02 componente simétrica

17
López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 19 CÁLCULO DE LAS CORRIENTES DE CORTOCIRCUITO El cálculo de las corrientes de cortocircuito es importante para poder proteger las instalaciones de forma correcta. Para ello se determinan las corrientes máxima y mínima de cortocircuito. La determinación de la corriente máxima de cortocircuito es importante para poder determinar el poder de corte de los interruptores automáticos, poder de cierre de los dispositivos de maniobra y solicitaciones electrodinámicas de los componentes de una instalación. El cálculo de la corriente mínima de cortocircuito es importante para determinar las curvas de disparo de los interruptores automáticos y de acción de fusibles. La determinación de la corriente mínima de cortocircuito es importante porque al diseñar la protección debe asegurarse que estás actúen aunque los valores de corriente sean muy inferiores a los valores para los que fue diseñado el aparato. Las normas proponen diversos métodos: Método de las Impedancias: permite calcular las corrientes de defecto en cualquier punto de una instalación, con una precisión aceptable. Consiste en sumar separadamente las diferentes resistencias y reactancias del bucle del defecto, añadiendo después también los generadores, hasta el punto considerado, calculando también la impedancia correspondiente. Para aplicar este método es imprescindible conocer todas las características de los diferentes elementos del bucle de defecto (fuentes y conductores). Método de Composición: se puede utilizar cuando no se conocen las características de la alimentación. La impedancia aguas arriba del circuito considerado se calcula a partir una estimación de la corriente de cortocircuito en su origen. El factor de potencia se toma igual tanto en el origen del circuito como en el punto del defecto. En otras palabras, consiste en admitir que las impedancias elementales de dos partes sucesivas de la instalación tienen los valores de sus argumentos suficientemente próximos como para justificar la sustitución de las sumas vectoriales de las impedancias por sumas algebraicas de las mismas. Esta aproximación permite obtener el valor del módulo de las corrientes de cortocircuito, con una aproximación suficiente para calcular el circuito. Este método aproximado sólo se aplica a instalaciones de potencia inferior a 800 kVA. Método Convencional: permite calcular las corrientes de cortocircuito mínimas y las corrientes de defecto en el extremo de una red, sin conocer las impedancias o la Icc de la instalación aguas arriba del circuito considerado. Se basa en la hipótesis de que la tensión en el origen del circuito, durante el tiempo de cortocircuito o defecto, es igual al 80% de la tensión nominal. Este método no tiene en cuenta la resistencia de los conductores para secciones importantes; se aplica un coeficiente corrector para incluir su inductancia (1,5 para 150 mm2, 1,20 para 185 mm2, ...). Este método se usa sobre todo para los circuitos finales suficientemente alejados de las fuentes de alimentación (red o grupo). Método Simplificado: utilizando tablas con diversas hipótesis simplificadas, da directamente, para cada sección de conductor: la corriente asignada del dispositivo, que asegura la protección contra las sobrecargas; las longitudes máximas de conductores protegidos contra contactos indirectos; y las longitudes admisibles, teniendo en cuenta las caídas de tensión. En realidad, estas tablas están confeccionadas con los resultados de los cálculos obtenidos al aplicar los métodos de composición y convencional. Este método permite además determinar las características de un circuito que forma parte de una instalación ya existente cuyas características no se conocen suficientemente. Se aplica directamente a las instalaciones BT, y con coeficientes correctores, si la tensión no es 230/400 V.

Upload: gjmlefyra2003

Post on 14-Jul-2015

5.582 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 19

CÁLCULO DE LAS CORRIENTES DE CORTOCIRCUITO El cálculo de las corrientes de cortocircuito es importante para poder proteger las instalaciones de forma correcta. Para ello se determinan las corrientes máxima y mínima de cortocircuito. La determinación de la corriente máxima de cortocircuito es importante para poder determinar el poder de corte de los interruptores automáticos, poder de cierre de los dispositivos de maniobra y solicitaciones electrodinámicas de los componentes de una instalación. El cálculo de la corriente mínima de cortocircuito es importante para determinar las curvas de disparo de los interruptores automáticos y de acción de fusibles. La determinación de la corriente mínima de cortocircuito es importante porque al diseñar la protección debe asegurarse que estás actúen aunque los valores de corriente sean muy inferiores a los valores para los que fue diseñado el aparato.

Las normas proponen diversos métodos:

Método de las Impedancias: permite calcular las corrientes de defecto en cualquier punto de una instalación, con una precisión aceptable. Consiste en sumar separadamente las diferentes resistencias y reactancias del bucle del defecto, añadiendo después también los generadores, hasta el punto considerado, calculando también la impedancia correspondiente. Para aplicar este método es imprescindible conocer todas las características de los diferentes elementos del bucle de defecto (fuentes y conductores). Método de Composición: se puede utilizar cuando no se conocen las características de la alimentación. La impedancia aguas arriba del circuito considerado se calcula a partir una estimación de la corriente de cortocircuito en su origen. El factor de potencia se toma igual tanto en el origen del circuito como en el punto del defecto. En otras palabras, consiste en admitir que las impedancias elementales de dos partes sucesivas de la instalación tienen los valores de sus argumentos suficientemente próximos como para justificar la sustitución de las sumas vectoriales de las impedancias por sumas algebraicas de las mismas. Esta aproximación permite obtener el valor del módulo de las corrientes de cortocircuito, con una aproximación suficiente para calcular el circuito. Este método aproximado sólo se aplica a instalaciones de potencia inferior a 800 kVA. Método Convencional: permite calcular las corrientes de cortocircuito mínimas y las corrientes de defecto en el extremo de una red, sin conocer las impedancias o la Icc de la instalación aguas arriba del circuito considerado. Se basa en la hipótesis de que la tensión en el origen del circuito, durante el tiempo de cortocircuito o defecto, es igual al 80% de la tensión nominal. Este método no tiene en cuenta la resistencia de los conductores para secciones importantes; se aplica un coeficiente corrector para incluir su inductancia (1,5 para 150 mm2, 1,20 para 185 mm2, ...). Este método se usa sobre todo para los circuitos finales suficientemente alejados de las fuentes de alimentación (red o grupo). Método Simplificado: utilizando tablas con diversas hipótesis simplificadas, da directamente, para cada sección de conductor: la corriente asignada del dispositivo, que asegura la protección contra las sobrecargas; las longitudes máximas de conductores protegidos contra contactos indirectos; y las longitudes admisibles, teniendo en cuenta las caídas de tensión. En realidad, estas tablas están confeccionadas con los resultados de los cálculos obtenidos al aplicar los métodos de composición y convencional. Este método permite además determinar las características de un circuito que forma parte de una instalación ya existente cuyas características no se conocen suficientemente. Se aplica directamente a las instalaciones BT, y con coeficientes correctores, si la tensión no es 230/400 V.

Page 2: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 20

Norma IEC 60909 (VDE 0102): se aplica a todas las redes, radiales o enmalladas, hasta 230 kV. Basada en el teorema de Thevenin, consiste en calcular una fuente de tensión equivalente en el punto de cortocircuito, para, seguidamente, determinar la corriente en este mismo punto. Todas las alimentaciones de la red y las máquinas sincrónicas y asíncronas se sustituyen por sus impedancias (directa, inversa y homopolar). Con este método se desprecian todas las capacidades de línea y las admitancias en paralelo de las cargas no giratorias, salvo las del sistema homopolar. Existen otros métodos que utilizan el principio de superposición y necesitan un cálculo previo de la corriente de carga. Merece especial mención la norma IEC 60865 (VDE 0103) que se basa en el cálculo de la corriente de cortocircuito térmicamente equivalente.

Cálculo de las corrientes de cortocircuito: Componentes Simétricas

El cálculo con la ayuda de las componentes simétricas resulta particularmente útil para el caso de defectos en redes trifásicas desequilibradas, porque las impedancias clásicas, R y X, no se pueden utilizar debido, por ejemplo, a los fenómenos magnéticos. Por tanto, es necesario este tipo de cálculo: si se trata de un sistema no simétrico de tensiones y corrientes (es el caso de un cortocircuito monofásico, bifásico, o bifásico con tierra); si la red tiene sobre todo máquinas rotativas y transformadores especiales (conexión estrella-estrella neutro, por ejemplo). Este método es aplicable a cualquier tipo de red de distribución radial y para cualquier tensión. Un cortocircuito tripolar equivale a una carga simétrica de la red trifásica, por ello, para el cálculo de las corrientes de cortocircuito puede limitarse a una sola fase. Todos los demás cortocircuitos equivalen a cargas asimétricas. Para estos cálculos de corrientes de cortocircuito se necesitan hipótesis que justifiquen la validez de las expresiones empleadas. Normalmente, estas hipótesis, simplificadoras y que introducen aproximaciones justificadas, hacen más comprensibles los fenómenos físicos y, por tanto, el cálculo de las corrientes de cortocircuito, manteniendo una precisión aceptable y por exceso. Las hipótesis empleadas son: 1) la red considerada es radial y su tensión nominal está comprendida entre la BT y la AT (sin rebasar los 230 kV, límite impuesto por la norma IEC 60909) 2) la corriente de cortocircuito, al producirse un cortocircuito trifásico, se supone establecida simultáneamente en las tres fases 3) durante el cortocircuito, el número de fases afectadas no se modifica: un defecto trifásico sigue siendo trifásico y un defecto fase-tierra sigue siendo fase-tierra 4) durante todo el tiempo del cortocircuito, tanto las tensiones que han provocado la circulación de corriente como la impedancia de cortocircuito no varían de forma significativa 5) los reguladores o conmutadores de tomas de los transformadores se suponen situados en posición intermedia (en el caso de un cortocircuito alejado de los alternadores, podemos ignorar las posiciones reales de los conmutadores de tomas de los transformadores) 6) no se tienen en cuenta las resistencias del arco 7) se desprecian todas las capacidades de las líneas 8) se desprecian las corrientes de carga 9) se tienen en cuenta todas las impedancias homopolares.

Método de Cálculo Un vector puede representarse como la resultante de tres componentes. Utilizando un sistema trifásico de secuencia directa, uno de secuencia inversa y uno homopolar, resulta posible representar cualquier sistema asimétrico trifásico:

Page 3: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 21

I1 =I1 HdL +I1 HiL +I1 HoLI2 =I2 HdL +I2 HiL +I2 HoLI3 =I3 HdL +I3 HiL +I3 HoL

Utilizando un operador matemático:

a= -12

+ j è 32

= ej 2 p3

gira un vector en +120º además, teniendo en cuenta que:

a2 = -12

- j è 32 gira un vector en +240º

Otra forma de representar el sistema vectorial es:

I1 =I1 HdL +I1 HiL +I1 HoLI2 =a2 ÿ I1 HdL +a ÿI2 HiL +I2 HoLI3 =a ÿI3 HdL +a2 ÿI3 HiL +I3 HoL

Teniendo en cuenta otra denominación más común:

IR=I1 R+I2 R+I0IS =I1 S +I2 S+I0 = a2 ÿI1 R+aÿ I2 R+I0IT= I1 T+I2 T+I0 = aÿ I1 R+a2 ÿ I2 R+I0

Recíprocamente, también se pueden representar las componentes simétricas de un

sistema dado: I1 R=

13

IIR+aÿ IS+a2 ÿ ITM

I2 R=13

IIR+a2 ÿIS +aÿ ITM

I0 =13

HIR+IS+ITL

La componente homopolar aparece únicamente cuando los tres vectores R, S y T no cierran un triángulo, lo que equivale a decir que las tres fases no presentan una carga simétrica respecto a tierra. La componente inversa aparece cuando los valores de R, S y T no son iguales entre sí. El método permite descomponer cualquier sistema trifásico asimétrico en tres sistemas de componentes simétricas, por lo que es suficiente realizar los cálculos para una sola fase.

Page 4: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 22

Para las corrientes y las tensiones de un sistema trifásico se cumplen las siguientes ecuaciones:

IR=I1 +I2+I0IS =a2 ÿ I1+a ÿI2 +I0IT= a ÿI1 +a2 ÿI2 +I0

I1 =13

IIR+aÿ IS+a2 ÿ ITM

I2 =13

IIR+a2 ÿIS +aÿ ITM

I0 =13

HIR+IS+ITL

UR= U1 +U2+U0US = a2 ÿU1+a ÿU2 +U0UT=a ÿU1 +a2 ÿU2 +U0

U1 =13

IUR+aÿ US+a2 ÿ UTM

U2 =13

IUR+a2 ÿUS +aÿ UTM

U0 =13

HUR+US+UTL

En las ecuaciones anteriores, las componentes simétricas están referidas a la fase R.

Impedancias Directa, Inversa y Homopolar Impedancia Directa (Z1): es el cociente entre la tensión de fase y la corriente de fase en el caso de que el sistema se alimente mediante un sistema simétrico directo. Impedancia Inversa (Z2): cociente entre la tensión de fase y la corriente de fase en el caso de que se alimente mediante un sistema simétrico inverso. En las líneas, transformadores y bobinas coincide con la impedancia directa. Impedancia Homopolar (Z0): cociente entre tensión de fase y corriente de fase, si el sistema estuviese alimentado con una fuente monofásica, si los tres conductores principales constituyen el camino de ida de la corriente y existe un cuarto conductor que es el retorno común. La impedancia homopolar se refiere siempre a la conexión estrella; a las conexiones triángulo no es posible asignarles impedancia homopolar.

Page 5: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 23

Cálculo de la Corriente Inicial Simétrica de Cortocircuito con y sin consideración e la carga de la red. A continuación se explicará la metodología que se deberá aplicar al analizar un cortocircuito tripolar equilibrado. Es importante comprender que el método es análogo para cualquier tipo de cortocircuito y solamente se realizará una explicación teórica de cómo debe encararse la resolución de las corrientes de cortocircuito. Para ello el lector deberá comprender el principio de superposición, que nos permite realizar análisis sobre circuitos realizando una serie de simplificaciones para luego analizar el conjunto de los efectos que se producirían en una red en funcionamiento. El cálculo se puede realizar considerando o no la carga preexistente en la red. Si bien al considerar la carga previa de la red se obtienen resultados más próximos a la realidad, es decir, más precisos, la determinación de las corrientes de cortocircuito es más compleja. Los cálculos solo pueden efectuarse si las impedancias de los aparatos que intervienen son lineales, es decir, Z es constante.

Para un cortocircuito tripolar

Considerando la carga de la red Este cálculo se basa en el principio de superposición. El primer paso consiste en determinar las corrientes en servicio normal y calcular la tensión en el punto de cortocircuito. El segundo paso consiste en calcular las corrientes considerando como única fuente de alimentación la tensión que existe en el punto de cortocircuito, suponiendo las demás fuentes de alimentación nulas, es decir, que sólo actuarían sus impedancias. El último paso consiste en superponer la distribución de corrientes calculadas, obteniendo así, las corrientes de cortocircuito considerando la carga de la red. Los circuitos equivalentes a cada uno de los pasos serían, para un circuito como el anterior:

Page 6: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 24

Sin considerar la carga de la red Este método simplificado tiene dos variantes, una de ellas es empleando las tensiones de los generadores y de las acometidas, y la otra es considerando una fuente equivalente de tensión. Las directrices de la VDE se basan en la segunda variante. Para calcular las corrientes de cortocircuito se realizan dos pasos, uno de ellos es calcular la corriente en el punto de falla teniendo en cuenta la tensión de la fuente de alimentación y multiplicando la tensión aplicada sobre la carga por un factor “c” que permite tener en cuenta las variaciones de tensión en el espacio y en el tiempo, los cambios eventuales en las conexiones de los transformadores, y el comportamiento subtransitorio de los alternadores y de los motores. El segundo paso consiste en suponer una fuente equivalente cuya tensión está multiplicada por el factor “c” dispuesta en el punto de falla. En este último caso, sólo se tienen en cuenta las impedancias de los demás artefactos conectados a la red.

Estudio de los distintos tipos de cortocircuito

Defecto Fase – Tierra Se supone que el circuito está sin carga. Para plantear las ecuaciones primero debemos aislar la

zona de asimetría.

Las ecuaciones de las componentes reales en (D):

Las ecuaciones de las componentes simétricas en (S):

Combinando las ecuaciones en D y en S, obtenemos:

Se plantean las ecuaciones en el punto del cortocircuito, por ejemplo, en este caso, al no haber carga previa de la red, en las fases 2 y 3 no puede circular corriente

Planteando las ecuaciones de las componentes simétricas y reemplazando las condiciones iniciales para el tipo de cortocircuito podemos encontrar los valores de las componentes simétricas.

Page 7: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 25

Las ecuaciones de funcionamiento de S:

Estas tres ecuaciones se encuentran sistemáticamente en todos los casos de cálculo de

regímenes desequilibrados con una sola fuente de tensión. La resolución de las ecuaciones, nos da los valores de las componentes simétricas de las

corrientes y de las tensiones: A continuación se puede ver un esquema de la red según las componentes simétricas

Los valores de las tensiones y corrientes reales: El término entre paréntesis de V3 se denomina factor de defecto a tierra y varía entre 1 y 1.8 Los casos particulares son: 1) Defecto franco: Z = 0, por lo que la corriente de fase toma el valor

2) Defecto impedante a tierra: 3 Z>> Zd + Zi + Z0, la corriente se define por la impedancia de defecto

Page 8: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 26

Defecto bifásico a tierra El análisis es similar al del caso anterior. Primero aislamos la zona de defecto, y planteamos las ecuaciones para dicha zona (D):

El siguiente paso es plantear las ecuaciones en la zona S:

Al combinar ambos sistemas de ecuaciones:

Resolviendo las ecuaciones, obtenemos las componentes simétricas:

El esquema de la red para las componentes simétricas:

Los casos particulares:

Page 9: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 27

Defecto Trifásico Para la zona D: En la zona S:

Al resolver las ecuaciones:

Los resultados son independientes de los valores de Zd, Zi y Z0.

Red con cargas desequilibradas

La resolución de las ecuaciones:

Page 10: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 28

Los casos particulares pueden ser: 1) Carga de baja potencia siendo Zc → ∞, en este caso I1 e I3 → 0, y V1, V2 y V3 → a los valores de la red simétrica. 2) Cortocircuito aislado con Zc = 0, en ese caso la corriente de defecto es:

Doble Contacto a tierra El doble contacto a tierra es un cortocircuito que se produce en distintos puntos y en diferentes fases de una red. Se presenta sobre todo en redes con neutro aislado o con puesta a tierra compensante. Estas redes son las únicas en las que aparece, después de producirse un cortocircuito unipolar a tierra, un aumento considerable de la tensión en las fases no afectadas, que puede originar una descarga a tierra en una de dichas fases (es decir, un doble contacto a tierra). Suponiendo un cortocircuito como el que se representa a continuación:

Para el punto de cortocircuito A, las condiciones iniciales son:

ISA = 0; ITA = 0 y URA = 0 para el punto de cortocircuito B, son:

IRB = 0; ITB = 0 y USB = 0 Para la corriente de cortocircuito debida a un doble contacto a tierra IR = -IS = 3·I0 resulta:

bbakEE ZZZ

EI011

''''

263

++= ∆

Las tensiones en el punto de cortocircuito A:

( )( ) ( )

( )( ) ( )

++++

+−−=

++++

+−=

=

bbbaa

aaTA

bbbaa

aaSA

RA

ZZZZZZaaZaEjaU

ZZZZZZZEjaU

U

02121

22

1''

02121

21''

33

3

33

13

0

en el punto de cortocircuito B:

( ) ( )

( ) ( )( ) ( )

++++

++−+−−=

=++++

++−=

bbbaa

bbbaaTA

SA

bbbaa

bbbRB

ZZZZZZaZZaZaaZaEjaU

UZZZZZ

ZZaaZEjaU

02121

0212

22

1''

02121

022

1''

33

3

03

3

Este tipo de cortocircuito es el más complejo de calcular, por lo que se han representado solamente los resultados finales que surgen de realizar el análisis del mismo. Además, cabe destacar que en este tipo de

Page 11: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 29

cortocircuito las corrientes que aparecen son inferiores a las de los otros cortocircuitos bipolares, por lo que su importancia solamente se limita a comprobar el funcionamiento de los sistemas de protección y la posible aparición de interferencias en sistemas de comunicación.

Cálculo de las Corrientes de Cortocircuito según las Directrices VDE 102

Cálculo de las corrientes iniciales simétricas de cortocircuito En las directrices VDE 102 se indica un método que consiste en suponer que en el punto de cortocircuito (para todos los tipos de cortocircuito) actúa una única fuente equivalente de tensión cuya fuerza electromotriz vale:

cÿUh

è 3 El factor c permite tener en cuenta la diferencia existente entre la fuerza electromotriz inicial y la tensión de servicio de la red en el punto de cortocircuito. Las fuerzas electromotrices de los generadores y las correspondientes acometidas se consideran nulas y únicamente se tienen en cuenta las impedancias de las distintas fuentes de corriente de cortocircuito. No se consideran las capacitancias de las líneas en los sistemas directo e inverso ni las impedancias transversales no debidas a motores; los motores se tratan como generadores. Por el contrario, al calcular defectos asimétricos, deben tenerse en cuenta en el sistema homopolar las capacidades de las líneas y las demás impedancias transversales no debidas a motores. Para el doble contacto a tierra no resulta útil emplear las fuentes equivalentes de tensión, pues se supone que este cortocircuito se produce en dos puntos y en dos fases diferentes. Como fuerzas electromotrices se consideran las de la fuente de corriente de cortocircuito. En las redes trifásicas con tensiones nominales > 1 kV se tiene tanto para los cortocircuitos próximos al generador como para los alejados de él:

cÿUh

è 3=

cÿ UNè 3

en donde UN es la tensión nominal compuesta en la zona de la red en la que está situada la falla y c = 1.1, y representa la diferencia entre la fuerza electromotriz y la tensión de red. En las redes trifásicas con tensiones nominales < 1 kV sin generadores de baja tensión se tiene:

cÿUh

è 3=

cÿ UNè 3

en donde UN es la tensión nominal compuesta del lado de baja tensión de los transformadores que alimentan la red, c = 1.0 para el cálculo de las máximas corrientes simétricas de cortocircuito y c = 0.95 para el cálculo de las mínimas corrientes simétricas de cortocircuito. Las directrices VDE 0102, partes 1/11.71 y 2/11.75 establecen las formulas para determinar las corrientes iniciales de simétricas de cortocircuito que se presentan en los distintos tipos de cortocircuito. Estas fórmulas surgen del análisis a través de las componentes simétricas. En las figuras 6.1 páginas 114 y 115 del libro “Corrientes de cortocircuito en redes trifásicas” – Roeper (Siemens), se pueden ver las figuras y fórmulas que han sido simplificadas en este informe.

Page 12: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 30

Cortocircuito Tripolar

Cortocircuito Bipolar

Page 13: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 31

Cortocircuito Unipolar

Doble Contacto a Tierra

Page 14: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 32

Cálculo de las corrientes de cortocircuito Hasta este punto se ha visto solamente como calcular las corrientes iniciales simétricas de cortocircuito. Pero esta corriente no es la que necesitamos para la elección de las protecciones, por lo que a continuación se explicará como encontrar los valores útiles de las corrientes de cortocircuito. Los cálculos de las corrientes de cortocircuito Is, Ia e Ik (máxima asimétrica, simétrica de corte y permanente respectivamente) se calculan a partir de la corriente inicial simétrica I’’K y de factores indicados por la VDE 102.

Corriente máxima asimétrica de cortocircuito IS= c ÿ è 2 ÿI'' k

El factor X depende de la relación Rk/Xk correspondiente a los distintos aparatos o componentes implicados en el cortocircuito y tiene en cuenta el amortiguamiento temporal de la componente aperiódica, así como el de la componente simétrica en el caso de cortocircuitos próximos al generador.

Corriente simétrica de corte Para máquinas sincrónicas Ia= m ÿ I''k Para máquinas asincrónicas IaM= m ÿ q ÿI'' k El factor 㯀 depende de la relación I’’k/IN de las distintas fuentes de corriente de cortocircuito y del retardo mínimo de desconexión tV.

Page 15: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 33

El factor q depende de la relación entre la potencia del motor (MW) y el número de pares de polos (de un motor asíncrono o de un grupo de motores) y del retardo mínimo de desconexión tV.

Corriente permanente de cortocircuito Ik= lÿ IN

El factor λ depende de la relación I’’k/IN, de las condiciones de excitación y del tipo de máquina sincrónica en cuestión.

La corriente máxima de cortocircuito permanente máxima, bajo la máxima excitación del generador síncrono, nos viene dada por: Ikmáx = λmáx . IN

La corriente de cortocircuito mínima permanente se obtiene para una excitación constante (mínima) en vacío de la máquina síncrona. Y nos viene dada por: Ikmin = λmin . IN Nota: En los gráficos que se detallan a continuación, que dan los valores de lambda para turbogeneradores y para generadores de polos salientes, en ambos gráficos la corriente nominal de la máquina se denomina Ir.

Page 16: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 34

Cálculo de las corrientes de cortocircuito: Método de las impedancias

El método de cálculo que se detallará es un método simplificado en el que solo se considera la impedancia directa. Además se supone la tensión alrededor de un 3 a 5% de la tensión nominal, es decir, se calcula por exceso. A continuación se da un gráfico que muestra las corrientes de cortocircuito para cada tipo de cortocircuito:

Cortocircuito Trifásico El cálculo de la intensidad de cortocircuito se reduce entonces al cálculo de la impedancia Zcc,

impedancia equivalente a todas las impedancias (de la fuente y las líneas) recorridas por Icc desde el generador hasta el punto de defecto.

Cortocircuito bifásico aislado Corresponde a un defecto entre dos fases, alimentado por una tensión compuesta U. La intensidad que circulará es inferior a la provocada por un defecto trifásico:

Page 17: 02 componente simétrica

López Roberto – Muñoz Adrián Cálculo de Cortocircuito Página Nº 35

Cortocircuito monofásico aislado Corresponde a un defecto entre una fase y el neutro, alimentado por una tensión simple V =

U/ √3 . La intensidad que circulará en este caso será:

En algunos casos concretos de defecto monofásico, la impedancia homopolar del generador es

menor que Zcc (por ejemplo, en los bornes de un transformador en conexión estrella-zig zag o de un alternador en régimen subtransitorio). En este caso, la intensidad monofásica puede llegar ser mayor que la de un defecto trifásico.

Cortocircuito a tierra (monofásico o bifásico) Este tipo de defecto provoca la intervención de la impedancia homopolar Zo. Salvo en

presencia de máquinas rotativas, en las que la impedancia homopolar se encuentra reducida, la intensidad que circulará es siempre inferior a la del defecto trifásico. El cálculo de esta intensidad puede ser necesario según el régimen de neutro (esquema de conexión a tierra) para la elección de los niveles de regulación de los dispositivos de protección homopolar (AT) o diferencial (BT).