33.thomas murray-conexiones edificios de acero 1

Upload: luis-contreras

Post on 03-Apr-2018

243 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    1/109

    1

    Prequalification of

    Moment Connections

    Presented by

    Thomas M. Murray, Ph.D., P.E.

    Department of Civil and Environmental Engineering

    Virginia Tech, Blacksburg, Virginia

    [email protected]

    28 October 2011

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    2/109

    2

    HIGH SEISMIC MOMENT

    CONNECTIONS

    All High Seismic Moment Connectionsmust be Prequalified according to

    ANSI/AISC 358. ANSI/AISC 358-10 PrequalifiedConnections for Special and I ntermediate

    Steel Moment F rames for Seismic

    Applications

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    3/109

    3

    Why is Prequalification Required?

    Because of connection failures during

    the Northridge, California Earthquakeon January 17, 1994.

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    4/109

    4

    ANSI/ASIC 358-10

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    5/109

    5

    Refers to

    Relies on

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    6/109

    6

    Beam-to-column connections shall satisfy thefollowing Section 9.2a requirements:

    An interstory drift angle of at least 0.04 radians.

    The measured f lexural resistanceshall equal atleast 0.80 Mpof the connected beam at an 0.04radians.

    AISC 341 SeismicSMF Connections

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    7/109

    7

    Requirements of Sect. 9.2a are to be satisfied

    by one of the following methods:

    1. Conduct qualifying cyclic tests in accordance with

    Appendix S. Tests conducted specifically for a project

    or

    Tests reported in the literature representative of

    project conditions.

    AISC 341 SeismicSMF Connections

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    8/109

    8

    Project Specific Cyclic Test

    Flush Moment End-Plate w/

    Sixteen 1 in (75 mm)

    A490 Bolts

    AISC 341 SeismicSMF Connections

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    9/109

    9

    2.Use connections prequalifiedfor SMF inaccordance with Appendix P

    Use connection prequalified by a review panel

    that is approved by the Authority Having

    Jurisdiction.

    or

    Use connections prequalified by the AISC

    Connection Prequalification Review Panel(CPRP) in Standard ANSI/AISC 358

    AISC 341 SeismicSMF Connections

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    10/109

    10

    Permitted Test Subassemblages:

    SeismicApp. S Qualifying Cyclic Tests

    TestColumn

    FloorReaction Reaction

    FloorFloorReaction

    Brace

    Load Cell

    Test Beam

    Points

    Mount

    Actuator

    Actuator

    Lateral

    Single Beam, Single Column

    without a Concrete Slab

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    11/109

    11

    Two beams, single column w/ or w/o concrete slab

    Rigid

    Link

    Lateral SupportTyp. CompositeSlab

    Pin SupportRigi

    dLink

    W24x68 W24x68

    Test Column

    Reaction

    Frame

    ActuatorTest Frame

    W

    14x257

    SeismicApp. S Qualifying Cyclic Tests

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    12/109

    12

    Loading Protocol:

    Load StepNumber

    InterstoryDrift Angle, q

    (rad)

    Number ofLoadingCycles

    1 0.00375 6

    2 0.005 6

    3 0.0075 6

    4 0.01 4

    5 0.015 2

    6 0.02 2

    7 0.03 2

    Continue with increments in qof 0.01, andperform two cycles at each step

    -0.06

    -0.05

    -0.04

    -0.03

    -0.02

    -0.01

    0

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    Number of cycles

    InterstoryDrift

    Angle

    6 6 6 4 2 2 2 2 2

    Notes: Quasi-static testing is permitted.

    There is not a required number of tests.

    SeismicApp. S Qualifying Cyclic Tests

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    13/109

    13

    Quasi static test conducted at Virginia Tech

    SeismicApp. S Qualifying Cyclic Tests

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    14/109

    14

    Interior subassemblage test at UT-Austin

    SeismicApp. S Qualifying Cyclic Tests

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    15/109

    15

    Interior subassemblage test with concrete slab

    SeismicApp. S Qualifying Cyclic Tests

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    16/109

    16

    0.8 Mp

    - 0.8 Mp

    M0.040.8 Mp

    M0.040.8 Mp

    SeismicApp. S Qualifying Cyclic Tests

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    17/109

    17

    Dynamic test conducted at UC San Diego

    SeismicApp. S Qualifying Cyclic Tests

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    18/109

    18

    ANSI/AISC 358 Prequalif ied Connections

    for Special and I ntermediate Steel Moment

    Frames for Seismic Applications

    SOME SPECIFICS

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    19/109

    19

    Reduced Beam Section Connection

    Bolted Unstiffened and Stiffened Extended End-

    Plate Moment Connections

    Welded Unreinforced Flange

    Welded Web Bolted Flange Plate

    Kaiser Bolted Bracket

    ConXtech Moment Connection

    The Double Tee Stub is currently being balloted.

    Connections Prequalified

    Including Supplement No. 1

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    20/109

    20

    Reduced Beam Section (RBS) Connection

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    21/109

    21

    End Plate Moment Connections

    Unstiffened Stiffened Stiffened

    4-Bolt: 4E 4-Bolt: 4ES 8-Bolt: 8ES

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    22/109

    22

    Bolted Flange Plate Connection

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    23/109

    23

    Welded Unreinforced FlangeWelded Web

    Connection

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    24/109

    24

    Kaiser Bolted Bracket Connection

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    25/109

    25

    ConXTech Moment Connection

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    26/109

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    27/109

    27

    Provisions apply only to the prequalifiedconnections.

    Beam and Column cross-section limitationsbased on specific test matrices

    Rolled and Built-up Members permitted

    Specific welding requirements for built-upmembers

    PrequalifiedUnique Requirements

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    28/109

    28

    Probable maximum moment at hingespecified

    Plastic hinge location specified for eachconnection

    Resistance Factors differ from AISCSpecificationand Seismic Specif ication

    PrequalifiedUnique Requirements

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    29/109

    29

    Based upon connecting beam strength:

    Mpr = Cpr Ry Fy Zx

    where:

    Mpr = probable maximum beam moment

    Ry = 1.1 for Fy = 50 ksi

    Zx = plastic section modulus of beam

    Probable Maximum Moment at Hinge

    i i

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    30/109

    30

    Probable Maximum Moment at Hinge

    where:

    Fy

    = yield strength

    Fu = tensile strength

    For A992 Fy = 50 ksi, CprRy = 1.1 x 1.15= 1.27

    Mpr = 1.27 Fy Zx or 27% increase

    2.1F2

    FFC

    y

    uy

    pr

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    31/109

    31

    Connection Design Moment

    Sh is specified for each prequalified connection.

    Plastic

    Hinge

    Plastic

    Hinge

    L = distance between plastic hinges

    L = distance between centerline of columns

    Sh

    Sh

    C i i

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    32/109

    32

    Connection Design Moment

    Mf= Mpr + Vu Sh

    Plastic

    Hinge

    Sh

    Vu Mpr

    C i D i M

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    33/109

    33

    Connection Design Moment

    The connection design moment is the moment

    at the face of the column:

    Mf= Mpr + Vu Sh

    where:Mpr = probable maximum beam moment

    Vu = max. shear at the end of the beam

    = 2Mpr/L + wuL/2Sh = distance from face of the column

    to plastic hinge location

    R i F

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    34/109

    34

    Resistance Factors

    Different resistance factors in 358 Prequalified:

    Specif ication andDuctile Limit States d = 0.9Seismic: Non-Ductile Limit State n = 0.75Prequalified: Ductile Limit States d = 1.0

    Non-Ductile Limit States n = 0.9

    R i t F t

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    35/109

    35

    Resistance Factors

    REASON:

    Specificationand Seismiclimit states represent max.

    expected under strength, i.e.d = 0.9 and n = 0.75.Whereas, Mpr = Cpr Ry Fy Zx = 1.27 Fy Zx, represents

    the maximum expected over strength including somestrain hardening.

    If both are used, very conservative designs result.

    Therefore, the Prequalifiedresistance factors were

    increased to d = 1.0 and n = 0.90, but only for limitstates included in the Prequali f ied Standard.

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    36/109

    36

    Specific Prequalified Connections

    Reduced Beam

    Section (RBS)

    R d d B S ti (RBS)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    37/109

    37

    Reduced Beam Section (RBS)

    RBS Concept:

    Trim Beam Flanges

    Near Connection

    Reduce Moment at

    Connection

    Force Plastic Hinge

    Away from Connection

    R d d B S ti (RBS)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    38/109

    38

    Reduced Beam Section (RBS)

    C ti P lifi d t UT A ti

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    39/109

    39

    Connection was Prequalified at UT - Austin

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    40/109

    40

    Whitewashed Connection Prior to Testing

    C

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    41/109

    41

    Whitewashed Connection Prior to Testing

    C ti t 0 02 di

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    42/109

    42

    Connection at q 0.02 radian.

    C ti t 0 02 di

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    43/109

    43

    Connection at q 0.02 radian.

    C ti t 0 03 di

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    44/109

    44

    Connection at q 0.03 radian.

    C ti t 0 04 di

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    45/109

    45

    Connection at q 0.04 radian.

    C f R lt

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    46/109

    46

    Conformance Results

    Reduced Beam Section (RBS)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    47/109

    47

    Reduced Beam Section (RBS)

    Prequalification Requirements for RBS in SMF

    Beam depth: Up to W36

    Beam weight: Up to 300 lb/ft

    Column depth: Up to W36 for wide-flange

    Up to 24-inches for box columns

    Beam connected to column flange

    (connections to column web not prequalified)

    RBS shape: Circular

    RBS dimensions: Per specified design procedure

    Reduced Beam Section (RBS)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    48/109

    48

    Beam flange welds: - CJP groove welds- Treat welds as Demand Critical

    - Remove bottom flange backing and

    provide reinforcing fillet weld

    - Leave top flange backing in-place; fillet

    weld backing to column flange

    - Remove weld tabs at top and bottom flanges

    Beam web to column connection:

    - Use fully welded web connection (CJP weldbetween beam web and column flange)

    See ANSI/AISC 358 for additional requirements (continuity plates,

    beam lateral bracing, RBS cut finish, etc.)

    Reduced Beam Section (RBS)

    Prequalification Requirements for RBS in SMF

    Reduced Beam Section (RBS)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    49/109

    49

    Reduced Section Geometry

    0.5bf< a < 0.75bf0.5d < b < 0.85d

    0.1bf< c < 0.25bf

    Reduced Beam Section (RBS)

    Reduced Beam Section (RBS)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    50/109

    50

    Protected Zone

    No Shear Studs.

    No welded, bolted, screwed or shot-in attachments for

    perimeter edge angles, exterior facades, partitions,

    duct work, piping or other construction.

    Decking arc-spot welds are permitted.

    Reduced Beam Section (RBS)

    Lateral Brace Violates Protected Zone

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    51/109

    51

    Lateral Brace Violates Protected Zone

    Lateral Brace Violates Protected Zone

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    52/109

    52

    Lateral Brace Violates Protected Zone

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    53/109

    53

    End-Plate Moment Connections

    Unstiffened Stiffened Stiffened

    4-Bolt: 4E 4-Bolt: 4ES 8-Bolt: 8ES

    Specific Prequalified Connections

    End-Plate Moment Connections

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    54/109

    54

    End-Plate Concept:

    No Field Welding

    Simple Erection

    Connection is Stronger thanBeam

    Special welding requirements

    Concrete slab requirements

    End Plate Moment Connections

    Connections were prequalified at Virginia Tech

    End-Plate Moment Connections

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    55/109

    55

    End Plate Moment Connections

    AISC Design Guide 4

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    56/109

    56

    For High Seismic

    and Wind

    Applications

    AISC Design Guide 4

    Design Methodology

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    57/109

    57

    Design Methodology

    Basic Philosophy

    Strong column

    Strong connection (Thick Plate)

    Weak connecting beam or girder

    Reduced resistance factors

    Source of inelastic behavior

    Connecting beam or girder

    Design Considerations

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    58/109

    58

    Required connection design moment

    Connection strength

    Welding procedure

    Detailing Column side limit states

    Design Considerations

    Connection Design Moment

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    59/109

    59

    Connection Design Moment

    Mf= Mpr + Vu ShSh = min.[d/2, 3bbf] from face of column or

    end of stiffener if one exits.

    Connection Strength

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    60/109

    60

    Connection Strength

    Design connection bolts to resist Mf Thick Plate so Prying forces are negligible

    Mf< Mnp with = 0.92(Pt)

    2(Pt )

    d1do

    Mnp

    Pt = tensile strength

    of bolt

    Connection Strength

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    61/109

    61

    To avoid the formation of substantial bolt

    prying forces the end-plate strength must

    satisfy the following:

    Mpl > 1.11 Mnp

    Required end-plate thickness from yield-line

    analysis is then:

    where Y = yield-line parameter

    Connection Strength

    Y)F/(Mt ypplp with = 1.0

    Connection Strength

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    62/109

    62

    )d)(d2(PMM 1otnpn

    Connection Strength

    Example: 4E2(Pt )

    2(Pt )

    d1d

    o

    Mnp

    Connection Strength

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    63/109

    63

    Mpl = Fpy tp2 Y

    where:

    Fpy = end-plate material

    yield stress

    tp = end-plate thickness

    g

    bp

    s

    p

    d

    pf

    t pf

    Connection Strength

    Example: 4E

    Connection Strength

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    64/109

    64

    Required end-plate thickness

    where 1.0Y)F/(Mt ypplp

    2

    1

    p

    h

    2

    b

    g

    2sp

    s

    1

    p

    1

    2

    bphY

    f

    p

    f

    f

    p

    t

    gb2

    1s p

    gbp

    sp

    d

    p fpf

    Connection Strength

    Example: 4E

    Connection Strength

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    65/109

    65

    Design process is the same as

    for the 4ES configuration.

    g

    pf

    pb

    pb

    pf

    d

    bp

    ts

    Connection Strength

    Example: 8Es

    End-Plate Welding

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    66/109

    66

    Weld access hole not permitted because of

    ruptures that occurred during testing.

    Rupture

    g

    End-Plate Welding

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    67/109

    67

    Weld access hole not permitted because of

    ruptures that occurred during testing.

    Rupture

    g

    End-Plate Welding

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    68/109

    68

    Recommended welding procedure:

    No weld access holes

    Surface Preparation:

    All surfaces ground clean Flanges beveled 45 full depth

    Minimum root opening

    45

    45

    Typical Beam

    g

    End-Plate Welding

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    69/109

    69

    Recommended welding procedure:

    Welding Sequence:

    1. Fillet welds on both sides of web

    installed.

    2. Fillet welds on inside of flangesinstalled.

    3. Flange groove weld root

    backgouged and flange groove

    welds installed.

    Note: Welds over webs are not CJP.

    Backgouge

    Backgouge

    1

    2

    3

    3

    g

    Detailing Requirements

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    70/109

    70

    Effective end-plate width in calculations

    Beam flange width + 1 in.

    Bolt gage < beam flange width

    Bolt spacing and pitch Provide adequate tightening clearances

    Finger shims

    Used to correct beam length variations

    e g equ e e s

    4ES and 8ES Stiffener Detailing

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    71/109

    71

    Length of Stiffener

    Lst

    = hst

    / tan 30

    30

    1"

    Lst

    1"

    hst

    g

    4ES and 8ES Stiffener Detailing

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    72/109

    72

    g

    End-plate stiffener thickness

    Stiffener should have same strength as the

    beam web

    ts = (Fyb / Fys) twb

    Stiffener Welds

    Full penetration groove welds are

    recommended.

    Designed for one-half of the flange force

    Other Limit States to Consider

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    73/109

    73

    Column Side

    Flange bending

    Local web yielding

    Web crippling

    Compression buckling of web Continuity plates

    Panel zone

    See AISC Design Guides 4, 16, and 13

    8-Bolt Stiffened Moment End-Plate, 8ES

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    74/109

    74

    8-Bolt Stiffened Moment End-Plate, 8ES

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    75/109

    75

    8-Bolt Stiffened Moment End-Plate, 8ES

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    76/109

    76

    Total Plastic Rotation (rad)- 0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

    MomentatColumnCenterline(in-kip

    s)

    -25000

    -20000

    -15000

    -10000

    -5000

    0

    5000

    10000

    15000

    20000

    25000

    Total Rotation (rad)- 0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08

    MomentatColumnCenterline(in-kip

    s)

    -25000

    -20000

    -15000

    -10000

    -5000

    0

    5000

    10000

    15000

    20000

    25000

    Moment at Column Centerline Moment at Column Centerlinevs vs

    Total Rotation Plastic Rotation

    8ES-1.25-1.75-30

    End-Plate Moment Connections

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    77/109

    77

    Prequalification Requirements:

    Beam depth: Min. and max. in Table 6.1

    Beam weight: No limit

    Column depth: Up to W36

    Beam connected to column flange

    (connections to column web not prequalified)

    Bolts: A325 or A490

    Finger Shims: Permitted

    Connection Test with Concrete Slab

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    78/109

    78

    R

    igidLink

    Lateral Support

    Typ.Composite

    Slab

    Pin SupportRigidLink

    W24x68 W24x68

    Test Column

    Reaction

    Frame

    ActuatorTest Frame

    W14x257

    Test 1 with Concrete Slab

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    79/109

    79

    Test 1 with Concrete Slab

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    80/109

    80

    Test 1 with Concrete Slab

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    81/109

    81

    Premature Bolt Rupture

    Test 2 with Concrete Slab

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    82/109

    82

    10'-0" 10'-0"

    3'-0"

    3'-0"

    1'-11 1/4"

    3'-4 1/2" 4'-8 1/4"

    NO STUDS

    HINGE ZONE

    END

    OF

    STIFFENER

    1'-11 1/4"

    4'-8 1/4" 3'-4 1/2"

    NO STUDS

    HINGE ZONE

    END

    OF

    STIFFENER

    1/2" MIN. GAPFORMED W/ NEOPRENE

    FILLED W/ FOAM INSUL.

    5" COMPOSITE SLAB(3" COVER ON 2 COMPOSITE METAL DECK)

    REINFORCED W/ 4x4-W2.9xW2.9 WWF

    3/4" X 4" SHEAR STUDS@ 1'-0" MAX.

    Test 2 with Concrete Slab

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    83/109

    83

    Test 2 with Concrete Slab

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    84/109

    84

    -250

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    250

    -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

    Total Rotation (rad.)

    ColumnTipLoad(kips

    -250

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    250

    -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

    Beam Rotation (rad.)

    ColumnTipLoad(kips

    Column Tip Load Column Tip Load

    vs . vs.Total Rotation Beam Rotation

    Requirement for All Prequalified Bolted

    C ti

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    85/109

    85

    Connections

    Compressible expansion joint material, at

    least 1 in. thick, shall be installed to isolate

    the column/connection from the concrete

    slab.

    S ifi P lifi d C ti

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    86/109

    86

    Bolted Flange

    Plate (BFP)

    Specific Prequalified Connections

    Bolted Flange Plate (BFP)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    87/109

    87

    BFP Concept:

    Shop Welded/Field Bolted

    A325 or A490 bolts

    Top and bottom flange

    plates must be identical

    Hinge at end of flange

    plates

    Bolted Flange Plate (BFP)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    88/109

    88

    Prequalified at

    U. of California

    at San Diego

    Bolted Flange Plate (BFP)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    89/109

    89

    Bolted Flange Plate (BFP)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    90/109

    90

    Bolted Flange Plate (BFP)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    91/109

    91

    Bolted Flange Plate (BFP)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    92/109

    92

    Bolted Flange Plate (BFP)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    93/109

    93

    Bolted Flange Plate (BFP)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    94/109

    94

    Bolted Flange Plate (BFP)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    95/109

    95

    Bolted Flange Plate (BFP)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    96/109

    96

    FractureLocation Close-up of Fracture

    Location

    Specific Prequalified Connections

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    97/109

    97

    Welded Unreinforced

    Flange - Welded Web(WUFW)

    Specific Prequalified Connections

    Welded Unreinforced Flange- Welded Web

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    98/109

    98

    WUF-W Concept:

    Full beam strength

    Shop welded single plate

    with bolts for erection Field welded beam flange

    to column flange

    Field welded single plate to

    beam web

    Similar to pre-Northridge

    (WUF-W)

    connection

    Welded Unreinforced Flange- Welded Web

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    99/109

    99

    (WUF-W)

    Erection Bolts

    Specific Prequalified Connections

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    100/109

    100

    Proprietary

    Kaiser BoltedBracket (KBB)

    Flange Welded Flange Bolted

    Specific Prequalified Connections

    Kaiser Bolted Bracket (KBB)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    101/109

    101

    KBB Concept:

    Cast steel bracket

    Welded or bolted tobeam flanges

    Bolted to column flange

    Shop welded single plate web connection

    Pretensioned 1-3/8 or 1-1/2 in. diameter A490

    or A354 bracket bolts

    Used for retrofiting

    Kaiser Bolted Bracket (KBB)

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    102/109

    102

    Specific Prequalified Connections

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    103/109

    103

    Proprietary

    ConXtechCONXLTM

    Moment

    Connection

    Specific Prequalified Connections

    ConXtech CONXLTM Moment Connection

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    104/109

    104

    ConXtech CONXLTM Moment Connection

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    105/109

    105

    Concept:

    Biaxial

    16 in. square HSS or

    built-up box concrete

    filled columns Shop welded forged steel

    fittings on beams and columns

    Field bolted with 1-1/2 in. A574 bolts All beams must be of same nominal depth

    Extremely fast erection

    ConXtech CONXLTM Moment Connection

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    106/109

    106

    ConXtech CONXLTM Moment Connection

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    107/109

    107

    ConXtech CONXLTM Moment Connection

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    108/109

    108

  • 7/28/2019 33.Thomas Murray-Conexiones Edificios de Acero 1

    109/109

    Thank You!!