla.

Desarrollo de la televisión

Televisión (TV), transmisión instantánea de imágenes, tales como fotos o escenas, fijas o en movimiento, por medios electrónicos a través de líneas de transmisión eléctricas o radiación electromagnética (ondas de radio).

Imágenes de televisión

La fotolitografía corriente se caracteriza por la división de la imagen en una enorme cantidad de puntos pequeños luminosos u oscuros. La transmisión facsímil (fax), sistema de transmisión eléctrica de fotografías, dibujos o elementos impresos, también se basa en esta subdivisión en puntos. En ambos casos, los puntos son tan pequeños y tan numerosos que la imagen aparece al ojo del observador como un todo integrado. Las imágenes de televisión están formadas análogamente por un esquema de elementos tonales que configuran una imagen completa. Sin embargo, a diferencia de los puntos de un grabado o de la transmisión facsímil, que aparecen simultáneamente en la superficie del papel, los diferentes elementos tonales de la imagen de televisión aparecen en la superficie de proyección uno tras otro en una secuencia temporal; forman la imagen porque la persistencia de la visión los combina para formar una imagen completa.

74

Page 79: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

Exploración de imágenes

La subdivisión de una imagen en una secuencia de elementos individuales que más tarde pueden volver a combinarse con el fin de recrear dicha imagen, se efectúa mediante una técnica denominada captación de imágenes. El objetivo va pasando por toda la imagen de forma análoga a como el ojo del lector recorre una página escrita, palabra a palabra y línea a línea. Esa exploración genera una señal eléctrica proporcional a la luminosidad del punto explorado. En el receptor, un segundo dispositivo recrea la imagen del objeto desplazando un punto de luz, modulado por la señal, en sincronismo perfecto con la captación del transmisor.

Hay diferentes medios de exploración, tanto mecánicos como eléctricos, algunos de los cuales se describen en este artículo (véase Historia más adelante). Sin embargo, casi todos los sistemas modernos de televisión utilizan el movimiento de un haz de electrones que recorre la pantalla de los tubos tomavistas o de los tubos receptores. La ventaja de la exploración mediante haz de electrones radica en que se puede desplazar con mayor rapidez y puede explorar una imagen completa en una fracción de segundo.

La figura 1 (véase un poco más abajo) muestra, de forma simplificada, el camino trazado por un haz de electrones al explorar toda la superficie de una foto o una imagen. Las líneas continuas representan el camino descrito por el haz sobre la superficie de la imagen y las líneas de puntos, los tiempos de retorno del haz. Durante estos intervalos, necesarios para situar de nuevo el haz en el punto de partida de la siguiente línea o de toda la función de exploración, la corriente del haz se elimina. El dibujo muestra un esquema de exploración sencilla compuesta por relativamente pocas líneas y una repetición simple del esquema. En la exploración real se utiliza un gran número de líneas y el esquema se somete a exploración en dos fases entrelazadas.

Un esquema completo de exploración de barrido, como el representado, produce una única imagen estática, análoga a un único fotograma de una película. Al repetir el esquema varias veces por segundo, se registran los cambios de la imagen en movimiento, produciendo para el observador la sensación de movimiento continuo.

Cuanto mayor sea el número de líneas de barrido vertical en una imagen, y cuanto mayor sea el número de elementos registrados en cada línea según se explora de izquierda a derecha, mayor es la definición o capacidad de la imagen para mostrar detalles minúsculos u objetos pequeños. En televisión, la frecuencia de repetición del esquema y el número utilizado de líneas de barrido tiene que ser estándar para un determinado sistema. Para mayor comodidad, estas normas de televisión se fijan para todas las emisoras y receptores de cada país. En Europa y algunas otras partes del mundo se utiliza el sistema PAL (Phase Alternate Line), compuesto por 625 líneas y 25 imágenes por segundo que proporcionan una alta definición, ya que al transmitir cada fotograma como dos campos, se ven unas 50 imágenes por segundo.

75

Page 80: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

En Estados Unidos, sin embargo, las emisoras y los fabricantes de receptores adoptaron la norma de 525 líneas horizontales por fotograma y una frecuencia de 30 fotogramas por segundo. El sistema francés SECAM (Color Secuencial de Memoria) tiene 525 líneas con 30 fotogramas por segundo. España también utiliza este sistema. Según se incrementa el número de líneas y elementos se obtienen imágenes de televisión más nítidas.

La señal de televisión

La señal de televisión es una compleja onda electromagnética (véase Electromagnetismo) de variación de tensión o intensidad, compuesta por las siguientes partes: 1) una serie de fluctuaciones correspondientes a las fluctuaciones de la intensidad de luz de los elementos de la imagen a explorar; 2) una serie de impulsos de sincronización que adaptan el receptor a la misma frecuencia de barrido que el transmisor; 3) una serie adicional de los denominados impulsos de borrado, y 4) una señal de frecuencia modulada (FM) que transporta el sonido que acompaña a la imagen. Los tres primeros elementos conforman la señal de vídeo y se describen más adelante.

Las fluctuaciones de intensidad o tensión correspondientes a las variaciones de la intensidad de la luz, suelen llamarse señal de vídeo. Las frecuencias de dicha señal oscilan entre 30 millones y 4 millones de Hz, dependiendo del contenido de la imagen.

Los impulsos de sincronización son picos pequeños de energía eléctrica generados por los correspondientes osciladores en la estación emisora. Estos impulsos controlan la velocidad del barrido horizontal y vertical tanto de la cámara como del receptor. Los impulsos de sincronismo horizontal se producen a intervalos de 0,01 segundos y su duración es prácticamente la misma.

Los impulsos de borrado anulan el haz de electrones en la cámara y en el receptor durante el tiempo empleado por el haz de electrones en volver desde el final de una línea horizontal hasta el principio de la siguiente, así como desde la parte inferior del esquema vertical hasta la parte superior. La sincronización y estructura de estos impulsos resultan extremadamente complejas

Iconoscopio

Al igual que el tubo tomavistas, el iconoscopio presenta varios inconvenientes. Uno de los mayores es que exige una iluminación enorme del sujeto para producir una señal útil. Si se están utilizando las cámaras de televisión dentro de un estudio bajo condiciones controladas de luz, este inconveniente no es importante, pero el iconoscopio no se puede utilizar para televisar acontecimientos en condiciones adversas de luz.

Orticon de imágenes

A fin de solventar esta dificultad se han inventado diferentes tubos tomavistas. El más sensible de todos es el orticón de imagen, representado en la figura 2. La sensibilidad de este tubo es tal que es capaz de producir una señal en cualquier condición de luz que resulte aceptable para el ojo humano; a efectos de demostración, el orticón ha llegado a producir señales válidas de televisión en escenas iluminadas únicamente por velas. Otra ventaja del orticón es la de utilizar una pantalla relativamente pequeña que se puede incorporar a cualquier cámara de tamaño medio.

El orticón lleva un mosaico plano de cristal en uno de sus extremos. La cara interior del mosaico va recubierta por una capa continua de un compuesto alcalino intermetálico que constituye una superficie fotoeléctrica sensible. La emisión de electrones por parte de la capa se somete a aceleración y mediante

76

Page 81: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

un campo magnético (véase Magnetismo) se enfoca sobre un cristal de muy baja conductividad eléctrica, la llamada placa acumuladora. En frente de la placa hay una pantalla de malla metálica con unos 155.000 orificios por centímetro cuadrado. Detrás de la placa, un anillo concéntrico metálico recubierto en la parte interior del tubo constituye el elemento de desaceleración, y por detrás del anillo hay una capa en el cuello del tubo que actúa de ánodo, es decir, de electrodo con carga positiva. Al final del tubo hay un cañón de electrones que genera un haz de electrones y una estructura denominada multiplicador de electrones.

Los electrones emitidos por la superficie fotosensible inciden en la placa, produciendo la emisión de electrones secundarios en una proporción de varios de ellos por cada electrón que llega a la placa desde la superficie fotosensible. Esta emisión secundaria genera una nube de cargas positivas en la placa que equivale a la imagen luminosa de la superficie fotosensible. En esta imagen de cargas, las zonas luminosas son más positivas y las oscuras menos. Los electrones secundarios son captados por la pantalla de malla. El cristal que se utiliza para la placa es tan fino que las diferentes cargas positivas en la parte exterior pasan a través de la parte interior de la placa, neutralizando las cargas negativas depositadas por el haz de barrido.

Este mecanismo de barrido del tubo está constituido por el cañón de electrones, por el ánodo cilíndrico en el cuello del tubo, que conjuntamente actúan como origen de un haz de electrones, y un juego de bobinas deflectoras (no representadas en la figura 2) colocadas fuera del tubo igual que las bobinas deflectantes del iconoscopio. El haz de barrido se ve frenado, justo antes de incidir en la placa, por la acción del anillo desacelerador de carga negativa y alcanza la placa sin la energía suficiente para neutralizar los electrones secundarios que sobrepasan en número a los electrones del haz. A medida que el haz incide sobre cada una de las partes del patrón de cargas eléctricas positivas en la placa, suelta suficientes electrones como para neutralizar la carga positiva en dicha parte de la placa. Los electrones restantes se reflejan de nuevo hacia el cañón de electrones y su multiplicador asociado. En las áreas con mayor carga positiva, que corresponden a las zonas luminosas de la imagen, se necesitan más electrones para neutralizar la carga, reflejándose menos electrones.

El multiplicador de electrones —que forma un disco alrededor de la abertura a través de la cual ‘dispara’ el cañón de electrones, seguido de varios elementos simétricos detrás del disco— actúa como un elemento amplificador mediante la emisión de electrones secundarios. El primer disco de un orticón de imagen suele estar a un voltaje de 200 V y los elementos posteriores, o dinodos, tienen una tensión positiva mayor. Los electrones que inciden en el disco liberan electrones secundarios que, a su vez, liberan todavía más al pasar de un dinodo a otro. En consecuencia, la señal de la cámara se multiplica al pasar de un elemento al siguiente.

Vidicón

Otro de los tipos de tubo tomavistas utilizado en la transmisión moderna de televisión es el vidicón. La imagen se proyecta sobre una placa fotoconductora, por lo general una capa fina de una sustancia como el trisulfato de antimonio, que presenta una conductividad eléctrica variable que aumenta con la exposición a la luz. Este material fotoconductor se aplica sobre un electrodo conductor transparente que actúa como la placa de señal y tiene carga positiva con respecto a la fuente del haz de electrones. Este haz, enfocado y desviado igual que en el caso del orticón de imagen, deposita una cantidad suficiente de electrones sobre la placa para compensar la carga que ha perdido desde el barrido anterior sobre ese mismo punto. Esta carga es mayor en las zonas iluminadas de la placa que en las oscuras. El desplazamiento de la carga en el generador de la señal, que es igual a la carga depositada por el haz, genera la señal de vídeo en la entrada del amplificador acoplado al tubo.

77

Page 82: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

El plumbicón, variante del vidicón, presenta ciertas características, como la ausencia de retraso (que origina la apariencia borrosa de las imágenes en movimiento en la pantalla) y la proporcionalidad entre la señal de salida y del brillo de la imagen, que lo hacen especialmente adecuado para las cámaras de televisión en color.

El vidicón es un tubo sencillo y compacto de alta sensibilidad. Debido a su reducido diámetro de unos 2,5 cm y longitud, unos 15 cm, se utiliza mucho en televisión de circuito cerrado. Este tipo de televisión se utiliza siempre que no es necesaria la emisión a grandes distancias, por ejemplo, cuando el emisor y el receptor se hallan en un mismo edificio o zona. En estas circunstancias, la cámara puede alimentar directamente a las pantallas próximas a través de conexiones por cable, eliminando los potentes sistemas de emisión. La televisión de circuito cerrado se utiliza en la industria, el comercio y la investigación para llegar a lugares inaccesibles o peligrosos.

Transmisión de televisión

Si se exceptúan los circuitos especiales necesarios para producir los pulsos de sincronización y borrado del barrido y los diferentes equipos especiales que se utilizan para examinar o controlar las señales desde la cámara de televisión, todo el resto del sistema de transmisión de televisión recuerda al de una emisora de radio de AM (véase Radio: Modulación). El equipo de sonido no se diferencia en nada del utilizado en las emisiones de frecuencia modulada, y la señal de sonido a veces se emite desde una antena independiente, constituyendo de hecho una unidad de emisión totalmente independiente.

Canales

Sin embargo, la emisión de televisión presenta una serie de problemas específicos que no existen en las emisiones normales de sonido, siendo el principal el del ancho de banda. Modular una onda electromagnética implica generar una serie de frecuencias denominadas bandas laterales que corresponden a la suma y a la diferencia entre la frecuencia de radio, o portadora, y las frecuencias moduladoras. En las emisiones normales, donde la señal sólo utiliza frecuencias hasta de 10.000 Hz, o 10 kHz, las bandas laterales ocupan poco espacio en el espectro de frecuencias, lo que permite asignar a las distintas emisoras frecuencias de portadora con una diferencia tan pequeña como 10 kHz sin que se produzcan interferencias apreciables. Por el contrario, la gama de frecuencias de una sola señal de televisión es de unos 4 millones de Hz, o 4 MHz, por lo que tales señales ocupan un espacio 400 veces mayor que la gama completa de frecuencias utilizada por una estación de radio en las emisiones AM corrientes.

A fin de disponer de un número suficiente de canales para dar cabida a una serie de emisoras de televisión en una misma zona geográfica, es preciso utilizar frecuencias de transmisión relativamente elevadas para las portadoras de televisión. En Estados Unidos, por ejemplo, el número de canales asignados a las emisiones de televisión asciende a 68. Esta cifra se desglosa en 12 canales en la banda de frecuencias muy elevadas (VHF) y 56 en la banda de las ultraelevadas (UHF).

Emisiones de alta frecuencia

La utilización de las altas frecuencias para la emisión de televisión plantea una serie de problemas muy distintos a los de la emisión ordinaria de sonido. El alcance de las señales de radio de baja frecuencia es muy amplio, alcanzando centenares e incluso millares de kilómetros. Las señales de alta frecuencia, por el contrario, poseen un alcance relativamente limitado y a menudo no cubren mucho más de la distancia visible entre estaciones debido a la curvatura de la tierra. Así pues, mientras que la zona de servicio de una emisora normal de radio puede tener un radio muy por encima de los 160 km, la de la emisora de

78

Page 83: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

televisión está limitada a unos 56 km, dependiendo de la altura de las antenas emisora y receptora. La cobertura total para un país de cierta extensión requiere muchas más estaciones de televisión que la radiodifusión ordinaria.

Otro de los problemas con los que choca la utilización de altas frecuencias para la emisión de televisión consiste en que a dichas frecuencias, las ondas de radio se comportan casi como ondas luminosas y se reflejan en objetos sólidos, como montañas o edificios. A menudo, alguno de estos reflejos de una emisora se captan en un determinado punto de recepción, originando imágenes múltiples en la pantalla del receptor por haber viajado las señales reflejadas diferentes distancias y por tanto, por haber llegado al receptor en distintos tiempos.

El problema de las señales reflejadas, así como el de la recepción de las señales de televisión a distancias superiores al alcance normal, han quedado resueltos en gran medida merced a la utilización de antenas receptoras especiales con una ganancia muy elevada para amplificar señales débiles. La mayoría son además direccionales, y presentan una gran ganancia para señales que se reciben en una determinada dirección y muy baja para las que inciden en las demás direcciones. La orientación correcta de la antena direccional permite seleccionar una de las señales reflejadas y eliminar las otras, suprimiendo así las imágenes múltiples en un punto concreto.

Receptores de televisión

El elemento más importante del receptor de televisión es el tubo de imágenes o cinescopio, que se encarga de convertir los impulsos eléctricos de la señal de televisión en haces coherentes de electrones que inciden sobre la pantalla final del tubo, produciendo luz así como una imagen continua.

Cinescopios

El cinescopio guarda con el receptor la misma relación que el tubo tomavistas con el emisor de televisión. La estructura real del cinescopio corresponde a la de un tubo de rayos catódicos, que recibe este nombre por generar un haz de electrones que proceden del cátodo, el electrodo negativo.

La figura 3 muestra el funcionamiento de un cinescopio típico. Alojado en la parte más angosta de un tubo en forma de embudo se halla el cañón de electrones, compuesto por un filamento catódico, una rejilla de control y dos ánodos. Los electrones emitidos por el cátodo se enfocan para formar un haz compacto haciéndolos pasar por un pequeño orificio de la rejilla de control, que se mantiene a una tensión negativa respecto del cátodo. Este potencial ligeramente negativo de la rejilla hace que algunos electrones regresen al cátodo, dejando pasar sólo los que tienen una velocidad suficientemente elevada. Los dos ánodos se hallan a un potencial positivo creciente con respecto al cátodo, aplicando una aceleración a los electrones. El efecto del campo eléctrico entre los dos ánodos consiste en enfocar los electrones que atraviesan el tubo de forma que incidan sobre un único punto de la pantalla en la parte ancha del tubo. Por lo general hay la posibilidad de modificar la intensidad relativa del campo para poder centrar exactamente el punto en la pantalla. Una bobina de enfoque magnético suele ser la encargada de realizar la misma función que el campo entre ambos ánodos.

79

Page 84: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

La pantalla

La pantalla está formada por un recubrimiento de la parte interior del tubo con alguno de los muchos tipos de productos químicos conocidos como sustancias fosforescentes, que presentan la propiedad de la luminiscencia al estar sometidos a un bombardeo de un haz de electrones. Cuando el tubo está encendido, el haz de electrones es perceptible en la pantalla en forma de un pequeño punto luminoso.

En el cinescopio representado en la figura 3, el barrido del haz de electrones se consigue mediante dos parejas de placas deflectoras. Si una de las placas tiene carga positiva y la otra negativa, el haz se aparta de la negativa y se acerca a la positiva. La primera pareja de placas del tubo representada en el esquema desplaza el haz hacia arriba y hacia abajo y la segunda pareja lo hace lateralmente. En el receptor se generan los voltajes oscilantes de barrido y se sincronizan perfectamente con los del emisor mediante los impulsos de sincronismo de éste. Así, al sintonizar una emisora en el receptor, el ritmo y secuencia de barrido del cinescopio quedan ajustados automáticamente a los del tubo tomavistas en el emisor. En los cinescopios actuales, la deflexión se consigue mediante los campos magnéticos de dos pares de bobinas que forman un anillo deflector por fuera del tubo. Las corrientes de deflexión provienen de un generador en el receptor, sincronizado con el emisor.

La señal de cámara del emisor se amplifica en el receptor y se aplica a la rejilla de control del cinescopio. Cuando la rejilla se hace negativa por efecto de la señal, la rejilla repele los electrones; y cuando la señal negativa se hace lo suficientemente intensa, no pasa ningún electrón y la pantalla queda a oscuras. Si la rejilla se torna ligeramente negativa, algunos electrones la atraviesan y la pantalla muestra un punto de leve luminosidad que corresponde al gris de la imagen original.

A medida que el potencial de la rejilla se va acercando al del cátodo, la pantalla muestra un punto brillante que corresponde al blanco en la imagen original. La acción concertada del voltaje de exploración y el de la señal de cámara hace que el haz de electrones describa un trazo luminoso en la pantalla que es la reproducción exacta de la escena original. La sustancia fosforescente de la pantalla continúa brillando durante un breve lapso después de haber sido activada por el haz de electrones, de forma que los diferentes puntos se entremezclan formando una imagen continua.

El tamaño del extremo del tubo del cinescopio determina el tamaño de la imagen en la pantalla. Los cinescopios se fabrican con pantallas que tienen una medida en diagonal (desde la esquina inferior izquierda hasta la superior derecha) entre 3,8 y 89 cm. Ya se han construido pantallas de cristal líquido, o LCD, para los televisores. La fabricación de tubos de grandes dimensiones resulta costosa y difícil y además corren mayor riesgo de rotura. Para obtener una imagen muy grande con tubos relativamente pequeños se suele proyectar la imagen sobre pantallas translúcidas u opacas. Estos cinescopios de proyección trabajan con tensiones muy altas para producir imágenes notablemente más luminosas que las que generan los tubos normales.

Tubo de rayos catódicos Trinitrón

La televisión utiliza tubos de rayos catódicos en los receptores. La Sony Corporation patentó a finales de la década de 1960 el sistema simplificado Trinitrón.

Figura 3: tubo de imágenes electrones

80

Page 85: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

El tubo de imágenes, o cinescopio, es el componente del receptor de televisión que transforma la señal en la imagen que vemos en pantalla. El calentador y el cátodo generan un haz de electrones que se enfocan y se aceleran en dirección a la pantalla por medio de un voltaje aplicado a los ánodos. La señal amplificada de televisión (vídeo o video) se aplica a la rejilla, que modula la intensidad del haz a medida que éste explora la pantalla movido por las cargas aplicadas a las placas deflectoras horizontales y verticales. Cuando el haz incide sobre la pantalla fluorescente se genera un punto de luz. La intensidad del punto corresponde a la intensidad de la señal generada por la cámara.

Los circuitos de los receptores modernos de televisión son a la fuerza muy complejos, pero la idea general de cómo funcionan resulta fácilmente comprensible a la vista de la figura 4. La señal que recibe la antena se sintoniza y se amplifica en la etapa de radiofrecuencia. En la etapa de modulación la señal se mezcla con la salida de un oscilador local en el receptor que genera una frecuencia constante. Esta mezcla, o modulación, produce frecuencias heterodinas correspondientes a la señal de imagen y a la de sonido. Una vez separadas por circuitos filtro que permiten el paso de una banda de frecuencias y rechazan todas las demás, ambas señales se amplifican independientemente. La señal de sonido se amplifica en un amplificador intermedio, se demodula y se vuelve a amplificar de nuevo con un amplificador audio igual que en los receptores ordinarios de FM. En muchos de los receptores modernos, la señal de sonido se separa de la de imagen en una etapa posterior en el amplificador de vídeo.

La señal de vídeo también se amplifica mediante un dispositivo intermedio independiente y a continuación se detecta. Tras someterla a otra amplificación posterior, la señal se divide con circuitos filtro en dos componentes separados. La señal de cámara y los impulsos de borrado pasan directamente a la rejilla del cinescopio para controlar la intensidad del haz de electrones. Los dos conjuntos de impulsos de sincronización se separan por filtrado en los componentes verticales y horizontales y se aplican a los osciladores que generan los voltajes usados para deflectar el haz de electrones. Las salidas de los osciladores vertical y horizontal se amplifican y se conducen al correspondiente conjunto de imanes deflectores del cinescopio a fin de formar el esquema de barrido.

La utilización de válvulas en la televisión comenzó su declive, igual que en el caso de la radio, a finales de la década de 1960. Se sustituyeron por los transistores, circuitos integrados y demás dispositivos electrónicos de estado sólido que son mucho más pequeños y consumen menos potencia.

81

Page 86: 35. Tecnologia Vocacional I (4to Electronic A)

Tecnología Vocacional I Electrónica

El receptor doméstico de televisión se ha ido haciendo con los años cada vez más complejo. El televisor moderno ya no es sólo un elemento para sintonizar los programas emitidos. Es una unidad compleja, controlada por software capaz de recibir y visualizar servicios de teletexto y puede descodificar y reproducir emisiones musicales de alta fidelidad. Además, la cantidad de circuitería digital y de software en la televisión moderna (casi tan abundante como en alguna de las naves espaciales de la década de 1980) permite ajustarla y controlarla a gusto del espectador mediante un dispositivo de control remoto. La mayoría de los televisores dispone de conectores para enchufar grabadoras de vídeo y consolas de videojuegos. La idea de que el televisor es algo que se enciende simplemente para verse empieza a quedar bastante anticuada

Teletexto

El sistema de teletexto visualiza en la pantalla del televisor información impresa y diagramas sencillos. Utiliza algunas de las líneas de reserva disponibles en la señal ordinaria de emisión. El sistema Ceefax de la BBC en el Reino Unido, por ejemplo, aprovecha algunas de las líneas fuera de la pantalla del total de 625 disponibles para transmitir información codificada, incluyendo noticias, información meteorológica, deportes, informes económicos, servicios de citas, recetas culinarias y guías de vacaciones. El descodificador del televisor se encarga de filtrar el teletexto del resto de la información de imágenes y de visualizarla a continuación en pantalla. Una pantalla normal de teletexto resulta bastante pobre comparada con la de las computadoras, ya que está formada por sólo 24 líneas de 40 caracteres.

.

82